
Chapter 3

Two-Dimensional Collocation

Method for Generalized Partial

Integro-Differential Equations of

Fractional Order with Applications

3.1 Introduction

In the last decade, fractional derivatives and fractional integrals attracted many

researchers due to their wide range of applications [11, 24, 66, 113, 114, 115]. Re-

cently, some high-order approximations for PIDEFO were proposed and discussed.

PIDEFO have many considerable applications in various fields [116, 117, 118, 119,

120, 121, 122, 123]. To solve the PIDEFO, several methods are developed by the

authors in recent years. We cite here some of them. Dehghan and Abbaszadeh

[124] solved two-dimensional weekly singular integro-differential equation based on
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the finite element/finite difference method with error and convergence analysis. It

was found that the scheme is unconditionally stable. In [125], authors developed

direct meshless local Petrov–Galerkin (DMLPG) method to get the numerical so-

lution of forth-order PDE in the defined domain. In [98], the authors present a

new numerical scheme for solving neutral delay distributed-order fractional damped

diffusion-wave equation. Here, the authors separate the time derivative by the finite

element method, and the complete scheme is obtained by applying the spectral finite

element method in the spatial direction. A new operational matrix method has been

developed for finding numerical solutions to fractional-order differential equations

in [65]. As we know, the theory of fractional integration and differentiation includes

Riemann, Grunwald, Liouville, Leibnitz, and other derivatives therefore we define

some new type of partial fractional derivatives which will help us to design a new

type of PIDEFO. The recently proposed operators namely K and A/B operators

are defined for the ordinary fractional derivative in [30]. We extend the theory of K

and A/B operators in sense of partial fractional derivatives.

The K operator is defined for function u(t, r) as follows

(Kγ
Pu)(t, r) = p

∫ t

a

ωγ(s, r)u(s, r)ds+ q

∫ b

t

ωγ(r, s)u(s, r)ds, γ > 0. (3.1)

Here, t ∈ I = [a, b] and P = (γ, a, b, p, q) is a set of parameters in which p, q are real

constants. The kernel ωγ(t, r) in K operator depends on γ. The K operator satisfies

the linear property. For any u1(t, r) and u2(t, r) such that the right hand side of Eq.

(3.1) exists then,

(Kγ
P (u1 + u2))(t, r) = (Kγ

Pu1)(t, r) + (Kγ
Pu2)(t, r). (3.2)
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Now, we define B operator as,

(BγPu)t(t, r) =

(
Km−γ
P

(
δmu

δsm

))
(t, r),

= p

∫ t

a

ωm−γ(s, r)
δmu(s, r)

δsm
ds+ q

∫ b

t

ωm−γ(r, s)
δmu(s, r)

δsm
ds, (3.3)

and

(BγPu)r(t, r) =

(
Km−γ
P

(
δmu

δsm

))
(t, r),

= p

∫ r

a

ωm−γ(t, s)
δmu(t, s)

δsm
ds+ q

∫ b

r

ωm−γ(s, t)
δmu(t, s)

δsm
ds, (3.4)

where m − 1 < γ < m, m is a positive integer. We now define a new model of the

PIDEFO as,
R∑
i=1

di(t, r)(BγiP u)(t, r) +H(u(t, r)) = f(t, r). (3.5)

Here, R is some fixed positive integer and mi − 1 < γi < mi with mi are some fixed

positive integers, H is some linear or non-linear operator and di(t, r) are some given

functions. In Eq. (3.5), B operator has been taken in general (without subscript).

The B operator can also be defined with respect to only t or r or in similar way.

The Eq.(3.5) can have several forms depending on the choice of the kernel and the

parameters a, b, p and q in B operator. For example, if we take I = [0, 1] and

p = 1, q = 0 and ω(m−γ)(t, r) = (t − r)(m−1−γ)/(Γ(m − γ)) in the B operator then

this operator reduces to well-known Caputo fractional derivative. Similarly, other

cases are also possible. Eq. (3.5) reduces to some well-known fractional models such

as the following

1) Linear space-time fractional reaction-diffusion equation (FRDE)

Eq. (3.5) reduces to FRDE which is given by Eq. (3.6) for the particular choice of
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variables R = 2, d1(t, r) = 1, d2(t, r) = −b(r),

(BγiP u)t(t, r) +H(u(t, r)) = f(t, r), (3.6)

where 0 < γ1 ≤ 1 < γ1 ≤ 2 and coefficient of diffusion, b(r) > 0, (B
(γ1)
P u)t, (B

(γ2)
P u)r

are given in Eq. (3.3) and (3.4) respectively.

2) Space-time fraction diffusion equations (STFDE) The space-time frac-

tional diffusion equation (STFDE) [126], is obtained from Eq. (3.5) with substitu-

tion of R = 1, d1(t, r) = 1, d2(t, r) = C, 0 < γ1 = γ ≤ 1, 1 < γ1 = γ ≤ 2 in Eq.

(3.5) and in Eq. (3.3), we take p = 1, q = 0, ω(m−γ)(t, r) = (t−r)(m−1−γ)/(Γ(m−γ)).

The STFDE given as,

Dγt u(t, r) = CDγt u(t, r), (3.7)

with conditions

u(0, r) = g(r), r ∈ R, u(∓∞, t) = 0, t > 0, (3.8)

where Dγt u(t, r) =
∫ t
a

(t−s)1−γ
Γ(2−γ)

δu(s,r)
δs

ds = (BγPu)t(t, r), C is fractional diffusion con-

stant, 0 < γ ≤ 1 and 1 < γ ≤ 2, u(x, t) is the (real) field variable, Dγt and Dγt are

the Caputo time fractional and space fractional derivative of order γ with respect

to t and r respectively, and g(x) be a sufficiently well-behaved function.

