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Introduction

1.1 Singularly perturbed problems

Singular perturbation problems (SPPs) play an essential role in understanding the

hydrodynamical phenomenon and have many applications known to the real world.

They account for many branches of applied mathematics and engineering, e.g. com-

putational fluid dynamics, financial modeling, elasticity, gas porous electrodes the-

ory, chemical reactors, fluid mechanics. These problems are usually characterized

by an arbitrarily small parameter or perturbation parameter ‘ε’ multiplied with the

highest order derivative involved in the differential equation. Singularity is observed

in the solution when the perturbation parameter ε → 0, as the problem becomes

ill-posed because the order of the differential equation is reduced although the con-

ditions on the boundary remain the same in number. The solution here reaches a

discontinuous limit as ε→ 0, which is not in the case of regular perturbation prob-

lems. As a result, the solution of SPPs exhibits a multiscale phenomenon, i.e. the

solution changes rapidly in some regions of the domain and shows smooth behavior

away from them. The region where this rapid change occurs is termed as the layer

region (boundary or interior layers) and where the solution behaves smoothly as the

regular region.

SPPs drew the attention of researchers in the late twentieth century, when Prandtl

gave his seminal paper [1] in the third International Congress of Mathematics held at

Heidelberg in 1904. It revolutionalized the area of modern fluid dynamics, explaining

the crucial role played by boundary layers in determining the fluid flow pattern.
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In his work, he explained that the properties of the dependent variable may be

significantly different inside the boundary layer than outside of boundary layer. He

added that the frictional forces near the boundary layers are dominant over those

of the viscous forces on the body. Thus, making the study of singular perturbation

problems more exciting and useful to work upon. Moreover, the numerical treatment

of these problems includes exponential fitting, adaptive grids (meshes), and ideas

based on the method of asymptotic expansions. Their occurrence in the areas of

science and engineering is quite frequent. The most striking example we can think

of is the Navier-Stokes equation with a large Reynolds number, i.e.


∂v

∂t
+ v.∇v+∇p = 1

Re
∇2v,

∇.v = 0,
(1.1)

along with suitable initial and boundary conditions, where p represents the pressure

and v = (v1, v2) is the velocity field with components v1 and v1 along the axes respec-

tively. The parameter Re = |v|L/µ represents the Reynolds number with L being

the characteristic length and µ the kinematic viscosity of the fluid. For large value

of Re, the modeled equation (1.1) behaves like a singularly perturbed differential

equation. The solution to such problems generally exhibits layers, i.e. boundary

layers near the boundary and interior layers near the point of discontinuity in the

domain. Friedrichs and Wasow were the first to coin the term ‘Singular perturbation’

in their paper [2]. Though, it was Prandtl who made it possible for the substantial

work of Wasow to gain more generality by introducing the terminology ‘boundary

layers.’ Depending on the characteristics, a boundary layer can be of either regular

or parabolic type. It is said to be a parabolic boundary layer if corresponding to

ε→ 0, the characteristics of the reduced equation are parallel to the boundary, and

a regular boundary layer if the characteristics are not parallel to the boundary. The
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layer near the corner is termed the corner layer. For a detailed description of the

definitions described above, we refer the reader to [3].

The singular perturbation theory gained its greatest significance through Freidrichs

and Wasow’s groundbreaking works [2, 4]. Numerous mathematicians then began

to concentrate on this area of mathematics. This area of mathematics has flourished

to a remarkable level over the previous few decades. Although various beneficial

methods have been developed, significant advancements are still being made, and

valuable research is ongoing. Below we provide a formal definition of SPPs.

Definition 1.1.1. [5] Let Pε be a problem with solution uε ∈ S for all ε ∈ G, where

S a is function space with norm ∥.∥S and G ⊂ Rn is a parameter domain. The

continuous function u : G→ S, ε 7→ uε is said to be regular for ε→ ε⋆ ∈ ∂G if there

exists a function u⋆ ∈ S such that:

lim
ε→ε⋆

∥uε − u⋆∥S = 0,

otherwise we say uε is singular and Pε is singularly perturbed.

