Bibliography

- Shiva Sharma, Rajesh K Pandey, and Kamlesh Kumar. Collocation method with convergence for generalized fractional integro-differential equations. *Jour*nal of Computational and Applied Mathematics, 342:419–430, 2018.
- [2] Igor Podlubny. An introduction to fractional derivatives, fractional differential equations, methods of their solution and some of their applications. *Mathematics in Science and Engineering*, 198:xxiv+-340, 1999.
- [3] Ronald L Bagley and PJ Torvik. A theoretical basis for the application of fractional calculus to viscoelasticity. *Journal of Rheology*, 27(3):201–210, 1983.
- [4] Francesco Mainardi. Fractional calculus: some basic problems in continuum and statistical mechanics. Springer, 1997.
- [5] TS Chow. Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. *Physics Letters A*, 342(1-2):148–155, 2005.
- [6] Om P Agrawal. Some generalized fractional calculus operators and their applications in integral equations. *Fractional Calculus and Applied Analysis*, 15(4):700–711, 2012.
- [7] Naveen Kumar. Unsteady flow against dispersion in finite porous media. Journal of Hydrology, 63(3-4):345–358, 1983.

- [8] Hari Mohan Srivastava. Fractional-order derivatives and integrals: Introductory overview and recent developments. *Kyungpook Mathematical Journal*, 60(1):73–116, 2020.
- [9] Erwin Kreyszig. Introductory functional analysis with applications, volume 17. John Wiley & Sons, 1991.
- [10] Igor Podlubny. Fractional differential equations, mathematics in science and engineering, 1999.
- [11] JATMJ Sabatier, Ohm Parkash Agrawal, and JA Tenreiro Machado. Advances in fractional calculus, volume 4. Springer, 2007.
- [12] Keith Oldham and Jerome Spanier. The fractional calculus theory and applications of differentiation and integration to arbitrary order, volume 111. Elsevier, 1974.
- [13] Kenneth S Miller and Bertram Ross. An introduction to the fractional calculus and fractional differential equations. 1993.
- [14] N KATUGAMPOLA Udita. A new approach to generalized fractional derivatives. Bulletin of Mathematical Analysis and Applications, 6(4):1–15, 2014.
- [15] Igor Podlubny, Richard L Magin, and Iryna Trymorush. Niels henrik abel and the birth of fractional calculus. *Fractional Calculus and Applied Analysis*, 20(5):1068–1075, 2017.
- [16] Niels Abel. Solution of some problems 'e my à with the help of finite integrated ',. Artworks, 1:11–27, 1881.
- [17] Joseph Liouville. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. 1832.

- [18] Stéphane Dugowson. Les différentielles métaphysiques: histoire et philosophie de la généralisation de l'ordre de la dérivation. PhD thesis, Paris 13, 1994.
- [19] Rudolf Hilfer. Applications of fractional calculus in physics. World Scientific, 2000.
- [20] Hossein Hassani, Zakieh Avazzadeh, and José António Tenreiro Machado. Solving two-dimensional variable-order fractional optimal control problems with transcendental bernstein series. Journal of Computational and Nonlinear Dynamics, 14(6), 2019.
- [21] Younes Shekari, Ali Tayebi, and Mohammad Hossein Heydari. A meshfree approach for solving 2d variable-order fractional nonlinear diffusion-wave equation. Computer Methods in Applied Mechanics and Engineering, 350:154–168, 2019.
- [22] Xuemei Li, Xiao Dong Chen, and Naixing Chen. A third-order approximate solution of the reaction-diffusion process in an immobilized biocatalyst particle. *Biochemical Engineering Journal*, 17(1):65–69, 2004.
- [23] Harendra Singh. A new numerical algorithm for a fractional model of bloch equation in nuclear magnetic resonance. Alexandria Engineering Journal, 55(3):2863–2869, 2016.
- [24] Abbas Saadatmandi and Mehdi Dehghan. A legendre collocation method for fractional integro-differential equations. Journal of Vibration and Control, 17(13):2050–2058, 2011.
- [25] Ronald L Bagley and Peter J Torvik. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA journal, 23(6):918–925, 1985.