3) Time fractional telegraph equations (TFTE)

We consider the Eq. (3.5) as,

d1(t, r)(Bγ1P u)(t, r) +H(u(t, r)) = f(t, r), 0 < r < 1, t > 0. (3.9)

Here, (Bγ1P u)(t, r) is the B operator defined above. Now if we put, d1(t, r) = 1, 1 <

γ1 < 2, p = 1, q = 0, ω(m−γ)(t, r) = (t− r)(m−1−γ)/(Γ(m− γ)), and

H(u(t, r)) =
δu(t, r)

δt
− δ2u(t, r)

δt2
, (3.10)



Chapter 3. Two-Dimensional Collocation Method for Generalized... 47

Eq. (3.9) reduces to the famous time fractional telegraph equations

Dγt u(t, r) +
δu(t, r)

δt
− δ2u(t, r)

δt2
= f(t, r), 0 < r < 1, t > 0. (3.11)

These cases are studied in detail in Section 3.6. The motivation over here to consider

this model is to put all such models together and develop a numerical method for

its solution. This chapter is devoted to establish the connection with the existing

models from the proposed model Eq. (3.5). The aim of the present chapter is to

develop an accurate and efficient method for obtaining numerical solutions of various

types of PIDEFOs. The proposed method is based on the collocation method with

Jacobi polynomials as the basis functions. The next part of the chapter is arranged

in the following way. In Section 3.2, we have provided some basic facts and properties

of Jacobi polynomials that are needed to solve the problem. In Section 3.3, we have

discussed the proposed method to solve PIDEFO. Further, Section 3.3 is divided

into two parts, in the first part we have discussed the convergence analysis and

in the second part, the error analysis is presented. In Section 3.6, we have shown

three applications of the proposed model. Two examples based on the problem are

discussed in Section 3.7 with variations in parameters. Finally, in Section 3.8, the

findings are concluded.

3.2 Preliminaries

In this section, we describe some basics of Jacobi polynomials which will be used

throughout the chapter. The Jacobi polynomial jNa,b(r) [127, 1] defined as,

jNa,b(r) =
∑
m

(
N + a

m

)(
N + b

N −m

)(
r − 1

2

)N−m(
r + 1

2

)m
, N ≥ m ≥ 0, (3.12)
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or

jNa,b(r) =
Γ(a+N + 1)

N !Γ(a+ b+N + 1)

j∑
i=0

(
N

i

)
Γ(a+ b+N + i+ 1)

Γ(a+ i+ 1)

(
r − 1

2

)i
, (3.13)

Jacobi polynomials up to degree N form the orthogonal basis over [−1, 1]. Orthog-

onality of Jacobi polynomials jN(a,b)(r) on the interval [−1, 1] is defined by,

< jNa,b(r)|jMa,b(r) >S=
2a+b+1

2N + a+ b+ 1

(N + a)!(N + b)!

N !(N + a+ b)!
δNM , a, b, a+ b > −1,

(3.14)

where,δNM is Kronecker Delta function. Here, < .|. >S denotes the weighted inner

product with respect to weight function S(r) = (1−r)a(1+r)b and the corresponding

norm is defined by

‖jNa,b(r)‖S = (< jNa,b(r)|jNa,b(r) >S)1/2 =

(∫ 1

−1

(jNa,b(r))
2S(r) dr

)1/2

. (3.15)

3.3 Two-Dimensional Collocation Method for PI-

DEFO

In this section, we extend the collocation method described to solve the PIDEFO

given by Eq. (3.5). We choose a function from a finite dimensional family of func-

tions supposed to be the best approximation of the exact solution. Then, we choose

some collocation points from the domain to convert the model into a set of al-

gebraic equations. After solving this set of equations, we get the approximate

solution. In the proposed method, we approximate the solution in form of lin-

ear combination with basis function as the product of Jacobi polynomials. Let
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uNM = u00, u01, u02, . . . , u0M , u10, u11, u12, . . . , u1M , uN0, uN1, uN2, . . . , uNM be a fi-

nite dimensional basis, where,

uij(t, r) = jia,b(2t− 1)jja,b(2r − 1). (3.16)

We assume the solution in the form,

u(t, r) =
∞∑
i=0

∞∑
j=0

aijuij(t, r) =
∞∑
i=0

∞∑
j=0

aijj
i
a,b(2t− 1)jja,b(2r − 1). (3.17)

In this expansion, we shift the Jacobi polynomials jNa,b and weight function S from

[−1, 1] to [0, 1] using a transformation x→ 2x− 1. Here the coefficients aij are un-

known, jja,b(2r−1) and jia,b(2t−1) denote the shifted Jacobi polynomials respectively.

