
Chapter 4

Finite Difference-Collocation

Method for Generalized Fractional

Diffusion Equation

4.1 Introduction

In this chapter, we study the generalized fractional diffusion equation (GFDE), ob-

tained from the standard diffusion equation by changing the first-order time deriva-

tive into a fractional derivative of order γ, 0 < γ ≤ 1 given as,

∗ Dγ0+u(x, t) =
∂2u(x, t)

∂x2
+ g(x, t), x ∈ [0, 1], t ∈ [0, τ ], (4.1)

with initial and boundary condition,

 u(x, 0) = η1(x), 0 ≤ x ≤ 1,

u(0, t) = η2(t), u(1, t) = η3(t), 0 ≤ t ≤ τ,
(4.2)
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where g(x, t) is the source/sink function. Whereas, z(t) and w(t) denotes the scale

function and weight function respectively. Scale function z(t) effects on the solution

to enlarge/contract the solution for increasing and decreasing choices of z(t).

The motive of the chapter is to construct an efficient method to obtain the numerical

solution of GFDE. The present method is based on the finite-difference and collo-

cation method. Jacobi polynomials are used as a basis. The outline of the chapter

is as follows: In introduction, we discussed some basic facts about FC and Jacobi

- polynomials which are needed throughout this chapter. In Section 4.2, first, the

finite difference method is used to discretize the time derivative. Second, on the

space variable, we use the collocation method for numerical approximation. Fur-

ther, we estimated the error and convergence analysis analytically, which defines the

numerical applicability of the proposed method discussed in Section 4.3. In Section

4.4, we present two numerical examples to validate the proposed method. Also, we

compare our results with several other methods which are presented in Section 4.4.

At last, in Section 4.5, conclusions are discussed.

4.2 Numerical Scheme and Stability Analysis

4.2.1 Discretization in Time Direction

We split the time interval [0, τ ] into M equal parts having step size ∆t = T
M ,

M∈ Z+, and choose the node points as tr = r(∆t), r = 0, 1, 2, ...,M, with starting

point t0 = 0. Assuming w(t) > 0, γ ∈ (0, 1) and z(t) is monotonic increasing

function on [0, T ], such that η = z(s) then s = z−1(η). The discretization of
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generalized fractional derivative of u(t) at node tr is given as,

∗Dγ0+u(tr) =
[w(tr)]

−1

Γ(1− γ)

r∑
l=1

∫ tl

tl−1

[w(s)u(s)]
′

[z(tr)− z(s)]γ
ds,

=
[w(tr)]

−1

Γ(1− γ)

r∑
l=1

∫ z(tl)

z(tl−1)

1

[z(tr)− η]γ
.
d[w(z−1(η))u(z−1(η))]

dz−1(η)
dz−1(η),

=
[w(tr)]

−1

Γ(1− γ)

r∑
l=1

w(tl)u(tl)− w(tl−1)u(tl−1)

z(tl)− z(tl−1)

∫ z(tl)

z(tl−1)

1

[z(tr)− η]γ
dη +Rr,

=
[w(tr)]

−1

Γ(2− γ)

r∑
l=1

ql[w(tl)u(tl)− w(tl−1)u(tl−1)] +Rr, (4.3)

where

ql =
[z(tr)− z(tl−1)]1−γ − [z(tr)− z(tl)]

1−γ

z(tl)− z(tl−1)
, l = 1, 2, ...r, (4.4)

and Rr is the truncation error given by

Rr =
[w(tr)]

−1

Γ(1− γ)

r∑
l=1

∫ z(tl)

z(tl−1)

1

[z(tr)− η]γ

[
d[w(z−1(η))u(x, z−1(η))]

dη
−

w(tl)u(tl)− w(tl−1)u(tl−1)

z(tl)− z(tl−1)

]
dη.

(4.5)

Lemma 4.2.1. The coefficient ql, l = 1, 2, ..., r, given in Eq. (4.4), satisfies qr >

qr−1 > ... > q0 > 0.

