
Chapter 2

A Convergent Collocation

Approach for Generalized

Fractional Integro-Differential

Equations Using Jacobi

Poly-Fractonomials

2.1 Introduction

Here, we consider the GFIDEs in terms of the B-operator [30]. The B-operator re-

duces to Caputo derivative and Riemann Liouville derivative for a particular choice

of kernel in B-operator. The GFIDEs are solved using the collocation method with

Jacobi poly-fractonomials. The GFIDEs converted into a system of algebraic equa-

tions and solved them to get the solution of GFIDEs. The main aim of this study is

15
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to describe a possible way to find the approximate solution of defined GFIDEs which

is close to the exact solution. Section 1 provides the basic definitions of the operator

as given in [30]. Further some basic property about Jacobi poly-fractonomials [112]

of the first kind is defined as,

P a
n (x) = (2/T )a(x)aJ (−a,a)

n (2x/T ), x ∈ [0, T ], (2.1)

where J
(−a,a)
n (2x/T − 1) denoted the standard Jacobi polynomial in [0, T ] of degree

n.

The rest of the chapter is organized as follows: Section 2.2 we have provided Gen-

eralized fractional integro-differential equations and some of the basic property of

Jacobi poly fractonomials to approximate the function. In Section 2.3 we discussed

the procedure to apply Collocation methods for solving GFIDEs. Section 2.4 pro-

vides a convergence analysis of the method. In Section 2.5, we have done error

analysis in two parts by taking linear and non-linear GFIDEs. Section 2.6 presents

five numerical examples that illustrate the accuracy of the proposed method. Finally,

in Section 2.7 conclusion is discussed.

2.2 Generalized Fractional Iintegro-Differential Equa-

tions

We first define FIDEs in terms of K and A/B-operators. These operators [30] are

defined as follows

Kγ
Pu(x) = r

∫ x

a

wγ(x, t)u(t) dt+ s

∫ b

x

wγ(x, t)u(t) dt, γ > 0, (2.2)
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where, x ∈ [a, b], P =< a, b, r, s > denote the all parameters, wγ(x, t) is a kernel

defined on the space I × I. We assume that wγ(x, t) and u(t) both are square

integrable function such that Eq. (2.2) exists. K operator satisfies the linearity

properties, i.e. for any two functions u1(t) and u2(t), then

Kγ
P (u1(x) + u2(x)) = Kγ

Pu1(x) +Kγ
Pu2(x). (2.3)

Define, A and B-operators [30] as follows,

AγPu(x) = DnK
(n−γ)
P u(x), (2.4)

Bγ
Pu(x) = K

(n−γ)
P Dnu(x). (2.5)

by using Eq. (2.5), Eq. (2.2) can be written as,

Bγ
Pu(x) = r

∫ x

0

wm−γ(x, t)D
nu(t) dt+ s

∫ 1

x

wm−γ(t, x)Dnu(t) dt, γ > 0, (2.6)

where, m − 1 < γ < m, m is an integer and P =< 0, 1, r, s > and Dnu(t) denote

the nth derivative of the function u(t). In the definition of B-operator, we assume

that Dnu(x) is integrable once on domain I. Details about all this operator can be

found in [30].

Now, we will define GFIDEs using B-operator as follows

(Bγ
Pu)(x) = (Hu)(x), 0 < γ < 1, (2.7)

u(0) = u0. (2.8)
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where

(Hu)(x) = φ(x) + g(x)u(x) +

∫ x

0

ρ(x, t)G(u(t))dt, 0 < γ < 1, x ∈ I = [0, 1],

(2.9)

(Bγ
Pu)(x) = r

∫ x

0

wm−γ(x, t)D
nu(t)dt+ s

∫ 1

x

wm−γ(t, x)Dnu(t)dt, γ > 0, (2.10)

where, function φ(x) and g(x) are square integrable functions in I with, g(x) 6= 0,

and u(x) is unknown. This problem is considered in the interval [0, 1] and kernel

ρ(x, t) is weakly singular of the form

ρ(x, t) = (x− t)−v, 0 < v < 1. (2.11)

Also, in definition of B-operator, there is another kernel wγ(x, t), we have taken

kernel wγ(x, t) ∈ L2(I × I) and G defined by Eq. (2.10) can be either linear or

non-linear operator.