From Eq. (3.17), we have,

aij =

(
1

‖jja,b(2r − 1)‖S(2r−1)‖jia,b(2t− 1)‖S(2t−1)

)2

×
∫ 1

0

∫ 1

0

B(t, r)jja,b(2r − 1)S(2r − 1)jia,b(2t− 1)S(2t− 1) dr dt. (3.18)

Truncating the infinite series in Eq. (3.17), u(t, r) can be approximated as,

uNM(t, r) =
N∑
i=0

M∑
j=0

aijuij(t, r) =
N∑
i=0

M∑
j=0

aijj
i
a,b(2t− 1)jja,b(2r − 1). (3.19)

Now, we substitute the value of uNM(t, r) from Eq. (3.19) in Eq. (3.5) which gives,

R∑
i=1

di(t, r)(BγiP uNM)(t, r) +H(uNM(t, r)) = f(t, r),

N∑
i=0

M∑
j=0

aij

R∑
i=1

(di(t, r) ((BγiP uij)(t, r))) +H

(
N∑
i=0

M∑
j=0

aij

M∑
j=0

aijuij(t, r)

)
= f(t, r).

(3.20)
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After solving and rearranging the terms, we rewrite Eq. (3.20) in the following

manner,

C(i, j, t, r) = f(t, r). (3.21)

In Eq. (3.21),

C(i, j, t, r) =
N∑
i=0

M∑
j=0

aij

R∑
i=1

(di(t, r) ((BγiP uij)(t, r)))+H

(
N∑
i=0

M∑
j=0

aij

M∑
j=0

aijuij(t, r)

)
.

(3.22)

Collocating Eq. (3.21) at collocation points (tNi, rMj) as the roots of M + 1 and

N + 1 shifted Jacobi polynomials respectively. We obtain the following set of equa-

tions,

C(i, j, tNi, rMj) = f(tNi, rMj), 0 ≤ i ≤ N, 0 ≤ j ≤M. (3.23)

Eq. (3.23) is a system of algebraic equations and by solving it for aij, the approxi-

mate value of aij can be obtained. If H is nonlinear, Eq. (3.23) is a nonlinear system

of equations which can be solved by Newton’s iterative method. Thus, we obtained

the approximate value of B(t, r).

3.4 Convergence Analysis

Theorem 3.4.1. Suppose u(t, r) be smooth sufficiently and uNM(t, r) denote the Ja-

cobi polynomial approximation of u(t, r). And, if |u(t, r)| ≤ M , then uNM(t, r)

converges to u(t, r) uniformly. Moreover,

|u(t, r)− uNM(t, r)| → 0 as N,M →∞.

Proof: From Eq. (3.17) and (3.19), we have
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u(t, r)− uNM(t, r) =
∞∑

i=M+1

M∑
j=0

ai,jj
i
a,b(2t− 1)jja,b(2r − 1)

+
∞∑

i=N+1

∞∑
j=M+1

ai,jj
i
a,b(2t− 1)jja,b(2r − 1)

+
N∑
i=0

∞∑
j=M+1

ai,jj
i
a,b(2t− 1)jja,b(2r − 1),

(3.24)

which implies,

‖u(r, t)− uN,M(r, t)‖2

=

∥∥∥∥∥
∞∑

i=N+1

M∑
j=0

aijj
i
a,b(2t− 1)jja,b(2r − 1) +

∞∑
i=N+1

∞∑
j=M+1

aijj
i
a,b(2t− 1)jja,b(2r − 1)

+
N∑
i=0

∞∑
j=M+1

aijj
i
a,b(2t− 1)jja,b(2r − 1)||2,

≤
∞∑

i=N+1

M∑
j=0

a2
ij

(
‖jja,b(2r − 1)‖S(2r−1)

)2 (‖jia,b(2t− 1)‖S(2t−1)

)2

+
∞∑

i=N+1

∞∑
j=M+1

a2
ij

(
‖jja,b(2r − 1)‖S(2r−1)

)2 (‖jia,b(2t− 1)‖S(2t−1)

)2

+
N∑
i=0

∞∑
j=M+1

a2
ij

(
‖jja,b(2r − 1)‖S(2r−1)

)2 (‖jia,b(2t− 1)‖S(2t−1)

)2 ||2. (3.25)

From Eq. (3.18), we have,

aij =

(
1

‖jja,b(2r − 1)‖S(2r−1)‖jia,b(2t− 1)‖S(2t−1)

)2

×
∫ 1

0

|B(t, r)jja,b(2t− 1)S(2t− 1)dt|
∫ 1

0

jia,bS(2r − 1) dr|. (3.26)
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Now we apply a change of variable r = (y + 1)/2, in the second integral, we obtain

aij = 2

(
1

‖jja,b(2r − 1)‖S(2r−1)‖jia,b(2t− 1)‖S(2t−1)

)2

×
∫ 1

0

sup
r∈[0,1]

|B(t, r)jja,b(2t− 1)S(2t− 1)dt|
∫ 1

−1

jia,b(y)S(y) dy|. (3.27)

Substitute the value of ji(a,b)(y) and S(y),

aij ≤ 2

(
1

‖jja,b(2r − 1)‖S(2r−1)‖jia,b(2t− 1)‖S(2t−1)

)2

∫ 1

0

sup
r∈[0,1]

|B(t, r)jja,b(2t− 1)S(2t− 1)dt|
i∑

k=0

A(k, a, b, i)

∫ 1

−1

|(1− y)γ(1 + y)γ
(
y − 1

2

)k
| dy. (3.28)

Here, A(k, a, b, i) =
(

(i)
k

) Γ(a+i+1)
i!Γ(a+b+i+1)

Γ(a+b+i+k+1)
Γ(a+k+1)

.

aij ≤ 2

(
1

‖jja,b(2r − 1)‖S(2r−1)‖jia,b(2t− 1)‖S(2t−1)