1.2 Numerical methods for singularly perturbed

differential equations

Singularly perturbed differential equations with arbitrarily small perturbation pa-

rameter ε such that 0 < ε ≪ 1 attracted both mathematicians and engineers to

understand the boundary layer theory of fluid dynamics. Asymptotic expansion

technique was mainly used to approximate the solution in the initial development

of this area. The asymptotic expansion utilizes the asymptotic sequence of the

perturbation parameter ε leading to a differential equation of lower order than the
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original one. Consequently, this asymptotic expansion doesn’t allow the solution to

satisfy all the initial and the boundary conditions. To understand and answer these

questions, several mathematicians and physicians worked in this field, making the

boundary layer theory the foundation for modern fluid dynamics. Several numerical

approaches can be listed for SPPs, from classical to robust numerical methods to

capture their multiscale behavior. The classical methods (standard finite difference

methods) are proven inefficient on uniform meshes as they fail to capture the layer

behavior of the solution unless extremely large number of mesh points are chosen.

This is due to the presence of steep gradients in the exact solution.

Classical numerical methods are not good enough to decrease the maximum point-

wise error unless the perturbation parameter is of the magnitude of the mesh size [6].

The result motivated the search for such a numerical method that satisfies our natu-

ral expectation of reduced error when the mesh is refined. In turn, researchers found

it exciting to develop an ε-uniform/parameter-uniform/ parameter-robust/uniformly

convergent/robust convergent numerical method for which the numerical error and

the order of convergence do not depend on the perturbation parameter ε.

Definition 1.2.1. [5] Let Pε be a problem with solution uε and let UN,M
ε be its

approximation obtained by some numerical method. The method is said to be

uniformly convergent or robust with respect to the perturbation parameter ε in a

given norm ∥.∥⋆ if there exists N0 and M0 independent of ε such that

∥uε − UN,M
ε ∥⋆ ≤ Cϑ(N,M) for N ≥ N0, M ≥M0,

with a function ϑ that is independent of ε and lim
N→∞, M→∞

ν(N,M) = 0; and a

constant C > 0 that is independent of ε and N, M.
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Mainly, numerical methods are classified into three categories, i.e. fitted opera-

tor method (FOM), fitted mesh method (FMM), and domain decomposition method

(DDM). The fitted operator method is defined on a standard mesh, where the ex-

ponential fitting factors control the numerical solution’s rapid growth or decay in

the boundary layers. These operators are constructed by choosing the difference

coefficients so that some or all the exponential functions lie in the null space of the

difference operator. This method was first suggested for solving the problem of a

viscous fluid past a cylinder by Allen and Southwell [7] in 1955. More insights about

fitted operator methods can be found in [7–13].

On the contrary, fitted mesh method utilizes standard finite difference operators

on special meshes that are fine near the boundary or interior layers and coarse in

the region away from it. The well-known layer resolving fitted meshes are Shishkin

mesh [14] (which is piecewise uniform and easy to construct) and Bakhvalov mesh

[15] (which is constructed using a non-linear mesh generating function). They require

prior information about the location and width of the boundary layers. FOMs are

difficult to implement on higher order differential equations or sometimes impossible.

FMMs are more popular than FOMs because they can be easily implemented on

the standard finite difference operators and can be extended for solving problems

of higher dimensions and non-linear problems with complicated domain structures.

Some applications of Shishkin meshes are given in [6, 9, 16–28].

Domain decomposition is an effective numerical approach for solving partial differ-

ential equations. It has gained popularity and become essential in simulations of

fluid flows, particularly those that originate from models of the real world and de-

mand extensive parallel computation. More than a century ago, Schwarz established

the concept of domain decomposition to solve partial differential equations (PDEs)

[29]. Today, it is an effective computing method for simulating fluid flows. In the
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past few decades, computational mathematics, sciences, and engineering fields have

witnessed a rapid and steady rise in the amount of study devoted to the theory and

application of DDMs. DDMs were initially developed to solve the problem with

complex geometries. Essentially, the concept is to divide a big, complicated prob-

lem into smaller, simpler sub-problems, solve them separately, and then combine

their solutions to provide a global solution. The motivation behind the use of these

methods is encouraged by their potential for effective parallelization through data

locality, their adaptability to PDEs posed on geometrically challenging domains,

their ability to handle PDEs with varying behavior across the domain, and superior

convergence properties of the iterative method. We refer the reader to [30, 31] for a

detailed overview of domain decomposition methods.