Proof. We shall prove the Lemma 4.2.1 with the help of the mean value property

of integrals, ∃ f ∈ [zl−1, zl] such that From Eq. (4.4)

ql
1− γ

=
1

zl − zl−1

∫ zl

zl−1

1

(zr − η)γ
dη, (4.6)

by mean value theorem there exist, f ∈ [zl−1, zl] such that

ql
1− γ

=
1

(zr − f)γ
. (4.7)
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4.2.2 Approximation in Space Direction

We apply collocation method to approximate the spatial domain of Eq. (4.1) with

Jacobi polynomials. We consider the approximate solution uN (x, t) of the form as,

uN (x, t) =
N∑
s1=0

cs1(t)J α,β
s1

(x). (4.8)

From the Eq. (4.8) and Eq. (4.1), we get

∗ Dγ0+uN (x, t) =
∂2uN (x, t)

∂x2
+ g(x, t), t ∈ [0, τ ], (4.9)

initial and boundary conditions of Eq. (4.1), becomes

uN (x0, t) =
N∑
s1=0

cs1(t)J α,β
s1

(x0), (4.10)

uN (xN , t) =
N∑
s1=0

cs1tJ α,β
s1

(xN ). (4.11)

From Eqs. (4.8), (4.3) and Eq. (4.1), we have the semi-discretized scheme as follows

N∑
s1=0

[
[w(tr)]

−1

Γ(2− γ)

r∑
l=1

ql[w(tl)cs1(tl)− w(tl−1)cs1(tl−1)]

]
J α,β
s1

(x)

=
N∑
s1=0

cs1(tr)
Γ(α + β + s1 + 3)

Γ(α + β + s1 + 1)
J (α+2,β+2)
s1−2 (x)

+g(x, tr) +Rr +Rs, r = 1, 2, ...,M. (4.12)

where Rs denote the error term in space direction arise due to replacing u(x, t) with

uN (x, t).

Neglecting the error part we get the fully discretized scheme of Eq. (4.1) by colloca-

tion method. We choose the collocation points such that the stability is unchanged.
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So we choose the collocation point of the form xi, i = 1, 2, ...N − 1, which are

the roots of the nth degree Jacobi polynomials and x0 and xN are the boundary

condition. Thus, for (xi, tr) ∈ (0, 1)× [0, τ ], i = 1, ...,N ; r = 1, ...M, it holds that

N∑
s1=0

[
[w(tr)]

−1

Γ(2− γ)

r∑
l=1

ql[w(tl)cs1(tl)J α,β
s1

(xi)− w(tl−1)cs1(tl−1)J α,β
s1

(xi)]

]

=
N∑
s1=0

cs1(tr)
Γ(α + β + s1 + 3)

Γ(α + β + s1 + 1)
J (α+2,β+2)
s1−2 (xi) + g(xi, tr), r = 1, 2, ...,M,

(4.13)

initial and boundary conditions becomes


uN (xi, 0) =

∑N
s=0 cs1(0)J α,β

s1
(xi) = η1(xi),

uN (x0, tr) =
∑N

s1=0 cs1(tr)J α,β
s1

(x0) = η2(tr),

uN (xN , tr) =
∑N

s1=0 cs1(tr)J α,β
s1

(xN ) = η3(tr).

(4.14)

In this way, From Eqs. (4.13) - (4.14) we have a system of (N + 1) linear ordinary

differential equation in unknown coefficients cs1 , s1 = 0, 1, 2...N . We can find the

value of unknown coefficients by any standard method. Hence, the approximate

solution can be found from the Eq. (4.8).

4.3 Error and Convergence Analysis

In this section, we discuss the error and convergence analysis of the proposed numer-

ical method for Eq. (4.1). We prove the error and convergence analysis analytically

with the help of the following lemma and theorems.

Lemma 4.3.1. [129] The truncation error Rr defined by Eq. (4.5) satisfies,

Rr ≤
[

1

8wrΓ(1− γ)
+

γ

2wrΓ(3− γ)

]
max
t0≤η≤tr

|U ′′(η)|L∆t2−γ, (4.15)
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where U(η) is the approximating function, wr is the weight function at node tr for

r = 1, 2...M and L is the Lipschitz constant on the interval [tl−1, tl].