- [26] Dumitru Baleanu, Samaneh Sadat Sajjadi, Amin Jajarmi, and Jihad H Asad. New features of the fractional euler-lagrange equations for a physical system within a non-singular derivative operator. The European Physical Journal Plus, 134(4):181, 2019.
- [27] Mojtaba Hajipour, Amin Jajarmi, Dumitru Baleanu, and HongGuang Sun. On an accurate discretization of a variable-order fractional reaction-diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 69:119–133, 2019.
- [28] F Mohammadi, L Moradi, Dumitru Baleanu, and Amin Jajarmi. A hybrid functions numerical scheme for fractional optimal control problems: application to nonanalytic dynamic systems. *Journal of Vibration and Control*, 24(21):5030–5043, 2018.
- [29] Dumitru Baleanu, A Jajarmi, and JH Asad. The fractional model of spring pendulum: new features within different kernels. *Applied science faculty* : [57], 2018.
- [30] Om Prakash Agrawal. Generalized variational problems and euler-lagrange equations. Computers & Mathematics with Applications, 59(5):1852–1864, 2010.
- [31] Vasily E Tarasov. Fractional integro-differential equations for electromagnetic waves in dielectric media. *Theoretical and Mathematical Physics*, 158(3):355– 359, 2009.
- [32] MR Eslahchi, Mehdi Dehghan, and Maryam Parvizi. Application of the collocation method for solving nonlinear fractional integro-differential equations. *Journal of Computational and Applied Mathematics*, 257:105–128, 2014.

- [33] Yufeng Xu and Om Agrawal. Numerical solutions and analysis of diffusion for new generalized fractional burgers equation. *Fractional Calculus and Applied Analysis*, 16(3):709–736, 2013.
- [34] Yufeng Xu, Zhimin He, and Qinwu Xu. Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative. International Journal of Computer Mathematics, 91(3):588–600, 2014.
- [35] Sunil Kumar, Ranbir Kumar, Ravi P Agarwal, and Bessem Samet. A study of fractional lotka-volterra population model using haar wavelet and adamsbashforth-moulton methods. *Mathematical Methods in the Applied Sciences*, 43(8):5564–5578, 2020.
- [36] MH Heydari, A Atangana, Z Avazzadeh, and MR Mahmoudi. An operational matrix method for nonlinear variable-order time fractional reaction-diffusion equation involving mittag-leffler kernel. *The European Physical Journal Plus*, 135(2):1–19, 2020.
- [37] Xiaoming Duan, Jinsong Leng, Carlo Cattani, and Caiyun Li. A shannonrunge-kutta-gill method for convection-diffusion equations. *Mathematical Problems in Engineering*, 2013, 2013.
- [38] AH Bhrawy, MA Zaky, and D Baleanu. New numerical approximations for space-time fractional burgers' equations via a legendre spectral-collocation method. *Rom. Rep. Phys*, 67(2):340–349, 2015.
- [39] Wendy Van Beinum, Johannes CL Meeussen, Anthony C Edwards, and Willem H Van Riemsdijk. Transport of ions in physically heterogeneous systems; convection and diffusion in a column filled with alginate gel beads, predicted by a two-region model. Water Research, 34(7):2043–2050, 2000.