)2

∫ 1

0

sup
r∈[0,1]

|u(t, r)jja,b(2t− 1)S(2t− 1)dt|
i∑

k=0

A(k, a, b, i)

(
1

2

)k
∫ 1

−1

|(1− y)γ+k(1 + y)b| dy. (3.29)

Now, ∫ 1

−1

|(1− y)γ+k(1 + y)b| dy = 2
Γ(a+ k + 1)Γ(b+ 1)

Γ(a+ b+ k + 2)
. (3.30)
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Using Eq. (3.30) and substituting the values of A(k, a, b, i) and ‖jja,b(2r− 1)‖S(2r−1)

in Eq. (3.29), we obtain,

aij ≤
1

2a+b+i−1

(2i+ a+ b+ 1)Γ(b+ 1)

Γ(i+ b+ 1)

(
1

‖jia,b(2t− 1)‖S(2t−1)

)2

|
∫ 1

0

sup
r∈[0,1]

|B(t, r)|jia,b(2t− 1)S(2t− 1)dt|. (3.31)

Repeating the same procedure for the second integral, we obtain

aij ≤
1

2a+b+i−1

(2i+ a+ b+ 1)Γ(b+ 1)

Γ(i+ b+ 1)

1

2a+b+j−1

(2j + a+ b+ 1)Γ(b+ 1)

Γ(j + b+ 1)
sup
r∈[0,1]

|u(t, r)|.

(3.32)

Now, from Eqs. (3.15), (3.25) and (3.32), we have

‖u(t, r)− uNM(t, r)‖ ≤ A(a, b,N,M), (3.33)

where,

A(a, b,N,M) =
∞∑

i=N+1

∞∑
j=M+1

1

2a+b+2i−3

(2i+ a+ b+ 1)(Γ(b+ 1)2)Γ(i+ a+ 1)

i!Γ(i+ b+ 1)Γ(i+ a+ b+ 1)

1

2a+b+2j−3

(2j + a+ b+ 1)(Γ(b+ 1)2)Γ(j + a+ 1)

j!Γ(j + b+ 1)Γ(j + a+ b+ 1)

+
N∑
i=0

∞∑
j=M+1

1

2a+b+2i−3

(2i+ a+ b+ 1)(Γ(b+ 1)2)Γ(i+ a+ 1)

i!Γ(i+ b+ 1)Γ(i+ a+ b+ 1)

1

2a+b+2j−3

(2j + a+ b+ 1)(Γ(b+ 1)2)Γ(j + a+ 1)

j!Γ(j + b+ 1)Γ(j + a+ b+ 1)

+
∞∑

i=N+1

M∑
j=0

1

2a+b+2i−3

(2i+ a+ b+ 1)(Γ(b+ 1)2)Γ(i+ a+ 1)

i!Γ(i+ b+ 1)Γ(i+ a+ b+ 1)

1

2a+b+2j−3

(2j + a+ b+ 1)(Γ(b+ 1)2)Γ(j + a+ 1)

j!Γ(j + b+ 1)Γ(j + a+ b+ 1)
, (3.34)

is the square root of the right side term of Eq. (3.34). Since, both series in the
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product on right hand side of Eq. (3.34) are converges absolutely to 0, we have,

|u(t, r)− uNM(t, r)| → 0 as N,M →∞.

3.5 Error Analysis

Theorem 3.5.1. Let (Bγ
PuNM)t(t, r) be the approximation of (Bγ

Pu)t(t, r) and u(t, r)

be m-times continuously differential function with respect to t and r i.e., u(t, r) ∈

Cm. Assume that, ωγ(t, r) be square summable kernel i.e., there exists a positive

real number Ω such that,

∫ 1

0

∫ 1

0

(ωγ(t, r))
2 dt dr ≤ Ω2, (3.35)

then,

‖(Bγ
Pu)t(t, r)− (Bγ

PuNM)t(t, r)‖ ≤ (|p|Ω + |q|Ω)A(a, b,N,M). (3.36)

Proof We have,

(Bγ
Pu)t(t, r)− (Bγ

PuNM)t(t, r)

=

(
p

∫ t

a

ωγ(s, r)
δmu(s, r)

δsm
ds+ q

∫ b

t

ωγ(r, s)
δmu(s, r)

δsm
ds

)
−
(
p

∫ t

a

ωγ(s, r)
δmuNM(s, r)

δsm
ds+ q

∫ b

t

ωγ(r, s)
δmuNM(s, r)

δsm
ds

)
,

= p

∫ t

a

ωγ(s, r)
δm(u(s, r)− uNM(s, r))

δsm
ds+ q

∫ b

t

ωγ(r, s)
δm(B(s, r)− uNM(s, r))

δsm
ds,

(3.37)
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‖(Bγ
Pu)t(t, r)− (Bγ

PuNM)t(t, r)‖ ≤ ‖p
∫ t

a

ωγ(s, r)
δm(u(s, r)− uNM(s, r))

δsm
ds‖

+ ‖q
∫ b

t

ωγ(r, s)
δm(u(s, r)− uNM(s, r))

δsm
ds‖.