We assume that Eqs. (2.7) and (2.8) have a unique solution for all real value of r

and s, either r = 0 for all s or s = 0 for all r, and one of the special case when r = 1

and s = 0. The motive is to find the numerical method to solve GFIDEs which is

given by Eq. (2.7) and Eq. (2.8).
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2.2.1 Preliminaries. Jacobi Poly-Fractonomials and Func-

tion Approximation

2.2.1.1 Definition and properties of shifted Jacobi poly-fractonomials

Jacobi poly-fractonomials are the eigenfunctions of the fractional Sturm-Liouville

eigen-problems of first kind, which are defined by,

P a
n (x) = (1 + x)aJ−a,an (x), x ∈ [−1, 1], n = 0, 1, 2..., (2.12)

where J−a,an denotes the standard Jacobi polynomial, and n is the degree. J−a,an

forms Hilbert space in L2
w2 [−1, 1], with respect to the weight function w(t) = (1 −

t)−a(1 + t)a, and satisfies orthogonal property with respect to the weight function

w(x), i.e. ∫ 1

−1

Ja,bm Ja,bn w(x) dx = Y a,b
n δnm, (2.13)

where δnm is the Kronecker delta function, and

Y a,b
n =

2a+b+1Γ(n+ a+ 1)Γ(n+ b+ 1)

(2n+ a+ b+ 1)Γ(n+ 1)Γ(n+ a+ b+ 1)
, (2.14)

is an orthogonally constant.

Ja,bn (x) =
Γ(n+ a+ 1)

Γ(n+ 1)Γ(n+ a+ b+ 1)

n∑
r=0

(
n

r

)
Γ(a+ b+ n+ r + 1)Γ(n+ a+ 1)

Γ(n+ 1)Γ(r + a+ 1)

(x− 1)r

2r
,

(2.15)

is the Jacobi polynomials of degree n and
(
n
r

)
is binomial coefficient defined as,

(
n
r

)
=

n(n−1)(n−2)...(n−r+1)
r!

and Γ denotes the Euler’s gamma function. It has been proved

in Ref. [112] that Jacobi poly-fractonomials P a
n (x) are orthogonal with respect to

the weight function, w(x) = (1−x)−a(1+x)−a, and form Hilbert space in L2
w[−1, 1].

We use the transformation, x = (2x/T − 1) which transforms the standard interval
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[−1, 1] to [0, T ] then we obtain the corresponding shifted Jacobi poly-fractonomials

of the first kind

P̃ a
n (x) =

(
2

T

)a
xaJ−a,an

(
2x

T
− 1

)
, x ∈ [0, T ], n = 0, 1, 2.... (2.16)

For the interval [0, 1], Eq. (2.16) takes form,

P̃ a
n (x) = (2)axaJ−a,an (2x− 1), x ∈ [0, 1], n = 0, 1, 2, 3...,

P̃ a
n (x) can be written in series combination using the definition of Jacobi polynomial,

P̃ a
n (x) =

2aΓ(n− a+ 1)

Γ(n+ 1)

n∑
r=0

(
n

r

)
Γ(n+ r + 1)

Γ(r − a+ 1)
xa(x− 1)r. (2.17)

Corresponding to weight function w̃(x) = (1− x)−ax−a we get the orthogonal prop-

erty ∫ 1

−1

P̃ a
n (x)P̃ a

m(x)w(x)dx = Y −a,an δnm, (2.18)

∫ 1

−1

P̃ a
n (x)P̃ a

m(x)w(x)dx = 2−2a+1

∫ 1

0

P̃ a
n (x)P̃ a

m(x)w̃(x)dx, (2.19)

Let X = L2(I) be the square integrable over interval I, and for u1, u2 ∈ X, the inner

product is defined by

< u1, u2 >=

∫ 1

0

u1(t)u2(t)dt, (2.20)

and corresponding norm is defined as follows,

‖u‖2 =

(∫ 1

0

|u(t)|2dt
) 1

2

.
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2.2.2 Function Approximation Using Jacobi Poly-fractonomials