Proof For the detailed proof of this lemma, we refer to [129].

Theorem 4.3.1. The error in approximation of the function u(x) by the first m terms

of the series in Eq. (4.8) is bounded by the sum of the absolute values of all the

neglected coefficients in the series, i.e.,

Eτ (N ) = |u(x)− uN (x)| ≤
∞∑

i=m+1

|ci|, (4.16)

∀ u(x),∀m, and x ∈ [0, 1].

Proof The proof is trivial since |J α,β
i (x)| ≤ 1, ∀x ∈ [0, 1] and i ≥ 0.

Theorem 4.3.2. Let u(x, t) be the square integrable function defined on [0, 1] and

|u(x, t)| ≤ M1, whereM1 is constant. Then the u(x, t) can be expanded with infinite

sum of Jacobi polynomials and the infinite series converges to u(x, t) uniformly, i.e.,

u(x, t) =
∞∑
i=0

ci(t)J α,β
n (x), (4.17)

where

|ci| ≤
M2Γ(1 + β)

Γ(2 + α + β)

1

i3
, i > 1,

M2 =M1 × C and Em → 0.

Proof From Eqs. (4.8) and (4.9), we have

um(x, t) =
m∑
i=0

ci(t)J α,β
i (x), (4.18)
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where ci are the unknown coefficients calculated by

ci(t) =
1

Hα,β
i

∫ 1

0

(x)β(1− x)αu(x)J α,β
i (x)dx,

|ci| =

∣∣∣∣∣ 1

Hα,β
i

1

t

∫ 1

0

(x)β(1− x)αu(x)J α,β
i (x)

∣∣∣∣∣ dx,
≤ M2

Hα,β
i

∫ 1

0

∣∣∣(x)β(1− x)αJ α,β
i (x)

∣∣∣ dx,
≤ M2

Hα,β
i

Γ(α + i+ 1)

i!Γ(α + β + i+ 1)

i∑
m=0

(
i

m

)
Γ(α + β + i+m+ 1)

Γ(α +m+ 1)

∫ 1

0

|xβ(1− x)α(x− 1)m|dx,

≤ M2(2i+ 1 + α + β)Γ(i+ 1 + α + β)Γ(1 + β)

Γ(i+ 1 + β)Γ(2 + α + β)

1

i4
,

≤ M2Γ(1 + β)

Γ(2 + α + β)

1

i3
.

(4.19)

Hence, the series um(x, t) converges to u(x, t) uniformly.

Theorem 4.3.3. Let h(t) be N times differentiable function defined on interval [0, τ ].

Let uN (t) =
∑N

j1
cj1J

α,β
j1

(t) be the approximation of h(t), then

‖h(t)− uN (t)‖ ≤ MSn+1

((N + 1)!)

√
Bτ (1 + α, 1 + β), (4.20)

where, M = maxt∈[0,τ ] h
N+1(t), S = max{τ − t0, t0} and Bτ (1 + α, 1 + β) denote

the incomplete Beta function. At τ = 1, it reduces to the standard Beta function.

Proof By Taylor series expansion, we have

h(t) = h(t0) + h
′
(t− t0) + ...+ hN (t0)

(t− t0)N

N !
+ hN+1(t)

(t− t0)N+1

(N + 1)!
, (4.21)
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where t0 ∈ [0, τ ] and ζ ∈ [t0, t]. Let

PN (t) = f(t0) + f
′
(t0)(t− t0) + ...+

fN (t0)(t− t0)N

N !
, (4.22)

then

|h(t)− PN (t)| =
∣∣∣∣hN+1(t)

(t− t0)N+1

(N + 1)!

∣∣∣∣ . (4.23)

Since, we assume that uN (t) is the best square approximation of h(t), we have

‖h(t)− uN (t)‖2 ≤ ‖h(t)− PN (t)‖2,

=

∫ τ

0

w(t)[h(t)− PN (t)]2dt,

=

∫ τ

0

[
hN+1(t)

(t− t0)N+1

(N + 1)!