(3.38)

Since u(t, r), uNM(s, r) ∈ Cm, the right hand side term of Eq. (3.38) term is

bounded. Moreover,

‖(Bγ
Pu)t(t, r)− (Bγ

PuNM)t(t, r)‖

≤ |p|Ω‖u(t, r)− uNM(t, r)‖+ |q|Ω‖u(t, r)− uNM(t, r)‖, (3.39)

‖(Bγ
Pu)t(t, r)− (Bγ

PuNM)t(t, r)‖

≤ (|p|Ω + |q|Ω)‖u(t, r)− uNM(t, r)‖. (3.40)

Using Eq. (3.33), we get,

‖(Bγ
Pu)t(t, r)− (Bγ

PuNM)t(t, r)‖(|p|Ω + |q|Ω)A(a, b,N,M). (3.41)

3.6 Applications of The PIDEFO

Here, we discuss the special cases of the presented model of PIDEFO and also

present an approach to solve it using collocation method with Jacobi polynomials.

The PIDEFO reduces to 1) linear space-time fractional reaction-diffusion equation

(FRDE), 2) space-time fraction diffusion equations (STFDE) and 3) time fractional

telegraph equations (TFTE) in a particular case. These three problems are discussed

below.
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3.6.1 Linear Space-Time Fractional Reaction-Diffusion Equa-

tions in Sense of B Operator

We define linear space-time fractional reaction-diffusion equation (FRDE) on 0 <

x < 1, t > 0 in terms of B operator with 0 < γ1 ≤ 1 and 1 < γ2 ≤ 2 as,

(B
(γ1)
P u)t(t, r) = b(r)(B

(γ2)
P u)r(t, r) +H(u(t, r)) + f(t, r), (3.42)

where the coefficient of diffusion, b(r) > 0, (B
(γ1)
P u)t, (B

(γ2)
P u)r are defined by Eq.

(3.3) and (3.4) respectively. The Eq. (3.42) is the special case of the Eq. (3.5)

for R = 2, d(t, r) = 1, d2(t, r) = −b(r). Now, if we set the parameters in B

operator as = 0, b = 1, p = 1, q = 0, ω(m−γ)(t, r) = (t− r)(m−1−γ)/(Γ(m− γ)), and if

0 < γ1 ≤ 1 < γ2 ≤ 2, then (B
(γ1)
P u)t and (B

(γ2)
P u)r reduce to the standard Caputo

time and space derivatives respectively, defined by,

(B
(γ1)
P u)t(t, r) =

∫ t

a

(r − s)−γ1
Γ(1− γ1)

δu(s, r)

δs
ds = D−γ1t u(t, r), (3.43)

and

(B
(γ2)
P u)r(t, r) =

∫ r

a

(r − s)−γ2
Γ(2− γ2)

δ2u(t, s)

δs2
ds = D−γ2r u(t, r). (3.44)

Under these settings, Eq. (3.42) converts into the famous FRDE,

Dγ1t u(t, r) = b(r)Dγ2r u(t, r) +H(u(t, r)) + f(t, r). (3.45)

Now, we take, H(u(t, r)) = c(r)u(t, r), where c(r) > 0, Eq. (3.45) is known lin-

ear FRDE [128] and if H(u(t, r)) is a nonlinear function then it is called non-

linear FRDE. In nonlinear FRDE, H(u(t, r)) is a non-linear reaction term which

models the population growth. For example, a typical choice is Fisher’s equation
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H(u(t, r)) = gu(t, r)(1 − u(t, r))/C, where g is the intrinsic growth rate and C the

carrying capacity. For solving Eq. (3.45), it is sufficient to develop a method for Eq.

(3.5) as Eq. (3.45) is a particular case of Eq. (3.5).

3.6.2 Space-Time Fractional Diffusion Equation in Sense of

B Operator

We consider the diffusion equation [126] known as the space-time fractional diffusion

equation (STFDE), is given by,

Dγt u(t, r) = CDγru(t, r), (3.46)

with conditions, u(0, r) = g(r), r ∈ R, u(∞, t) = 0, t > 0, where the positive

constant C is fractional diffusion coefficient, 0 < γ ≤ 1 and 1 < γ ≤ 2, u(x, t)

is the (real) field variable, Dγt is the Caputo time fractional derivative of order γ

with respect to t, and Dγr is also Caputo space fractional derivative of order γ with

respect to r, and g(x) be a sufficiently well-behaved function. The fractional diffusion

equation (3.46) is important for the study of the mechanism of anomalous diffusion

of the transport processes through complex systems with fractal media. Eq. (3.46)

can be easily derived from Eq. (3.5). For this we take R = 1, d1(t, r) = −C, 0 <

γ1 = γ ≤ 1, 1 < γ1 = γ ≤ 2 and in Eq. (3.3), we take p = 1, q = 0, ω(m−γ)(t, r) =

(t− r)(m−1−γ)/(Γ(m− γ)). We get,

Dγt u(t, r) =

∫ t

a

(t− s)1−γ

Γ(2− γ)

δu(s, r)

δs
ds = (BγPu)t(t, r), (3.47)
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For Dγt u(t, r) we use the definition Eq. (3.4) of B operator

Dγru(t, r) =

∫ r

a

(r − s)1−γ

Γ(2− γ)

δ2u(t, s)

δs2
ds = (BγPu)r(t, r). (3.48)

3.6.3 Time Fractional Telegraph Equation

We consider Eq. (3.5) as,

d1(t, r)(Bγ1P u)(t, r) +H(u(t, r)) = f(t, r), 0 < r < 1, t > 0. (3.49)

Here, (Bγ1P u)(t, r) is the B operator defined above. Now if we take, d1(t, r) = 1, 1 <

γ1 < 2, p = 1, q = 0, ω(m−γ)(t, r) = (t− r)(m−1−γ)/(Γ(m− γ)), and

H(u(t, r)) =
δu(t, r)

δt
− δ2u(t, r)

δt2
, (3.50)

Eq. (3.49) reduces to the famous time fractional telegraph equations

Dγt u(t, r) +
δu(t, r)

δt
− δ2u(t, r)

δt2
= f(t, r), 0 < r < 1, t > 0. (3.51)

Thus, it can be observed that several fractional order models can be deduced by Eq.