Any function u(x) ∈ L2(I) can be written as,

u(x) =
∞∑
k=0

ckP̃
a
k (x), (2.21)

In practice, if we consider only the first (N + 1) terms of P̃ a
k (x). Then

u(x) ≈ uN(x) =
N∑
k=0

ckP̃
a
k (x), (2.22)

where ck nd P̃ a
k (x) are given by

ck = [c1, c2, c3, ...cN ]T , P̃ a
k (x) = [P̃ a

0 (x), P̃ a
1 (x), ...P̃ a

N(x)]T .

Theorem 2.2.1. Let u(x) be a real, sufficiently smooth function, and uN(x) =

CT P̃ a
n (x) denote the shifted Jacobi poly-fractonomials in the expansion of u(x),

where

C = [c0, c1, c2...cN ]T , and cr = 2−2a+1

Y −a,an

∫ 1

0
u(x)w̃(x)P̃ a

k (x).

Theorem 2.2.2. Let u(x) ∈ L2[0, 1] ∩ C[0, 1] then Jacobi –approximation of u(x)

given by Eq. (2.22) converges uniformly and we have

‖cr‖ ≤
ζ2−a(2n+ 1)(n!)2Γ(1− a)

Γ(n+ a+ 1)Γ(2− a+ n)Γ(1− a+ n)
. (2.23)
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Proof. A function u(x) ∈ L2[0, 1] ∩ C[0, 1] can be written by Eq. (2.22), and the

coefficient is determined by

cr =
1

‖P̃ a
r (x)‖2

2

∫ 1

0

u(x)w̃(x)P̃ a
r (x)dx, (2.24)

cr ≤
sup |u(x)|
‖P̃ a

r (x)‖2
2

∫ 1

0

|w̃(x)P̃ a
r (x)|dx. (2.25)

Since, sup |u(x)| ≤ ζ, so from Eq. (2.25) we get,

cr ≤
ζ

‖P̃ a
r (x)‖2

2

∫ 1

0

|w̃(x)P̃ a
r (x)|dx. (2.26)

Substituting the value of w(x) and P̃ a
r (x) Eq. (2.26), we have

cr ≤
ζ2a

‖P̃ a
r (x)‖2

2

n∑
r=0

A(r, a, n)

∫ 1

0

|(1− x)−ax−a(x− 1)rxa|dx, (2.27)

where

A(r, a, n) =
n∑
r=0

(
n

r

)
Γ(n− a+ 1)Γ(n+ r + 1)

Γ(n+ 1)Γ(r − a+ 1)
. (2.28)

cr ≤
ζ2a

‖P̃ a
r (x)‖2

2

n∑
r=0

A(r, a, n)
(−1)r

(1− a+ r)
. (2.29)
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Now, substituting the value of ‖P̃ a
r (x)‖2

2 from Eq. (2.17) and A(r, a, n) from Eq.

(2.27) in Eq. (2.29), we have

cr ≤
ζ2a2−2a+1

Y −a,an

n∑
r=0

(
n

r

)
A(r, a, n)

Γ(n− a+ 1)Γ(n+ r + 1)

Γ(n+ 1)Γ(r − a+ 1)

(−1)r

(1− a+ r)
, (2.30)

≤ ζ2a2−2a+1 Γ(n− a+ 1)Γ(1− a)Γ(n+ 1)(2n+ 1)Γ(n+ 1)Γ(n+ 1)

Γ(n+ 1)Γ(1− a+ n)Γ(2− a+ n)2Γ(n− a+ 1)Γ(1 + a+ n)
,

(2.31)

‖cr‖ ≤ ζ2−a
Γ(1− a)(2n+ 1)(n!)2

Γ(1− a+ n)Γ(2− a+ n)Γ(1 + a+ n)
. (2.32)

From this calculation, we obtain that the partial sum of the coefficient are bounded

so
∑n

r=0 cr converges absolutely and hence,
∑n

r=0 crP̃
a
r (x) converges uniformly to

u(x).