- [40] TL Bocksell and E Loth. Stochastic modeling of particle diffusion in a turbulent boundary layer. International journal of multiphase flow, 32(10-11):1234– 1253, 2006.
- [41] João S Ferreira and Manuel Costa. Deterministic advection-diffusion model based on markov processes. *Journal of Hydraulic Engineering*, 128(4):399–411, 2002.
- [42] A Rasmuson, TN Narasimhan, and I Neretnieks. Chemical transport in a fissured rock: Verification of a numerical model. Water Resources Research, 18(5):1479–1492, 1982.
- [43] Carlos Pirmez, Lincoln F Pratson, and Michael S Steckler. Clinoform development by advection-diffusion of suspended sediment: Modeling and comparison to natural systems. Journal of Geophysical Research: Solid Earth, 103(B10):24141-24157, 1998.
- [44] Xinfu Chen, Richard Hambrock, and Yuan Lou. Evolution of conditional dispersal: a reaction-diffusion-advection model. *Journal of Mathematical Bi*ology, 57(3):361–386, 2008.
- [45] Alexander Kiselev and Lenya Ryzhik. Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. *Journal of Mathematical Physics*, 53(11):115609, 2012.
- [46] PC Chatwin and CM Allen. Mathematical models of dispersion in rivers and estuaries. Annual Review of Fluid Mechanics, 17(1):119–149, 1985.
- [47] Rudolf Gorenflo, Francesco Mainardi, Daniele Moretti, and Paolo Paradisi. Time fractional diffusion: a discrete random walk approach. Nonlinear Dynamics, 29:129–143, 2002.

- [48] Mark M Meerschaert, Yong Zhang, and Boris Baeumer. Particle tracking for fractional diffusion with two time scales. *Computers & mathematics with applications*, 59(3):1078–1086, 2010.
- [49] Jeffrey P Severinghaus, Todd Sowers, Edward J Brook, Richard B Alley, and Michael L Bender. Timing of abrupt climate change at the end of the younger dryas interval from thermally fractionated gases in polar ice. *Nature*, 391(6663):141–146, 1998.
- [50] Kai Diethelm. The analysis of fractional differential equations: An applicationoriented exposition using differential operators of Caputo type. Springer Science & Business Media, 2010.
- [51] Igor Podlubny. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, volume 198. Elsevier, 1998.
- [52] Rudolf Gorenflo and Francesco Mainardi. Fractional calculus: integral and differential equations of fractional order. Springer, 1997.
- [53] Abdon Atangana and Dumitru Baleanu. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. *Thermal Science*, 20(2):763–769, 2016.
- [54] Ronald L Bagley and Peter J Torvik. On the fractional calculus model of viscoelastic behavior. *Journal of Rheology*, 30(1):133–155, 1986.
- [55] Richard L Magin. Fractional calculus in bioengineering. Begell House Redding, 2006.
- [56] HongGuang Sun, Yong Zhang, Dumitru Baleanu, Wen Chen, and YangQuan Chen. A new collection of real world applications of fractional calculus in

science and engineering. Communications in Nonlinear Science and Numerical Simulation, 64:213–231, 2018.

- [57] Alberto Carpinteri and Francesco Mainardi. Fractals and fractional calculus in continuum mechanics, volume 378. Springer, 2014.
- [58] JA Tenreiro Machado and Maria Eugénia Mata. Pseudo phase plane and fractional calculus modeling of western global economic downturn. Communications in Nonlinear Science and Numerical Simulation, 22(1-3):396–406, 2015.
- [59] Vasily E Tarasov. Review of some promising fractional physical models. International Journal of Modern Physics B, 27(09):1330005, 2013.
- [60] Richard L Magin. Fractional calculus models of complex dynamics in biological tissues. Computers & Mathematics with Applications, 59(5):1586–1593, 2010.
- [61] JS Angell and W Edward Olmstead. Singular perturbation analysis of an integrodifferential equation modelling filament stretching. *Zeitschrift für angewandte Mathematik und Physik ZAMP*, 36(3):487–490, 1985.
- [62] Khosro Sayevand, J Tenreiro Machado, and Iman Masti. On dual bernstein polynomials and stochastic fractional integro-differential equations. *Mathematical Methods in the Applied Sciences*, 43(17):9928–9947, 2020.
- [63] A Kilbas, Hari M Srivastava, and Juan J Trujillo. Theory and applications of fractional differential equations. *Elsevier*, 204(1):138–158, 2006.
- [64] Yanxin Wang, Li Zhu, and Zhi Wang. Fractional-order euler functions for solving fractional integro-differential equations with weakly singular kernel. Advances in Difference Equations, 2018(1):1–13, 2018.