(3.5) or in other words, Eq. (3.5) can be considered as the generalized form of these

equations. This was motivation to put all such equations in one form and develop a

solution method for this new model. The test examples based on these models and

their approximate solution using the discussed method will now be presented.



Chapter 3. Two-Dimensional Collocation Method for Generalized... 59

3.7 Numerical Examples

Here, we consider the test examples based on the three models discussed in the

previous section. We consider test examples with known exact solutions and also

discuss a case of the proposed model for which the exact solution is not known.

The stability of the method is also shown. The accuracy of the proposed method is

demonstrated by the maximum absolute error, defined as

E = |u(t, r)−uNM(t, r)|, where, u(t, r) and uNM(t, r) denote the exact and numerical

solution respectively.

Example 3.7.1. We consider an example of the form,

(Bγ1P u)(t, r)− b(r)(Bγ2P u)(t, r) + c(r)u(t, r) = f(t, r), (3.52)

where, b(r) = Γ(1.2)r1.8, c(r) = 2, f(t, r) = 3(4t2 + 1)r3 + 32/(3
√
π)t1.5(r2 − r3),

and with the initial and boundary conditions,

u(t, 0) = ur(t, 0) = 0, (3.53)

u(0, r) = (r2 − r3). (3.54)

The model given by Eq. (3.52) can be written in form of Eq. (3.5) with, d1(t, r) =

1, d2(t, r) = b(r), H(u(t, r)) = c(r)u(t, r), andB operator with = 1, q = 1, ω(m−γ)(t, r) =

(t − r)(m−1−γ)/(Γ(m − γ)). This equation is solved for γ1 = 0.5 and γ2 = 1.8 using

Jacobi collocation method. To solve this problem, we combine Eq. (3.53) with the

initial condition given by Eq. (3.54) as,

(Bγ1P u)(t, r)− b(r)(Bγ2P u)(t, r) + c(r)u(t, r)− u(0, r) = f(t, r)− (r2 − r3). (3.55)
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We solve this Eq. (3.55) with different values of M and N and obtained numerical

results are presented in Table (3.1). Now, if we choose p = 1, q = 0, Eq. (3.55)

reduces to linear space-time fractional reaction-diffusion equations (Section 4.1) so,

Dγ1t u(t, r)− b(r)Dγ2r u(t, r) + c(r)u(t, r) = f(t, r)− (r2 − r3) + u(0, r). (3.56)

Here, Dγ1t u(t, r) is the Caputo time-fractional derivative of order 0 < γ1 < 1, defined

by,

Dγ1t u(t, r) =
1

Γ(1− γ1)

∫ t

0

(t− s)−γ1 δu(s, r)

δs
ds, (3.57)

for 0 < γ1 < 1, and for γ1 = 1 given by Eq. (3.58)

Dγ1t u(t, r) =
δu(t, r)

δt
. (3.58)

Dγ2r u(t, r) is the Caputo space-fractional derivative of order 1 < γ2 ≤ 2, defined by,

Dγ2t u(t, r) =
1

Γ(2− γ2)

∫ t

0

(t− s)1−γ2 δ
2u(s, r)

δs2
ds, (3.59)

for 1 < γ2 < 2, and for γ2 = 2 given by Eq. (3.60)

Dγ2t u(t, r) =
δ2u(t, r)

δt2
. (3.60)

For, γ1 = 0.5, γ2 = 1.8, the exact solution of Eq. (3.56) is (4t2 + 1)(r2 − r3). We

calculate the approximate solution of Eq. (3.56) with N = 2,M = 3. The absolute

errors are given in Table (3.2) and L2, L∞ errors are presented in Table (3.3). Fig.

3.1 represents the absolute error between the exact and the numerical solutions. It

is clear from the numerical results that approximate solution has well agreement

with the exact solution.
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3.7.1 Effect of Collocating at Equally-Spaced Points

1. Boundary points exclusive: If, instead of collocating at zeros of Jacobi poly-

nomials, the collocation points are determined by the use of,

tNi = i/(N + 2), i = 1, 2, 3, . . . N + 1,

rMj = j/(M + 2), j = 1, 2, 3. . .M + 1.

Table 3.1: Numerical solution for different values of M and N for Example
(3.7.1).

M N Numerical solution of BNM(t, r)
1 1 0.134577-0.114777t-1.364984r+tr

2 -0.022413+0.055932t-0.1217792t2+0.0075076r -0.4206833tr+t2r
3 0.0134+0.0033t-0.321r-0.00192tr -0.7401r2+1.7875tr2+1.01294r3+tr3

2 1 -0.01089-0.01121t+0.15094r +0.173983tr+0.712688r2+tr2

2 -0.18898-0.00148t-0.1017577t2+2.6578r + 0.1775tr
+1.4471t2r+7.2434r2+9.9493tr2+t2r2

3 0.0102-0.0032t+0.0063-0.2083r+ 0.059tr
-0.0974-0.609r2+0.431tr2-0.265t2r2 +0.546r3 +0.19599tr3+t2r3

Table 3.2: AE for Example (3.7.1).