2.3 Collocation Method for GFIDEs

In this part, we describe the collocation method for solving GFIDEs given by Eq.

(2.7) and Eq. (2.8). Collocation methods is based on projection method in which we

take a finite dimensional basis to express the approximate solution, and is believed to

be close to the true solution. With the help of this family of function, we approximate

the solution of the GFIDEs given by Eq. (2.7) and Eq. (2.8). Using Eq. (2.22), we

now approximate u(x) as,

uN(x) =
N∑
r=0

crP̃
a
r (x), (2.33)

where cr are unknown expansion coefficients, which are to be determined. It should

be noted that the approximate solution uN(x) satisfies the homogeneous initial con-

dition. Replacing the exact solution u(x) by approximate solution uN(x) in Eq.
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(2.7), we get

(Bγ
PuN)(x) = (HuN)(x), 0 < γ < 1, (2.34)

and

uN(0) = u0. (2.35)

If we are given non-homogeneous initial conditions, uN(0) = u0 6= 0, then first we will

make it homogeneous by the transformation ũN(x) ≈ u(x) − u0 and then replace

u(x) by ũN(x). This transformation was considered as Jacobi Poly-fractonomials

basis is defined on homogenous initial conditions. From Eqs. (2.34) and (2.35), we

have

(Bγ
P

N∑
r=0

crP̃
a
r (x)) = (H(

N∑
r=0

crP̃
a
r (x)))(x), 0 < γ < 1, (2.36)

and
N∑
r=0

crP̃
a
r (x0) = u0. (2.37)

To apply collocation method, the node points xt ∈ I = [0, 1], are chosen such that

(Bγ
P

N∑
r=0

crP̃
a
r (xt)) = (H(

N∑
r=0

crP̃
a
r (x)))(xt), t = 0, 1, 2...N − 1, (2.38)

and
N∑
r=0

crP̃
a
r (0) = u0. (2.39)

Eq. (2.38) and Eq. (2.39) form a system of linear equation in unknown coefficients

cr and we solve this system of linear equation using any standard method to find

the coefficient cr. And hence, the approximate solution is obtained.
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2.4 Convergence Analysis

In this part, we have calculated the convergence analysis of the proposed method.

For this, we approximate the function by its derivative and tried to show that its

infinite sum is bounded. To study the convergence analysis of the presented method

for solving GFIDEs, we will use the following Lemmas

Lemma 2.4.1. Let, X = L2(I), denote the vector space of square-integrable functions

on I = [0, 1] and ζ be a Volterra integral operator on X defined by

ζu(x) =

∫ x

0

ρ(x, t)u(t)dt,∀u ∈ X, (2.40)

with kernel ρ(x, t) satisfying
∫ 1

0

∫ 1

0
|ρ(x, t)|2dx dt = L2

1 or supx,t ρ(x, t) = L1, where

L1 is a constant. Then ζ : L2(I)→ L2(I) is bounded, That is,

‖ζu‖2 ≤ L1‖u‖2.

Lemma 2.4.2. Let u(x) be sufficiently differentiable function in L2(I), and duN
dx

be

the approximation of du
dx

. Assume that du
dx

is bounded by a constant C, i.e. |du
dx
| ≤ C,

then we have

∣∣∣∣dudx − duN
dx

∣∣∣∣2
2

≤ C2 Γ(1− a)(1 + 2N)(N !)2(1 + a
N

)

Γ(1− a+N)Γ(2− a+N)Γ(1 + a+N)
. (2.41)

Proof Let,

du

dx
=
∞∑
r=0

crP̃
a
r (x), (2.42)
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Taking the sum of the above series up to N−1 level, and replacing the exact solution

by approximate solution, we get

duN
dx

=
N−1∑
r=0

crP̃
a
r (x), (2.43)

subtracting Eq. (2.42) from the Eq. (2.43), we get

du

dx
− duN

dx
=

∞∑
r=N

crP̃
a
r (x), (2.44)