- [65] Abbas Saadatmandi and Mehdi Dehghan. A new operational matrix for solving fractional-order differential equations. Computers & Mathematics with Applications, 59(3):1326–1336, 2010.
- [66] Kamlesh Kumar, Rajesh K Pandey, and Shiva Sharma. Numerical schemes for the generalized abel's integral equations. International Journal of Applied and Computational Mathematics, 4(2):1–11, 2018.
- [67] B Bonilla, Margarita Rivero, and Juan J Trujillo. On systems of linear fractional differential equations with constant coefficients. *Applied Mathematics* and Computation, 187(1):68–78, 2007.
- [68] Shaher Momani and Muhammad Aslam Noor. Numerical methods for fourthorder fractional integro-differential equations. Applied Mathematics and Computation, 182(1):754–760, 2006.
- [69] Shaher Momani and Rami Qaralleh. An efficient method for solving systems of fractional integro-differential equations. *Computers & Mathematics with Applications*, 52(3-4):459–470, 2006.
- [70] AH Bhrawy and MA Zaky. Shifted fractional-order jacobi orthogonal functions: application to a system of fractional differential equations. Applied Mathematical Modelling, 40(2):832–845, 2016.
- [71] Eisa Akbari Kojabad and Shahram Rezapour. Approximate solutions of a sumtype fractional integro-differential equation by using chebyshev and legendre polynomials. Advances in Difference Equations, 2017(1):1–18, 2017.
- [72] EA Rawashdeh. Numerical solution of fractional integro-differential equations by collocation method. Applied mathematics and computation, 176(1):1–6, 2006.

- [73] Muhammed Syam and Mohammed Al-Refai. Solving fractional diffusion equation via the collocation method based on fractional legendre functions. *Journal* of Computational Methods in Physics, 2014, 2014.
- [74] Zaid M Odibat. Analytic study on linear systems of fractional differential equations. Computers & Mathematics with Applications, 59(3):1171–1183, 2010.
- [75] Jingtang Ma, Jinqiang Liu, and Zhiqiang Zhou. Convergence analysis of moving finite element methods for space fractional differential equations. *Journal* of Computational and Applied Mathematics, 255:661–670, 2014.
- [76] Kamal R Raslan, Khalid K Ali, Emad M Mohamed, et al. Spectral tau method for solving general fractional order differential equations with linear functional argument. Journal of the Egyptian Mathematical Society, 27(1):1–16, 2019.
- [77] Mohammad Zurigat, Shaher Momani, Zaid Odibat, and Ahmad Alawneh. The homotopy analysis method for handling systems of fractional differential equations. Applied Mathematical Modelling, 34(1):24–35, 2010.
- [78] Hossein Hassani, JA Machado, Eskandar Naraghirad, and B Sadeghi. Solving nonlinear systems of fractional-order partial differential equations using an optimization technique based on generalized polynomials. *Computational and Applied Mathematics*, 39(4):1–19, 2020.
- [79] Yumin Lin and Chuanju Xu. Finite difference/spectral approximations for the time-fractional diffusion equation. *Journal of Computational Physics*, 225(2):1533–1552, 2007.
- [80] Diego A Murio. Implicit finite difference approximation for time-fractional diffusion equations. Computers & Mathematics with Applications, 56(4):1138– 1145, 2008.