]2

dt,

≤ M2

((N + 1)!)2

∫ τ

0

(t− t0)2n+2w(t)dt,

≤ M2S2n+2

((N + 1)!)2

∫ τ

0

(t)β(1− t)αdt,

=
M2S2n+2

((N + 1)!)2
Bτ (1 + α, 1 + β). (4.24)

Hence,

‖h(t)− uN (t)‖ ≤ MSn+1

((N + 1)!)

√
Bτ (1 + α, 1 + β). (4.25)

Theorem 4.3.4. Let u(x, t) is a continuous function satisfying the conditions (4.2) for

any t, and g(x, t) is continuous. Assuming uN (x, tr) = urN (x) =
∑N

s1=0 cs1(tr)J α,β
s1

(x)

be the numerical approximation of the scheme (4.13), then the scheme (4.13) is

unconditionally stable, and for any r ≥ 0, it holds that

‖urN (x)‖L2 ≤ w0

wr
‖u0
N (x)‖L2 +

r−1∑
l=1

hl
wr
‖gl‖L2 +

ηr
qrwr
‖gr‖L2 , (4.26)
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where g(x, tr) = gr(x) and hl =
(

1
ql
− 1

ql+1

)
ηl, l = 1, 2, ...r − 1.

Proof The proof of this theorem is similar to the Theorem 1 of [129]. In [129],

the authors proved the stability for the time-fractional KdV equation. Here, we

extend the proof for the time fractional diffusion equation. To prove Theorem 4.3.4,

we first rewrite the Eq. (4.12) over the summation up to time step tr−1 in discrete

form. Thus, we have

1

ηr
qrwru(x, tr) =

1

ηr

[
r−1∑
l=1

(ql+1 − ql)wlu(x, tl) + q1w0u(x, t0)

]
+ u

′′
(x, tr) + g(x, tr),

(4.27)

where r = 1, 2, ..M and ηl = wlΓ(2− γ).

Let wα,β(x) = xβ(1− x)α and urN−2(x) = uN−2(x, tr) is the a polynomials of N − 2

degree satisfying urN (x) = urN−2(x)wα,β(x). Multiplying both side in Eq. (4.27) by

uN−2(xi, tr)w
α,β(xi), and taking summation on i from 0 to N , we have

N∑
i=0

[
1

ηr
qrwru(xi, tr)

]
uN−2(xi, tr)w

α,β(xi) =
N∑
i=0

1

ηr

[
r−1∑
l=1

(ql+1 − ql)wlu(xi, tl) + q1w0u(xi, t0)

]

+
1

ηr

[
u
′′
(xi, tr) + g(xi, tr)uN−2(xi, tr)w

α,β(xi)
]
,

(4.28)

where wα,β(xi) is the corresponding weight function. Since degree of urN (x) is not

exceeding N + 1, then from Eq. (2.13),

(urN , u
r
N−2)wα,β(x) = (urN , u

r
N ). (4.29)
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It can be easily shown that,

∫ 1

0

u
′′
(x, tr)uN−2(x, tr)w

α,β(x, tr) dx =

∫ 1

0

u
′′
(x, tr)u(x, tr)w

α,β(x, tr) dx = 0.

(4.30)

Now, the discrete form of the Eq. (4.28) at the nodes xi can be rewritten as

qrwr‖urN (x)‖L2 ≤
r−1∑
l=1

(ql+1−ql)wl‖ulN (x)‖L2 +q1w0‖u0
N (x)‖L2 +ηr‖gr(x)‖L2 , (4.31)

by using Cauchy-Schwartz inequality and Lemma (4.2.1). The remaining part of the

proof can be completed following the similar steps as shown in Theorem 1 of [129].