‖du
dx
− duN

dx
‖2

2 =

∫ 1

0

(
du

dx
− duN

dx

)2

dx

=

∫ 1

0

(
∞∑
r=N

crP̃
a
r (x)

)2

dx, (2.45)

or

‖du
dx
− duN

dx
‖2

2 =
∞∑
r=N

c2
r

2−2a+1
Y −a,ar . (2.46)

From Eq.(2.42), we get

cr =
2−2a+1

Y −a,ar

∫ 1

0

du

dx
P̃ a
r (t)w̃(t)dt, (2.47)

substitute the value of P̃ a
r (t) from Eq. (2.17) and w̃(t) = (1− t)−a(t)−a Eq. (2.47),

we get

cr =
C2−2a+1

Y −a,ar

∫ 1

0

du

dx
P̃ a
r (t)w̃(t)dt,

≤ C2−a
Γ(1− a)(2r + 1)(Γ(r + 1))2

Γ(r + a+ 1)Γ(1− a+ r)Γ(2− a+ r)
,

|cr|2 ≤
(
C2−a

Γ(1− a)(2r + 1)(Γ(r + 1))2

Γ(r + a+ 1)Γ(1− a+ r)Γ(2− a+ r)

)2

. (2.48)
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Thus,

∞∑
r=N

c2
r

2−2a+1
Y −a,ar ≤ Γ(1− a)

∞∑
r=N

C2 (2r + 1)(r!)2

Γ(r + a+ 1)Γ(1− a+ r)Γ(2− a+ r)
,

≤ C2 Γ(1− a)(1 + 2N)(N !)2(1 + a
N

)

Γ(N + a+ 1)Γ(1− a+N)Γ(2− a+N)
, 0 < a < 1.

(2.49)

which completes the proof of Lemma (2.4.2).

2.5 Error Analysis

In this part, we have estimated the error analysis by considering the different cases.

In linear case, it is done by calculating exact and approximate solution. And in non-

linear case, first we prove that it satisfies the Lipschitz condition and then apply

the usual process to estimate the error. Let, ER(x) = |u(x) − uR(x)| be the error

function, where u(x) is exact solution and uR is the approximate solution. From Eq.

(2.7), we get,

(Bγ
PuN)(x) = H(uN(x)) = χ(x) + g(x)uN(x) +

∫ x

0

ρ(x, t)G(uN(t))dt, (2.50)

subtracting Eq. (2.50) from the Eq. (2.7), and after simplifying, we get,

g(x)(u(x)− uN(x)) =

∫ x

0

ρ(x, t)G(u(t)− uN(t))dt− (Bγ
P (u− uN))(x). (2.51)
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After substituting all values,

g(x)(EN(x)) =

∫ x

0

ρ(x, t)G(EN(t))dt− (Bγ
P (u− uN))(x), (2.52)

|g(x)(EN(x))| ≤ |
∫ x

0

ρ(x, t)G(EN(t))dt|+ |(Bγ
P (u− uN))(x)|. (2.53)

Here, we consider two case for the function G.

Case 1. When G satisfies linearity condition, we have,

|g(x)EN(x)| ≤ Q|
∫ x

0

EN(t)dt|+ |(Bγ
P (u− uN))(x)|, (2.54)

where Q = max ρ(x, t). Now, by using Gronwall’s inequality,

‖g(x)EN(x)‖2 ≤ ‖(Bγ
P (u− uN))(x)‖2. (2.55)

Now, by using Gronwall’s inequality,

‖(Bγ
P (u− uN))(x)‖2 ≤ ‖K1‖2 + ‖K2‖2, (2.56)

where K1 and K2 are defined by,

K1 = r

∫ x

o

w1−γ(x, t)D(u(t)− uN(t))dt, (2.57)

and

K2 = s

∫ 1

x

w1−γ(t, x)D(u(x)− uN(x))dx. (2.58)

Since w(1−γ)(x, t) ∈ L2, then by Lemma (2.4.1) there exist constants k1, k2 such that,

‖K1‖2 ≤ k1‖D(u(x)− uN(x))‖2, (2.59)
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and