DDMs have also been developed and investigated for time-dependent problems. One

standard method to solve time dependent problems is to apply the Domain decompo-

sition to semi-discretized problems in time and solve the resulting spatial problems

[32]. An improved approach is the Schwarz waveform relaxation (SWR) that di-

rectly addresses the time-dependent problem to provide an iterative solution [33].

The method divides the spatial domain, but after that, it solves the time-dependent

problems on each subdomain across a time interval. The solution is then updated

by sharing traces of the solution over time from each subdomain with its neighbors.

The Schwarz waveform relaxation method converges depending on the amount of

overlap (if overlapping partitions are utilized), the characteristics of the transmission

conditions in space-time, and the size of the time window. Some optimized Schwarz

waveform relaxation methods are suggested in [34, 35] by adapting better transmis-

sion conditions for faster convergence. Next, we define the definition of parameter

uniform numerical method in a domain decomposition environment.

Definition 1.2.2. Let uε be the exact solution of a singularly perturbed problem and
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let Uk
ε be an approximation to uε generated by kth step of some iterative numerical

method. The numerical method is said to be uniformly convergent with respect to

ε in a given norm ||.||∗ if there exists N0 > 0, M0 > 0 independent of ε such that

for all N ≥ N0, M ≥M0

||uε − Uk
ε ||∗ ≤ Cρk + Cν(N,M), 0 ⩽ ρ < 1, lim

N→∞, M→∞
ν(N,M) = 0,

with a function ν that is independent of ε, and constant C > 0 that is independent

of ε, N,M and k.

1.3 Literature review

Singularly perturbed problems (SPPs) arise in mathematical modeling of several

practical problems in engineering and applied mathematics, for example, in describ-

ing the theory of gyroscopes [36], in studying linear spring-mass system without

damping but with forcing and a small spring constant [37], in variational problems

in control theory [38], etc. We refer the reader to [5, 6, 9, 39] for a detailed descrip-

tion. Now, we provide a brief overview of the relevant literature.

1.3.1 Singularly perturbed parabolic coupled system of

reaction-diffusion delay problems

There are several practical phenomena in which delay differential equations fre-

quently arise, e.g., in modeling of the human pupil–light reflex [40], population

dynamics [41], physiological processes [42], and in control theory [43] etc. In the
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past two decades, many researchers have paid attention to delay differential equa-

tions and developed various numerical methods, see e.g., [44–48] and the references

therein. In [49], a fitted operator finite difference method is developed for a partial

delay differential equations system. An initial value method is proposed to solve a

weakly coupled system of singularly perturbed reaction-diffusion delay problems in

[50]. Further, an adaptive mesh selection method is developed for a coupled sys-

tem of singularly perturbed convection-diffusion problems in [51], where the mesh

is generated with the help of an entropy production operator. Recently, in [52],

a robust numerical method for a singularly perturbed coupled system of parabolic

delay problems is constructed based on the backward Euler discretization in time

and the central difference discretization in space. However, the computational cost

of this methods is high because a coupled system needs to be solved at each time

level.

1.3.2 Singularly perturbed parabolic coupled system of

reaction-diffusion problems

The robust convergent numerical methods for a singularly perturbed parabolic cou-

pled system of reaction-diffusion problems are developed using fitted mesh, domain

decomposition, and fitted operator approaches (see [25, 53–58] and the references

therein). The asymptotic analysis of the solution and its derivatives is given in [54].

The authors used the Euler scheme on a uniform mesh in the time variable and the

central difference scheme on a piecewise uniform Shishkin mesh in the space variable

to discretize the problem. In [59], the authors developed a numerical method com-

bining the Crank-Nicolson scheme with a central finite difference scheme defined

on a piecewise uniform Shishkin mesh for space discretization to obtain a higher

order convergence for the time variable. A parameter uniform convergent method is
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developed in [60] based on the mesh equidistribution approach. In [55], the authors

proposed a uniform convergent numerical method where two splitting schemes on

uniform meshes are used for time discretization and the central difference scheme on

Shishkin mesh for space discretization. A fitted operator method on uniform meshes

is studied in [58]. Further, in [53], a domain decomposition method of SWR type is

developed and analyzed. They used the backward Euler scheme on uniform mesh in

the time variable and the standard central difference scheme on uniform mesh in the

space variable. It is proved that the method gives robust numerical approximations

for the exact solution. However, the computational cost of this algorithm is high,

since the components of the approximate solution are coupled at each time level.