4.4 Numerical Results

In this section, we provide two numerical examples to validate the presented finite

difference-collocation method. In the given examples, we calculate the maximum

absolute error (MAE), absolute error (AE), and the order of convergence (CO) for

each example. With the help of MAE and CO, we analyze the error and convergence

analysis numerically. Also, we have plotted the graphs of the numerical solutions by

changing the various parameters like γ, α, β and scale function z(t). For numerical

simulations, we take the weight function w(t) = 1. All numerical simulations are

performed with Mathematica software.

The MAE at time t is given by

En(t) = max
0≤x≤1

|u(x, t)− uN (x, t)|, (4.32)
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and the order of convergence is defined by

CO =
log
(
En1 (t)

En2 (t)

)
log
(
n2

n1

) , (4.33)

where u(x, t) and uN (x, t) are the exact and approximate solutions, respectively.

En1(t) and En2(t) are the MAEs for two consecutive values n1 and n2.

Example 4.4.1. Here, we consider the generalized version of the problem given in

[130] as,

∗ Dγt u(x, t)− x2

2

∂2u(x, t)

∂x2
= 0, t ∈ [0, τ ], (4.34)

initial and boundary conditions are given by,

 u(x, 0) = x2, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = et+γ, 0 ≤ t ≤ τ.
(4.35)

The exact solution of Example (4.4.1) is x2et+γ. This problem is solved for various

values of N , γ, z(t) and t. In Tables 4.1 and 4.2, we compare the results obtained

by our technique to the given methods in [131, 132, 133] at γ = 0. We observed that

the results obtained by the present method (PM) provide a better approximation

for this problem. In Table 4.3, we have discussed the MAE and CO for various

values of γ and M. Further, In Fig. 4.1, we plot the AEs comparison graphs

for different values of γ and observe that the numerical approximation shows good

agreement with the exact solution. Fig. 4.2 shows the behavior of the behaviour of

the AEs for various values of N with fix γ = 0.2. We observe from Fig. 4.2 that the

numerical solution at N = 6, 8 shows the good agreement with the exact solution at

γ = 0.2. At last, in Fig. 4.3, we plot the numerical solutions for the various values

of γ = 0.1, 0.3, 0.5, 0.7, 0.9 for a fixed value of N = 5.
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Table 4.1: Comparison of MAE for Example 4.4.1 with γ = 0.75, z(t) = t.

t x Method of [131] Method of [132] Method of [133] Present Method

0.25 0.3 1.312e− 01 1.346e− 01 1.293e− 01 8.009e-02

. 0.6 4.957e− 01 5.385e− 01 5.175e− 01 1.313e-02

. 0.9 1.055e− 01 1.211e− 00 1.164e− 00 6.041e-02

0.5 0.3 1.685e− 01 1.795e− 01 1.695e− 01 6.342e-02

. 0.6 6.303e− 01 7.183e− 01 6.780e− 01 9.543e-02

. 0.9 1.352e− 00 1.616e− 01 1.525e− 01 5.315e-02

0.75 0.3 2.118e− 01 2.313e− 01 2.154e− 01 5.242e-02

. 0.6 7.962e− 01 9.255e− 01 8.618e− 01 6.875e-02

. 0.9 1.733e− 00 2.082e− 00 1.939e− 00 4.891e-02

1 0.3 2.645e− 01 2.909e− 01 2.687e− 01 4.349e-02

. 0.6 9.745e− 01 1.163e− 00 1.075e− 00 4.802e-02

. 0.9 2.014e− 00 2.618e− 00 2.419e− 00 1.048e-02
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Table 4.2: Comparison of MAE for Example 4.4.1 with γ = 0.9, z(t) = t.