‖K2‖2 ≤ k2‖D(u(x)− uN(x))‖2. (2.60)

Thus,

‖(Bγ
P (u− uN))(x)‖2 ≤ Λ‖D(u(x)− uN(x))‖2, Λ = k1 + k2. (2.61)

Using Lemma (2.4.2),

‖(Bγ
P (u− uN))(x)‖2 ≤ Λ(C)2 Γ(1− a)(1 + 2N)(N !)2(a+ a

N
)

Γ(1 + a+N)Γ(1− a+N)Γ(2− a+N)
. (2.62)

From Eq. (2.55) and (2.61), we have,

‖g(x)EN(x)‖2 ≤ k(C)2 Γ(1− a)(1 + 2N)(N !)2(a+ a
N

)

Γ(1 + a+N)Γ(1− a+N)Γ(2− a+N)
. (2.63)

Since g(x) 6= 0, therefore EN(x)→ 0 or u(x)→ uN(x) as N →∞.

Case 2. When G is nonlinear.

Lipschitz condition: A function f(x, y) satisfies a Lipschitz condition in the vari-

able y on a set D subset of R2 if there exist a constant L > 0 such that,

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|.

We assume that G satisfies the Lipschitz condition in variable y so,

|G(y1(t))−G(y2(t))| ≤ L|y1(t)− y2(t)|, (2.64)

where L is a Lipschitz constant. From Eq. (2.51), we have

|g(x)EN(x)| ≤ |
∫ x

0
ρ(x, t)G(EN(t))dt|+ |(Bγ

P (u− uN))(x)|,

or,

|g(x)EN(x)| ≤ LQ|
∫ x

0
EN(t)dt|+ |(Bγ

P (u−uN))(x)|. Now, following the similar steps
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as discussed for Eq. (2.55), the convergence bound can be proved like in Eq. (2.63).

Error estimate In this section, we discuss in general to calculate the error of the

given problem. Let EN(x) = |u(x)−uN(x)| be denote the error function of uN(x) to

the exact solution u(x). Replacing u(x) by the approximate solution uN(x) in Eq.

(2.7), we obtain

(Bγ
PγN)(x) + uN(x) = χ(x) + g(x)uN(x) +

∫ x

0

ρ(x, t)G(uN(t))dt, (2.65)

with u(0) = (u)N .

Here, uN(x) is the perturbation function that can be calculated as

uN(x) = χ(x) + g(x)uN(x) +
∫ x

0
ρ(x, t)G(uN(t))dt− (Bγ

PuN)(x).

Subtracting Eq. (2.64) from Eq. (2.7), we get

(Bγ
PEN)(x) + uN(x) = χ(x) + g(x)EN(x) +

∫ x
0
ρ(x, t)G(EN(t))dt,

or

(Bγ
PEN)(x) = χ(x) + g(x)EN(x) +

∫ x
0
ρ(x, t)G(EN(t))dt − uN(x), with the initial

condition EN(0) = (E0)N .

Eq. (2.65) can be solved by apply general methods as we discuss in the Section 4.

2.6 Numerical Examples

To verify the theoretical approximation of the discussed problem, we consider con-

volution type kernels in GFIDE. The Jacobi poly-fractonomials are considered as a

basis to find the approximate solution. We calculate the maximum absolute error

by changing the number of elements in the basis in the collocation method. In all

numerical results, the number of basis elements and maximum absolute error are

denoted by N and MAE respectively.
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Example 2.6.1. Consider the problem with γ = 2/3, n = 1,

∫ x

0

(a+ (1− a)(x− t))−γ

Γ(γ)
Dn(u(t))dt+

∫ x

b

(a+ (1− a)(t− x))−γ

Γ(γ)
Dn(u(t))dt

−u(x)−
∫ x

0

(x− t)−1/2G(u(t))dt

= −x2 − 16x5/2

15
+

9x4/3

2Γ(1/3)

+
3(1− x)1/3(1 + 3x)

2Γ(1/3)
, (2.66)

with u(0) = 0. This GFIDE has exact solution u(x) = x2 for a = 0. In this Example,

the exact solution of the problem is given as the second degree polynomial so in the

numerical approximation, choice of the basis N = 2, 3, 4 are taken and corresponding

maximum absolute error are calculated for the different choices of basis and these

findings are shown in the Table 2.1. We also observe the variation the approximate

solution for the different values of a = 1/4, 1/8, 1/16, 1/32 which is shown in Fig.