(t, r) N = 2, M = 3
(0.1,0.1) 4.614× 10−15

(0.2,0.2) 2.101× 10−14

(0.3,0.3) 4.843× 10−14

(0.4,0.4) 8.723× 10−14

(0.5,0.5) 1.343× 10−13

(0.6,0.6) 1.822× 10−13

(0.7,0.7) 2.174× 10−13

(0.8,0.8) 1.605× 10−13

(0.9,0.9) 3.330× 10−15

(1.0,1.0) 5.109× 10−14

In this technique, we choose the equally-spaced collocation points without boundary

points (in this case we omit 0 and 1). Taking these collocation points, we solve Eq.

(3.56) with N = M = 3 and obtained absolute errors are listed in Table (3.4).
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Table 3.3: L2 and L∞ errors for Example (3.7.1).

Errors N = 2, M = 2
L2 errors 4.278× 10−13

L∞ errors 2.196× 10−13

2. Boundary points inclusive In this technique, we choose the collocation points,

tNi = i/(N + 1), i = 1, 2, 3, . . . N + 1,

rMj = j/(M + 1), j = 1, 2, 3. . .M + 1.

Figure 3.1: Plot of absolute numerical error for Eq. (3.56) for N = 2, M = 3.

Here, we include only right boundary, which is 1, in choosing the collocation points

since at left boundary the Eq. (3.56) becomes meaningless. Using these points

with N = M = 3, we calculated the numerical solution of Eq. (3.56) and obtained
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Table 3.4: Comparison of different collocation points with N = M = 3 for
Example (3.7.1).

(t,r) Points at zeros Without boundary With boundary
(0,0) 1.242× 10−15 4.211× 10−15 2.603× 10−14

(0.1,0.1) 5.620× 10−16 5.953× 10−15 1.158× 10−15

(0.2,0.2) 2.081× 10−16 2.765× 10−14 3.835× 10−14

(0.3,0.3) 1.221× 10−15 6.429× 10−14 9.901× 10−14

(0.4,0.4) 2.775× 10−15 1.200× 10−13 1.849× 10−13

(0.5,0.5) 5.495× 10−15 2.091× 10−13 2.987× 10−13

(0.6,0.6) 1.010× 10−14 3.677× 10−13 4.419× 10−13

(0.7,0.7) 1.759× 10−14 6.701× 10−13 6.1170× 10−13

(0.8,0.8) 2.942× 10−14 1.248× 10−12 8.279× 10−13

(0.9,0.9) 4.757× 10−14 2.312× 10−12 1.083× 10−12

(1.0,1.0) 7.427× 10−14 4.179× 10−12 1.394× 10−12

absolute errors are shown in Table (3.4). In accordance with established facts (Table

(3.4)), it is clearly observed from the results produced that these points are valid

for collocation method via Legendre polynomial as trial functions. Errors accrued

with each set of points are also minimal that these can be functionally applied

in practical setting. A further study of these results, points at zeros of Legendre

polynomial performed better. To test the accuracy of the proposed method, we

obtain the numerical solution for different values of γ1 and γ2. The numerical solution

for different values of γ1 and γ2 are shown in Figs. (3.2-3.4) and Figs. (3.5-3.7),

respectively. It can be observed that the approximate solution approaches to the

exact solution as γ1 and γ2 approaches to 0.5 and 1.8 respectively. It is clear from

the Figs. (3.4-3.6) that numerical solutions converge to exact solution as the value

γ1 tends to 0.5.

R∑
i=1

di(t, r)(BγiP u)(t, r) +H(u(t, r)) = f(t, r) + εδ. (3.61)

Let uδNM(t, r) denote the approximate solution of Eq. (3.61) with noise term εδ

where, ε is a sufficiently small constant and δ is a uniform random variable in interval
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[−1, 1]. We denote the approximate solution of Eq. (3.61) under

Figure 3.2: Numerical solution for different values of γ1 for Equation Eq. (3.56)
at t = 1.

Figure 3.3: Numerical solution for different values of γ1 for Equation Eq. (3.56)
at t = 0.5.
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Figure 3.4: Numerical solution for different values of γ1 for Equation Eq. (3.56)
at t = 0.

Figure 3.5: Numerical solution for different values of γ2 for Equation Eq. (3.56)
at t = 1.
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Figure 3.6: Numerical solution for different values of γ2 for Eq. (3.56) at t = 0.5.

Figure 3.7: Numerical solution for different values of γ2 for Eq. (3.56) at t = 0.

effect of noise by uδNM(t, r). The obtained simulation results are demonstrated

through Figs. (3.8-3.10) which represent the comparison between exact solution
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u(t, r), the approximate solution without noise uδNM(t, r), and the approximate so-

lution uδNM(t, r) under the effect of random noise. It can be observed from (3.8-3.10)

that the noisy solutions appear very close to the approximated solution without

noise. This solution behavior establishes that the presented method is stable under

the effect of random noise.

Figure 3.8: Numerical solution with different noise term for Eq. (3.56) at t = 1.
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Figure 3.9: Numerical solution with different noise term for Eq. (3.56) at t = 0.5.