t x Method of [131] Method of [132] Method of [133] Present Method

0.25 0.3 1.122e− 01 1.218e− 01 1.210e− 01 9.795e-02

. 0.6 4.762e− 01 4.872e− 01 4.841e− 01 1.543e-01

. 0.9 1.046e− 00 1.096e− 00 1.089e− 00 5.303e-03

0.5 0.3 1.564e− 01 1.588e− 01 1.567e− 01 7.852e-02

. 0.6 6.086e− 01 6.355e− 01 6.268e− 01 1.129e-01

. 0.9 1.342e− 00 1.429e− 00 1.410e− 00 9.122e-02

0.75 0.3 1.9948e− 01 2.041e− 01 1.998e− 01 6.677e-02

. 0.6 7.761e− 01 8.165e− 01 7.992e− 01 9.517e-02

. 0.9 1.722e− 00 1.837e− 00 1.798e− 00 5.475e-02

1 0.3 2.529e− 01 2.588e− 01 2.517e− 01 5.719e-02

. 0.6 9.938e− 01 1.035e− 00 1.007e− 00 6.471e-02

. 0.9 2.144e− 00 2.329e− 00 2.265e− 00 1.964e-02

Table 4.3: CO and MAE for Example 4.4.1 with various values of γ and z(t) = t2.

γ = 0.3 γ = 0.5 γ = 0.7

M MAE CO MAE of PM CO MAE of PM CO

50 2.637e− 01 ... 4.921e− 01 ... 7.994e− 01 ...

100 9.246e− 02 1.617 1.839e− 01 1.419 3.310e− 01 1.263

200 2.919e− 02 1.663 6.782e− 02 1.439 1.380e− 01 1.270

400 9.186e− 03 1.667 2.464e− 02 1.460 5.677e− 02 1.282

800 2.850e− 03 1.688 8.878e− 03 1.473 2.344e− 02 1.275
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Figure 4.1: Comparison of AE at t = 0.5, N = 5, z(t) = t and different values
of γ for Example 4.4.1.
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Figure 4.2: Plot of AE for different values of N at t = 0.1 and z(t) = t for
Example 4.4.1.
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Figure 4.3: Comparison of the numerical solution for different values of γ at
t = 1 and z(t) = t2 for Example 4.4.1.

Example 4.4.2. Consider the following Example [130],

∗ Dγt u(x, t) =
∂2u(x, t)

∂x2
+ g(x, t), t ∈ [0, τ ], (4.36)

where

g(x, t) = 4π2t2 sin(2πx) +
2t2−γ sin(2πx)

(2− 3γ + γ2)Γ(1− γ)
,

with initial and boundary conditions are given by,

 u(x, 0) = 0,

u(0, t) = 0, u(1, t) = 0.
(4.37)

The exact solution for this Example (4.4.2) is t2 sin(2πx). We shall apply the nu-

merical scheme (4.12) to solve this problem (4.4.2) for different values of N with
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z(t) = t varying the fractional order γ = 0.1, 0.3, 0.5, 0.7. We obtain the AEs at

the grid points in the given domain which are shown through Tables 4.4 and 4.5,

respectively. Results presented through Tables 4.4-4.5 establish the convergence of

the proposed method for different values of γ. In Table 4.6, we have shown the MAE

by varying the different values of γ = 0.3, 0.5, 0.7 andM. Further, we show the CO

for each value of γ which proves the accuracy of the present method. In Fig. 4.4,

we have compared the numerical solutions for various choices of γ with the exact

solution known at γ = 0.2. In Fig. 4.5, the solution graphs for different values of N

and plot of the exact solution(for γ = 0.2) are shown. From Figs. 4.4 and 4.5, we

conclude that the numerical solution obtained by proposed method converges to the

exact solution. At last, we compare our results with the existing method [130] in

Table 4.7. We see that the proposed method gives better accuracy in approximating

the numerical solutions.

Table 4.4: Comparison of AE for Example 4.4.2 at γ = 0.1, 0.3 and various
values of N .