1.3.3 Singularly perturbed parabolic coupled system of

reaction-diffusion semilinear problems

Scalar singularly perturbed semilinear problems are studied extensively in the liter-

ature. But very little research is available for solving system of singularly perturbed

parabolic semilinear reaction-diffusion problems. For a scalar problem, on layer-

adapted meshes of the Bakhvalov and Shishkin types, the authors established the

existence and investigated the accuracy of discrete solutions in [61]. In [62], authors

considered semi and fully discretization of the backward Euler and Crank-Nicolson

methods and gave a posteriori estimates. A monotone iterative method is proposed

by the author in [63]. Further, uniform convergence of the monotone methods is

investigated. Also, a domain decomposition method of Schwarz waveform relax-

ation type is analyzed in [64]. The above mentioned studies mainly looked at scalar

problems. Later, the idea was extended for coupled systems of semilinear reaction-

diffusion equations [65] based on the fitted mesh method.



Chapter 1. Introduction 10

1.3.4 Singularly perturbed parabolic reaction-diffusion prob-

lems with Robin boundary conditions (RBCs)

Singularly perturbed problems with Dirichlet-type boundary conditions have been

studied extensively in the literature (see [16, 66–71] and the references therein).

However, there are few studies of such problems with Robin boundary conditions.

In [72], the authors developed a finite difference method for a Neumann problem on

a special piecewise uniform mesh. Then, a higher order time accurate finite differ-

ence method is analyzed in [73] with Robin type boundaries. In [74], the authors

considered stationary reaction-diffusion problems with RBCs and proposed a uni-

form parameter numerical method combining the cubic spline and classical finite

difference schemes. In [75], a numerical method involving the cubic spline scheme

for boundary conditions and the central difference scheme at the interior points is

given and analyzed. The mesh is constructed by the equidistribution of a positive

monitor function. A parameter uniform finite difference scheme is analyzed in [76]

where the central difference scheme is used to discretize the space variable, and the

backward Euler scheme is used for the time variable. Recently, in [77], the authors

have proposed a parameter-uniform numerical method on equidistributed meshes.

Moreover, we are not aware of any study involving the domain decomposition ap-

proach for SPPs with Robin boundary conditions.
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1.3.5 Singularly perturbed time delayed parabolic reaction-

diffusion problems with Robin boundary conditions

In mathematical modeling of several physical phenomena of bioscience and control

theory, delay differential equations frequently arise, for instance, in population dy-

namics [41], immunology [78], physiology [79], and neural networks [80]. The delay

term in these models occurs due to feedback control because a finite time is re-

quired to sense and react to the data like the immune period, the time between

a cell is infected and the new virus is produced, the stages of the life cycle, the

duration of the infectious period, etc. [81]. Singularly perturbed delay differential

equations generally arise when the highest order derivative term is multiplied with

a small parameter, e.g., in modeling of the human pupil–light reflex [82], variational

problems in control theory [83], the study of bistable devices [84] and chemical

processes [85]. The numerical solution of a delay partial differential equation de-

pends on the current stage and some previous stages of the solution. Researchers

have proposed various numerical methods to solve singularly perturbed time delay

parabolic reaction-diffusion equations [86–91]. All of the noted authors concentrate

on Dirichlet boundary conditions. However, only a few research papers study these

problems with Robin boundary conditions. In [76], the authors proposed and ana-

lyzed a fitted mesh method. They used the central difference scheme on a piecewise

uniform Shishkin mesh for the space variable and the backward Euler scheme on

a uniform mesh for the time variable. A uniformly convergent numerical method

based on the collocation method is analyzed in [92]. Some recent studies examined

the singularly perturbed reaction-diffusion problem with RBCs. In [77], a parameter

uniform numerical method is given based on equidistributed meshes, and in [93], a

domain decomposition method is developed. No study is available in the literature
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that analyzed singularly perturbed delayed reaction-diffusion problems in domain

decomposition framework.