Figure 3.10: Numerical solution with different noise term for Eq. (3.56) at
t = 0.
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Example 3.7.2. Here, we consider a form of Eq. (3.5) as,

d1(t, r)

∫ t

a

−γ1(t− s)δu(s, r)

δr
ds+

∫ b

t

−γ1(s− t)δu(s, r)

δr
ds

+d2(t, r)

∫ t

a

−γ2(t− s)δu(s, r)

δr
ds+

∫ b

t

−γ2(s− t)δu(s, r)

δr
ds+ u(t, r) = f(t, r).

(3.62)

with p = q = 1, γ1 = 1/2, γ2 = 2/3, d1(t, r) = 1, d2(t, r) = −1/4 and f(t, r) =

((t4(1− r)3))/24 + (t2 − (3− 4t+ t4)/24)(r3 − 1) + (3− 4t+ (2t)4)(r3 − 1)/72. The

exact solution in this case is u(t, r) = t2(r3 − 1).

Figure 3.11: Plot of absolute numerical error for N = 2, M = 3 for Example
(3.7.2).
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Figure 3.12: Plot of absolute numerical error for N = M = 3 for Example
(3.7.2).

The solution of this example is approximated by the presented method and we

observe that the obtained approximate solution has a well agreement with the exact

solution. This problem is solved with different values of M and N and the obtained

absolute errors are presented through Figs. (3.11-3.12). The maximum absolute

errors at different points are listed in Table 3.5. The L2 and L∞ errors for this

examples are presented in Table 3.6.

Fig. 3.12. Plot of absolute numerical error for N = M = 3 for Example 3.7.2. The

numerical solutions for different values of γ1 and γ2 are obtained for this case and are

shown through Figs. (3.13-3.15) and Figs. (3.16-3.18), respectively. It is observed

that as we consider the value of γ1 (or γ2) close to 1/(2)(or3/2), the approximate

solution behaves like the exact solution known for γ1 = 1/2 and γ2 = 3/2. It is clear

from the Figs. (3.13 − 3.15) that numerical solutions converge to exact solution as

the value γ1 tends to 1/2.



Chapter 3. Two-Dimensional Collocation Method for Generalized... 71

To verify the numerical stability for this test example, we perform the similar steps

as done in case of example 1 and the obtained results are demonstrated through

Figs. (3.19-3.20). Figs. (3.19-3.20) represent the comparison between exact solution

u(t, r), the approximate solution without noise (uNM)(t, r), and the approximate

solutions (uNM)δn(t, r) with random noise δn.

Table 3.5: AE for Example (3.7.2).

(t,r) M = N = 2 M = 2, N = 3 M = 3, N = 2 M = N = 3
(0.1,0.1) 2.99× 10−5 3.000× 10−5 3.122× 10−17 2.255× 10−17

(0.2,0.2) 5.551× 10−17 1.457× 10−16 1.387× 10−17 6.938× 10−18

(0.3,0.3) 2.774× 10−4 2.774× 10−4 2.775× 10−17 4.163× 10−17

(0.4,0.4) 0 0 0 2.775× 10−17

(0.5,0.5) 3.750× 10−3 3.750× 10−3 0 5.551× 10−17

(0.6,0.6) 1.728× 10−3 1.728× 10−3 1.110× 10−16 4.996× 10−16

(0.7,0.7) 5.145× 10−2 5.145× 10−2 0 2.331× 10−15

(0.8,0.8) 0.1228 0.1228 1.665× 10−16 7.494× 10−15

(0.9,0.9) 0.2551 0.2551 9.159× 10−16 1.931× 10−14

(1.0,1.0) 0.4798 0.4798 2.442× 10−15 4.302× 10−14

Table 3.6: L2 and L∞ errors for Example (3.7.2).

Errors M = N = 2 M = 2, N = 3 M = 3, N = 2 M = N = 3
L2 errors 0.5599 0.5599 2.616× 10−15 4.781× 10−14

L∞ errors 0.4799 0.4799 2.442× 10−15 4.302× 10−14
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Figure 3.13: Numerical solution for different values of γ1 for Example (3.7.2) at
t = 1.

Figure 3.14: Numerical solution for different values of γ1 for Example (3.7.2) at
t = 0.5.
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Figure 3.15: Numerical solution for different values of γ1 for Example (3.7.2) at
t = 0.

Figure 3.16: Numerical solution for different values of γ2 for Example (3.7.2) at
t = 1.
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Figure 3.17: Numerical solution for different values of γ2 for Example (3.7.2) at
t = 0.5.

Figure 3.18: Numerical solution for different values of γ2 for Example (3.7.2) at
t = 0.
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Figure 3.19: Numerical solution for different noise terms for Example (3.7.2) at
t = 1.

Figure 3.20: Numerical solution for different noise terms for Example (3.7.2) at
t = 0.5.
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3.8 Conclusions

We presented a generalized model of PIDEFO in this chapter. This model results

the solution of several standard fractional models such as 1) linear space-time frac-

tional reaction-diffusion equation (FRDE), 2) space-time fraction diffusion equations

(STFDE) and 3) time fractional telegraph equations (TFTE), in special case. And

thus, could be considered as the generalized PIDEFO model. The proposed method

for the solution of the generalized PIDEFO is easy to apply and computationally

efficient. This could be analyzed with the two examples discussed in the chapter,

one with unknown solution (Example (3.7.1)) and second with known solutions (Ex-

ample (3.7.2)). The approximated solution is also compared with a special case of

Example (3.7.2) in which the solution is known. It was observed that the proposed

method obtains good accuracy. We discussed only three special cases of the pro-

posed model. Some other models may also be obtained as a case of the presented

model and such studies will be presented in future.


