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PREFACE

This thesis is concerned with design, analysis, and implementation of robust numeri-

cal methods using domain decomposition and fitted meshes for singularly perturbed

parabolic partial differential equations. These problems are characterized by the

presence of boundary layers in their solutions. Although the layer regions are small,

they have a considerable impact on the final result. Thus, solving these problems

accurately and efficiently using standard numerical methods is inappropriate. There-

fore, special numerical methods are needed to provide a numerical approximation

that converges to the exact solution independent of the perturbation parameters.

The developed numerical methods for singular perturbation problems are referred

to as parameter-robust, parameter-uniform, or uniformly convergent.

First, we consider a coupled system of two singularly perturbed delay parabolic re-

action–diffusion problems. In each equation, the diffusion term is multiplied by a

small parameter. The parameters can be of different magnitudes, due to which the

problem exhibits overlapping layers. To approximate the solution, we consider two

splitting (or additive) schemes on uniform meshes for time discretization and the

central difference scheme on Shishkin and generalized Shishkin meshes for space dis-

cretization. We prove that the proposed numerical method is uniformly convergent

having convergence of order one in time and almost two in space. The splitting

schemes reduced the computational time by decoupling the solution components at

each time level. Further, we present numerical results for two test problems to sup-

port our theoretical findings and demonstrate that the splitting schemes are more

efficient than the classical scheme.

Next, we consider a coupled system of singularly perturbed reaction-diffusion prob-

lems with perturbation parameters of different magnitudes. To solve this system

xxiii



numerically, we develop additive schemes based domain decomposition algorithm

of Schwarz waveform relaxation type. On each subdomain, we consider two addi-

tive schemes on a uniform mesh in time and the standard central difference scheme

on a uniform mesh in space. We provide a convergence analysis of the algorithm

using some auxiliary problems, and the algorithm is shown to be uniformly conver-

gent. The additive schemes make the computation more efficient as they decouple

the components of the approximate solution at each time level. Numerical results

for two test problems are given to support the theoretical convergence result and

illustrate the efficiency of additive schemes.

After that, a coupled system of singularly perturbed semilinear parabolic problems

is considered, where the diffusion term in each equation is multiplied by the dis-

tinct perturbation parameters. An overlapping domain decomposition algorithm is

proposed to solve this system numerically. On each subdomain, a classical central

difference scheme in space along with splitting of components technique in time are

employed. In this manner, the solution is computed by decoupling the components

of the solution, which results in a significantly lower computational cost for the

method than for the classical method. We introduce an iterative process to solve

the semilinear coupled system where the Dirichlet boundaries are used to exchange

the information between the subdomains. The method is proved to be parameter

uniform by including some auxiliary problems. To support the theoretical findings,

we consider two test problems. Moreover, to show the efficiency of the proposed

method, we compare the CPU time (in seconds) for the proposed method and the

classical Euler method.

Then we focus on a class of singularly perturbed partial differential equations with

Robin type boundary conditions. The method considers three subdomains, of which

two are finely meshed, and the other is coarsely meshed. The partial differential

equation associated with the problem is discretized using the finite difference scheme

xxiv



on each subdomain, while the Robin boundary conditions related to the problem are

approximated using a special finite difference scheme to maintain accuracy. Then,

an iterative method is introduced, where information is transmitted to the neighbors

using a piecewise linear interpolation. It is proved that the resulting numerical ap-

proximations are parameter-uniform and, more interestingly, the convergence of the

iterates is optimal for small values of the perturbation parameters. The numerical

results support the theoretical results about convergence.

In the end, we extend the previously introduced approach to time delayed singu-

larly perturbed reaction-diffusion parabolic problems with Robin type boundary

conditions. In this method, the computational domain is decomposed into three

overlapping subdomains (one is a regular domain, and the other two are layer sub-

domains) to adapt the singular behavior in thin regions near the boundaries. On

each subdomain, the backward Euler scheme is used for time discretization, while

the standard central difference scheme is used for space discretization. It is proved

that the proposed method is robust convergent with order one in time and almost

two in space using the barrier function approach. We also demonstrate that for small

values of the perturbation parameter, one iteration is required to attain the desired

accuracy. Further, some numerical results are included to illustrate the efficiency of

the method.
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