γ = 0.1 γ = 0.3

x N = 5 N = 7 N = 9 N = 5 N = 7 N = 9

0.1 5.899e− 04 4.786e− 05 2.407e− 06 5.801e− 04 4.707e− 05 2.352e− 06

0.2 3.927e− 04 3.174e− 05 1.694e− 06 3.801e− 04 3.074e− 05 1.618e− 04

0.3 2.403e− 04 2.173e− 05 1.126e− 06 2.296e− 04 2.087e− 05 1.058e− 06

0.4 1.376e− 04 1.057e− 05 5.571e− 06 1.315e− 04 1.008e− 05 5.174e− 07

0.5 1.051e− 18 7.952e− 20 3.281e− 19 1.233e− 04 1.067e− 18 5.225e− 19

0.6 1.436e− 04 1.045e− 05 5.560e− 07 1.246e− 04 1.000e− 05 5.186e− 07

0.7 2.313e− 04 2.343e− 05 1.344e− 06 2.378e− 04 2.066e− 04 1.077e− 06

0.8 3.567e− 04 3.164e− 05 1.678e− 06 3.875e− 04 3.099e− 05 1.623e− 06

0.9 5.679e− 04 4.567e− 05 2.457e− 06 5.112e− 04 4.888e− 05 2.399e− 06
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Table 4.5: Comparison of AE for Example 4.4.2 at γ = 0.5, 0.7 and various
values of N .

γ = 0.5 γ = 0.7

x N = 5 N = 7 N = 9 N = 5 N = 7 N = 9

0.1 3.386e− 05 4.579e− 05 2.194e− 06 5.350e− 04 4.407e− 05 2.406e− 06

0.2 6.886e− 04 2.914e− 05 1.387e− 06 3.230e− 04 2.717e− 05 1.694e− 06

0.3 8.617e− 04 1.953e− 05 8.399e− 07 1.815e− 04 1.800e− 05 1.126e− 06

0.4 5.455e− 04 9.335e− 06 3.863e− 07 1.047e− 04 8.528e− 06 5.570e− 07

0.5 1.191e− 18 1.087e− 18 5.186e− 18 6.447e− 19 3.683e− 18 3.280e− 19

0.6 5.575e− 04 9.435e− 06 3.789e− 07 1.046e− 04 8.546e− 06 5.580e− 07

0.7 8.637e− 04 1.944e− 06 8.457e− 07 1.824e− 04 1.890e− 05 1.136e− 06

0.8 6.745e− 04 2.879e− 05 1.478e− 06 3.320e− 04 2.654e− 05 1.794e− 06

0.9 3.378e− 04 4.543e− 05 2.148e− 06 5.458e− 04 4.568e− 05 2.451e− 06

Table 4.6: MAE and CO for Example 4.4.2 for various values of γ and M.

γ = 0.3 γ = 0.5 γ = 0.7

M MAE CO MAE of PM CO MAE of PM CO

50 1.475e− 06 ... 1.718e− 06 ... 3.746e− 06 ...

100 4.636e− 06 1.667 6.336e− 06 1.439 1.553e− 06 1.271

200 1.425e− 06 1.701 2.300e− 06 1.461 6.385e− 07 1.282

400 4.459e− 07 1.676 8.228e− 07 1.483 2.613e− 07 1.289

800 1.387e− 07 1.685 2.938e− 07 1.485 1.065e− 07 1.296
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Figure 4.4: Comparison of the numerical and the exact solution at t = 0.1 and
different values of γ for Example 4.4.2.
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Figure 4.5: Plot of the numerical solutions for different values of N at t = 0.1
for Example 4.4.2.
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Table 4.7: Comparison of MAE of the Example 4.4.2 with γ = 0.5.

M Present Method Method [130]

2 1.061e− 04 1.627e− 01

4 3.879e− 05 3.101e− 02

6 2.103e− 05 1.140e− 02

8 1.342e− 05 5.378e− 03

10 3.925e− 06 2.726e− 03

12 7.953e− 07 1.461e− 03

14 1.047e− 06 8.187e− 04

16 1.252e− 06 4.755e− 04

4.5 Conclusion

A numerical scheme for a new class of fractional diffusion equation is studied in

this chapter in which the time derivative is considered as the generalized fractional

derivative. The scheme uses the finite difference and collocation methods to find the

numerical solution. The theoretical error and convergence analysis are also validated

numerically. Numerical examples show that the proposed method achieves high

accuracy in comparison to other methods [130, 132, 133, 134] presented recently.

***********