1.4 Objective of the thesis

The main objectives of the thesis are to develop parameter uniform numerical ap-

proximation for the following class of singularly perturbed partial differential equa-

tions based on domain decomposition and fitted mesh methods.

� Coupled systems of singularly perturbed time delayed parabolic reaction-diffusion

problems having two perturbation parameters of different magnitudes.

� Coupled systems of singularly perturbed parabolic reaction-diffusion problems

having two perturbation parameters of different magnitudes.

� Coupled systems of singularly perturbed semilinear parabolic reaction-diffusion

problems having two perturbation parameters of different magnitudes.

� Singularly perturbed parabolic reaction-diffusion problems with Robin bound-

ary conditions.

� Singularly perturbed parabolic time delayed reaction-diffusion problems with

Robin boundary conditions.

Further, we provide the theoretical convergence analysis for the proposed numer-

ical methods. Also, some test problems are considered to validate the theoretical

outcomes.
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1.5 Outline of the thesis

This thesis focuses on developing and analyzing robust numerical methods for sin-

gularly perturbed partial differential equations. The work presented in the thesis is

divided into six chapters.

Chapter 1 introduces singularly perturbed problems, parameter uniform numerical

methods, and domain decomposition methods. After that, a brief overview of the

literature and an outline of the thesis is given.

In Chapter 2, we develop an adaptive numerical method for a coupled system of

two singularly perturbed delay parabolic reaction-diffusion problems, where a per-

turbation parameter of different magnitude is multiplied with the diffusion term in

each equation. The problem is discretized by splitting schemes on uniform meshes

in the time direction and the central difference scheme on Shishkin and generalized

Shishkin meshes in the space direction. We discuss error analysis of the method

for both Shishkin and generalized Shishkin meshes and prove that the method is

robustly convergent of order almost two in space and one in time. Numerical results

are provided in support of theoretical findings.

In Chapter 3, we design and analyze additive schemes based domain decomposition

method of SWR type for a parabolic coupled system of singularly perturbed reaction-

diffusion problems involving perturbation parameters of different magnitudes. The

original domain is divided into five overlapping subdomains. We consider two ad-

ditive schemes on a uniform mesh in time on each subdomain and the standard

central difference scheme on a uniform mesh in space. We prove that the proposed

method yields uniformly convergent numerical approximations of almost second or-

der in space and first order in time. Further, we have shown that the proposed
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method is computationally more efficient than the standard Euler scheme. Some

numerical results are presented in support of the theory.

In Chapter 4, a domain decomposition method of SWR type is presented for a

coupled system of singularly perturbed semilinear parabolic problems involving two

perturbation parameters of different magnitudes. The computational domain is di-

vided into five overlapping subdomains. On each subdomain, a classical central

difference scheme in space, an Euler scheme, and splitting of components approach

in time are employed. We prove that the method is uniformly convergent, having

an order of almost two in space and one in time. Numerical results are given in sup-

port of the theoretical convergence result and to illustrate the efficiency of additive

schemes.

In Chapter 5, we develop and analyze a domain decomposition method of SWR type

for singularly perturbed partial differential equations with Robin type boundary

conditions. The original domain is divided into three overlapping subdomains, and

the problems are discretized on each subdomain using the backward Euler scheme

in the time direction and the central difference scheme in the spatial direction, while

the Robin boundary conditions associated with the problem are approximated using

a special finite difference scheme to maintain the accuracy. The numerical method

is proved to be unconditionally stable and uniformly convergent of order almost

two in space and one in time. More interestingly, the convergence of the iterates is

optimal for small values of the perturbation parameters. Numerical experiments are

presented to confirm the theoretically proven convergence result.

In Chapter 6, a time delayed singularly perturbed reaction-diffusion parabolic prob-

lem with Robin type boundary conditions is considered. We divide the compu-

tational domain into three overlapping subdomains and discretize the problem by

employing a central difference scheme in space direction and the Euler scheme in
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time direction on uniform mesh while a specific finite difference scheme is used to

approximate the boundary conditions. We prove that the proposed method is ro-

bust convergent having the accuracy of order one in time and almost two in space.

More importantly, we showed that only one iteration is needed for small values of

the perturbation parameter. To support the theoretical findings, we include two test

problems.

***********
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