(2.2). The MAE is calculated and the graph of the error is shown in Fig. (2.1). We

observe that when a tends to zero error gets reduced and the approximate solution

approaches to the exact solution.

Table 2.1: MAE of Example 2.6.1 and Example 2.6.2 for different value of N .

N Example 2.6.1 Example 2.6.2

2 5.551121e− 17 5.55112e− 17

3 2.77556e− 17 5.55112e− 17

4 8.32667e− 17 3.33067e− 16
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Figure 2.1: Plot of approximate solution for different values of a and N = 2 for
Examples (2.6.1).
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Figure 2.2: Plot of MAE of Examples (2.6.1) for N = 3, and γ = 2/3.
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Example 2.6.2. Consider the equation with γ = 1/4, n = 1,

∫ x

0

(1− γ)(x− t)Dn(u(t))dt+

∫ x

b

(1− γ)(t− x)Dn(u(t))dt

−u(x)−
∫ x

0

(x− t)−1/3G(u(t))dt

= −x2 +
17

16
− 3x

2
− x3

2
+

3x4

8

− 27

440
x8/3(11 + 9x), (2.67)

with initial condition u(0) = 0 and the exact solution x2 + x3. We solve this prob-

lem by choosing the different number of basis elements N = 2, 3, 4. The corre-

sponding MAE for the different value of N are presented in the Table 2.2 and

corresponding graph is shown in Fig. (2.3) for N = 3. The approximated solu-

tions of Example (2.6.3) are presented in Fig. (2.4) by taking the different value of

γ = 1/4, 1/8, 1/16, 1/32 and 1/64 . For γ = 1/4, the numerical solution overlap to

the exact solution. Fig. (2.5), shows the relation between the exact and the approx-

imate solutions of the present example. It is clear that whenever γ approaches to

1/4, the numerical solution converges to the exact solution. The Table 2.3 represents

the comparison of the MAE with the method proposed in [1].
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Figure 2.3: Plot of MAE of Examples (2.6.2) for γ = 1/4 and R = 3.
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Figure 2.4: Plot of the approximate solution for different values of γ for Exam-
ples (2.6.2).
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Figure 2.5: Plot of the exact versus approximate solution of Examples (2.6.2)
and (2.6.4).

Table 2.2: Comparison of MAEs for Example 2.6.2 with the method proposed
in [1] for different value of N .

N Present Method Method [1]

2 5.551121e− 17 2.2891e− 02

3 2.77556e− 17 2.0455e− 16
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Example 2.6.3. Consider the nonlinear case of the problem with γ = 1/2, n = 1,

∫ x

0

(x− t)−γ

Γ(γ)
Dn(u(t))dt− q(x)u(x) +

∫ x

0

(x)1/2G(u(t))dt

=
Sinh−1(

√
x)√

Π
√

(1 + x)
−
√
x(−x+ (1 + x) ln(1 + x))

− ln(1 + x)(2
√
x+ 2x3/2 − (

√
x+ 2x3/2) ln(1 + x)),

(2.68)

with u(0) = 0, and the exact solution is ln(1 + x). In this case, the approximation

solution is obtained by selecting different values of N = 2, 3, 4, 5, 6, 7, 8, 9, 10, and

11. MAEs corresponding to these cases are calculated, and the corresponding MAE

comparison with other polynomials is shown in Table 2.3. We also plotted the

graph of MAE versus N , as shown through Fig. (2.6). It can be observed that as N

increases MAE tends to zero. Graph between the exact solution and approximate

solutions is shown in Fig. (2.7).

Table 2.3: Comparison of MAEs for Example 2.6.3 with the method given in [1]
for different value of N .