- [81] NH Sweilam, MM Khader, and AMS Mahdy. Crank-nicolson finite difference method for solving time-fractional diffusion equation. *Journal of Fractional Calculus and Applications*, 2(2):1–9, 2012.
- [82] Yury Luchko. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. Journal of Mathematical Analysis and Applications, 374(2):538–548, 2011.
- [83] Ved Prakash Dubey, Rajnesh Kumar, Devendra Kumar, Ilyas Khan, and Jagdev Singh. An efficient computational scheme for nonlinear time-fractional systems of partial differential equations arising in physical sciences. Advances in Difference Equations, 2020(1):46, 2020.
- [84] Amit Goswami, Jagdev Singh, Devendra Kumar, et al. An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. *Physica A: Statistical Mechanics and its Applications*, 524:563– 575, 2019.
- [85] Xuhao Li and Patricia JY Wong. A gwsgl numerical scheme for generalized fractional sub-diffusion problems. *Communications in Nonlinear Science and Numerical Simulation*, 82:104991, 2020.
- [86] Y Esmaeelzade Aghdam, H Mesgrani, M Javidi, and O Nikan. A computational approach for the space-time fractional advection-diffusion equation arising in contaminant transport through porous media. *Engineering with Computers*, pages 1–13, 2020.
- [87] A Baseri, Saeid Abbasbandy, and Esmail Babolian. A collocation method for fractional diffusion equation in a long time with chebyshev functions. Applied Mathematics and Computation, 322:55–65, 2018.

- [88] H Safdari, H Mesgarani, M Javidi, and Y Esmaeelzade Aghdam. Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme. *Computational and Applied Mathematics*, 39(2):1–15, 2020.
- [89] Abbas Saadatmandi and Mehdi Dehghan. A tau approach for solution of the space fractional diffusion equation. Computers & Mathematics with Applications, 62(3):1135–1142, 2011.
- [90] H Mesgarani, J Rashidinia, Y Esmaeelzade Aghdam, and O Nikan. Numerical treatment of the space fractional advection-dispersion model arising in groundwater hydrology. *Computational and Applied Mathematics*, 40(1):1–17, 2021.
- [91] H Tajadodi. A numerical approach of fractional advection-diffusion equation with atangana-baleanu derivative. *Chaos, Solitons & Fractals*, 130:109527, 2020.
- [92] Huasheng Wang, Yanping Chen, Yunqing Huang, and Wenting Mao. A petrovgalerkin spectral method for fractional convection-diffusion equations with two-sided fractional derivative. *International Journal of Computer Mathematics*, pages 1–16, 2020.
- [93] Fangyuan Wang, Zhongqiang Zhang, and Zhaojie Zhou. A spectral galerkin approximation of optimal control problem governed by fractional advection– diffusion–reaction equations. Journal of Computational and Applied Mathematics, 386:113233, 2021.
- [94] Sunil Kumar, Amit Kumar, and Ioannis K Argyros. A new analysis for the keller-segel model of fractional order. *Numerical Algorithms*, 75(1):213–228, 2017.

- [95] MM Khader, NH Sweilam, and AMS Mahdy. An efficient numerical method for solving the fractional diffusion equation. *Journal of Applied Mathematics* and Bioinformatics, 1(2):1, 2011.
- [96] Mostafa Abbaszadeh and Mehdi Dehghan. Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributedorder advection-diffusion equation. *Engineering with Computers*, pages 1–17, 2019.
- [97] Mark M Meerschaert and Charles Tadjeran. Finite difference approximations for two-sided space-fractional partial differential equations. Applied Numerical Mathematics, 56(1):80–90, 2006.
- [98] Mehdi Dehghan and Mostafa Abbaszadeh. A legendre spectral element method (sem) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. *Mathematical Methods in the Applied Sciences*, 41(9):3476–3494, 2018.
- [99] Mehdi Dehghan, Jalil Manafian, and Abbas Saadatmandi. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numerical Methods for Partial Differential Equations: An International Journal, 26(2):448–479, 2010.
- [100] MA Abdelkawy, António M Lopes, and MA Zaky. Shifted fractional jacobi spectral algorithm for solving distributed order time-fractional reactiondiffusion equations. *Computational and Applied Mathematics*, 38(2):1–21, 2019.
- [101] Jukka Kemppainen. Existence and uniqueness of the solution for a timefractional diffusion equation with robin boundary condition. In Abstract and Applied Analysis, volume 2011. Hindawi, 2011.