N Present Method Method [1]

3 2.383× 10−3 2.289× 10−3

4 4.320× 10−4 2.045× 10−5

5 3.728× 10−5 4.069× 10−5

6 1.834× 10−6 4.177× 10−6
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Figure 2.6: Plot of MAE of Example (2.6.3) for different values of N.
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Figure 2.7: Plot of the exact versus approximate solution of Examples (2.6.5)
and (2.6.3).
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Example 2.6.4. Consider the problem with γ = 2/3, n = 1,

∫ x

0

(d+ (1− d)(x− t))−γ

Γ(γ)
Dn(u(t))dt+

∫ b

x

(d+ (1− d)(t− x))−γ

Γ(γ)
Dn(u(t))dt

−u(x)−
∫ x

0

(x− t)−1/2G(u(t))dt− x− x3 − 4

105
x3/2(35 + 24x2)

+
3(x1/3 + 27x7/3

14
)

Γ(1/3)
+

3(1− x)1/3 + 3
14

(1− x)1/3(2 + 3x+ 9x2)

Γ(1/3)
,

(2.69)

with u(0) = 0. The exact solution of the problem (2.6.4)is x3+x. Here, as in previous

cases, we calculate the MAE corresponding to different values of N = 3, 4, 5 and the

case for N = 4 is shown in Fig. (2.8). We also depict the behavior of the solution

by changing the value of d = 1/4, 1/8, 1/16, 1/32 and 1/64. Furthermore, as d tends

to zero, the approximate solution converges to exact solution which is shown in Fig.

(2.9) . In Figure (2.5), a graph of the exact and the approximate solutions are given.
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Figure 2.8: Plot of MAE of Example (2.6.4) for γ = 2/3, and N.
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Figure 2.9: The numerical solution of Example (2.6.4) different values of d.
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Example 2.6.5. Consider,

∫ x

0

(1− γ)(x− t)Dn(u(t))dt+

∫ 1

x

(1− γ)(t− x)Dn(u(t))dt− u(x)

−
∫ x

0

(x− t)−1/3G(u(t))dt

= −e−x − 3(−3 + x+ e1−x(1 + x))

4e
− 3

4
(1− e−x(1 + x))−

5(−1)1/3e−xΓ(2/3)
(
3ex(−x)5/3 − (2 + 3x)(Γ(5/3)− Γ(5/3,−x))

)
9Γ(8/3)

, (2.70)

The problem (2.6.5) has the exact solution u(x) = xe−x with u(0) = 0. For the

given problem, we find the approximate solution by varying the number of element

in the basis and also calculate corresponding MAEs which are shown in Table 2.4.

The graph of MAE verses N is shown in Figure (2.10). We notice that the MAE

decreases as we increase N and for N ≥ 11, no change in MAE is observed. In

Figure (2.7), the graph of the exact and the approximate solutions are shown. We

also plot the graph for the MAE for N = 12 and is shown in Fig. (2.11).

Table 2.4: Numerical solution for different values of M and N for Example
(2.6.5).

N Example (2.6.3) Example (2.6.5)
3 2.383× 10−3 3.352× 10−3

4 4.320× 10−4 4.786× 10−5

5 3.728× 10−5 6.863× 10−6

6 1.833× 10−6 3.024× 10−7

7 2.295× 10−7 1.231× 10−8

8 1.284× 10−8 4.514× 10−10

9 1.417× 10−9 4.584× 10−11

10 6.199× 10−10 1.906× 10−12

11 2.467× 10−10 1.680× 10−13

12 3.215× 10−10 1.229× 10−13
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Figure 2.10: Plot of MAE for different values of N.

Figure 2.11: Plot of MAE Example (2.6.5) for N = 12.
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2.7 Conclusions

A convergent collocation method is developed in this chapter for solving GFIDEs

in terms of the B-operator. Jacobi poly-fractonomials are used as a basis in the

proposed collocation method. The choice of the Jacobi poly-fractonomials helps to

increase the accuracy in the approximated solution. The presented method works

well on linear and nonlinear types of the GFIDEs and produces accurate solutions.

***********