- [102] Fawang Liu, Pinghui Zhuang, Vo Anh, Ian Turner, and Kevin Burrage. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Applied Mathematics and Computation, 191(1):12–20, 2007.
- [103] Ahmed S Hendy. Numerical treatment for after-effected multi-term time-space fractional advection-diffusion equations. *Engineering with Computers*, pages 1–11, 2020.
- [104] Saeed Kazem and Mehdi Dehghan. Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (mol). *Engineering* with Computers, 35(1):229–241, 2019.
- [105] Anil K Shukla, Rajesh K Pandey, and Swati Yadav. Adaptive fractional masks and super resolution based approach for image enhancement. *Multimedia Tools* and Applications, pages 1–24, 2020.
- [106] Swati Yadav, Rajesh K Pandey, Anil K Shukla, and Kamlesh Kumar. Highorder approximation for generalized fractional derivative and its application. International Journal of Numerical Methods for Heat & Fluid Flow, 29(9):3515–3534, 2019.
- [107] Kamlesh Kumar, Rajesh K Pandey, and Swati Yadav. Finite difference scheme for a fractional telegraph equation with generalized fractional derivative terms. *Physica A: Statistical Mechanics and its Applications*, 535:122271, 2019.
- [108] Kamlesh Kumar, Rajesh K Pandey, Shiva Sharma, and Yufeng Xu. Numerical scheme with convergence for a generalized time-fractional telegraph-type equation. Numerical Methods for Partial Differential Equations, 35(3):1164–1183, 2019.

- [109] Akbar Mohebbi and Mehdi Dehghan. High-order compact solution of the onedimensional heat and advection-diffusion equations. Applied Mathematical Modelling, 34(10):3071–3084, 2010.
- [110] Francisco Ureña Prieto, Juan José Benito Muñoz, and Luis Gavete Corvinos. Application of the generalized finite difference method to solve the advection-diffusion equation. Journal of Computational and Applied Mathematics, 235(7):1849–1855, 2011.
- [111] Arturo Hidalgo and Michael Dumbser. Ader schemes for nonlinear systems of stiff advection-diffusion-reaction equations. *Journal of Scientific Computing*, 48(1):173–189, 2011.
- [112] Mohsen Zayernouri and George Em Karniadakis. Fractional sturm-liouville eigen-problems: theory and numerical approximation. Journal of Computational Physics, 252:495–517, 2013.
- [113] A Kilbas, Hari M Srivastava, and Juan J Trujillo. Theory and applications of fractional differential equations. *Elsevier*, 204(1):138–158, 2006.
- [114] Kamlesh Kumar, Rajesh K Pandey, and Shiva Sharma. Approximations of fractional integrals and caputo derivatives with application in solving abel's integral equations. Journal of King Saud University-Science, 31(4):692–700, 2019.
- [115] Kamlesh Kumar, Rajesh K Pandey, and Shiva Sharma. Comparative study of three numerical schemes for fractional integro-differential equations. *Journal* of Computational and Applied Mathematics, 315:287–302, 2017.

- [116] Farhad Fakhar-Izadi and Mehdi Dehghan. Fully spectral collocation method for nonlinear parabolic partial integro-differential equations. Applied Numerical Mathematics, 123:99–120, 2018.
- [117] Man Luo, Da Xu, and Limei Li. A compact difference scheme for a partial integro-differential equation with a weakly singular kernel. Applied Mathematical Modelling, 39(2):947–954, 2015.
- [118] Omar Abu Arqub. Computational algorithm for solving singular fredholm time-fractional partial integrodifferential equations with error estimates. Journal of Applied Mathematics and Computing, 59(1):227–243, 2019.
- [119] Omar Abu Arqub and Banan Maayah. Numerical solutions of integrodifferential equations of fredholm operator type in the sense of the atangana-baleanu fractional operator. *Chaos, Solitons & Fractals*, 117:117–124, 2018.
- [120] Omar Abu Arqub and Mohammed Al-Smadi. Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and dirichlet boundary conditions. Numerical Methods for Partial Differential Equations, 34(5):1577–1597, 2018.
- [121] Mehdi Dehghan and Mostafa Abbaszadeh. A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Computers & Mathematics with Applications, 75(8):2903–2914, 2018.
- [122] Nisha Sharma and Kapil K Sharma. Unconditionally stable numerical method for a nonlinear partial integro-differential equation. *Computers & Mathematics with Applications*, 67(1):62–76, 2014.

- [123] Mohammad Gholamian and Jafar Saberi-Nadjafi. Cubic b-splines collocation method for a class of partial integro-differential equation. Alexandria engineering journal, 57(3):2157–2165, 2018.
- [124] Mehdi Dehghan and Mostafa Abbaszadeh. Error estimate of finite element/finite difference technique for solution of two-dimensional weakly singular integro-partial differential equation with space and time fractional derivatives. Journal of Computational and Applied Mathematics, 356:314–328, 2019.
- [125] Mostafa Abbaszadeh and Mehdi Dehghan. Direct meshless local petrovgalerkin (dmlpg) method for time-fractional fourth-order reaction-diffusion problem on complex domains. Computers & Mathematics with Applications, 79(3):876–888, 2020.
- [126] Fenghui Huang and Fawang Liu. The time fractional diffusion equation and the advection-dispersion equation. The ANZIAM Journal, 46(3):317–330, 2005.
- [127] Rajesh K Pandey, Shiva Sharma, and Kamlesh Kumar. Collocation method for generalized abel's integral equations. Journal of Computational and Applied Mathematics, 302:118–128, 2016.
- [128] Q Yu, Fawang Liu, Vo Anh, and Ian Turner. Solving linear and non-linear space-time fractional reaction-diffusion equations by the adomian decomposition method. International journal for numerical methods in engineering, 74(1):138–158, 2008.
- [129] Wen Cao, Yufeng Xu, and Zhoushun Zheng. Finite difference/collocation method for a generalized time-fractional kdv equation. Applied Sciences, 8(1):42, 2018.

- [130] Ali Pirkhedri and Hamid Haj Seyyed Javadi. Solving the time-fractional diffusion equation via sinc-haar collocation method. Applied Mathematics and Computation, 257:317–326, 2015.
- [131] Abbas Saadatmandi, Mehdi Dehghan, and Mohammad-Reza Azizi. The sinclegendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Communications in Nonlinear Science and Numerical Simulation, 17(11):4125–4136, 2012.
- [132] Shaher Momani. An analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Applied Mathematics and Computation, 165(2):459–472, 2005.
- [133] Yulita Molliq, M Salmi Md Noorani, and I Hashim. Variational iteration method for fractional heat-and wave-like equations. Nonlinear Analysis: Real World Applications, 10(3):1854–1869, 2009.
- [134] Ruige Chen, Fawang Liu, and Vo Anh. Numerical methods and analysis for a multi-term time-space variable-order fractional advection-diffusion equations and applications. *Journal of Computational and Applied Mathematics*, 352:437–452, 2019.
- [135] Erwin Kreyszig. Introductory functional analysis with applications, volume 1. Wiley New York, 1978.

List of publications

1. S. Kumar, R. K. Pandey, H. Srivastava, and G. Singh, "A convergent collocation approach for generalized fractional integro-differential equations using jacobi polyfractonomials," Mathematics, vol. 9, no. 9, p. 979, 2021.

2. S. Sharma, S. Kumar, R. K. Pandey, and K. Kumar, "Two-dimensional collocation method for generalized partial integro-differential equations of fractional order with applications," Mathematical Methods in the Applied Sciences, 2022.

3. S. Kumar, R. K. Pandey, K. Kumar, S. Kamal, and T. N. Dinh, "Finite difference-collocation method for the generalized fractional diffusion equation," Fractal and Fractional, vol. 6, no. 7, p. 387, 2022.

4. S. Kumar and R. K. Pandey," A Legendre Collocation Method for New Generalized Fractional Diffusion Equation," (Communicated).