Bibliography

- A. K. Erlang, "The theory of probabilities and telephone conversations," Nyt Tidsskrift for Matematik Ser. B, vol. 20, pp. 33–39, 1909.
- [2] D. G. Kendall, "Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain," *The Annals of Mathematical Statistics*, vol. 24, no. 3, pp. 338–354, 1953.
- [3] A. M. Lee, "A problem of standards of service," in Applied Queueing Theory, pp. 180–206, Springer, 1966.
- [4] D. Lucantoni, K. Meier-Hellstern, and M. Neuts, "A single-server queue with server vacations and a class of non-renewal arrival processes," *Advances in Applied Probability*, vol. 22, no. 3, pp. 676–705, 1990.
- [5] J. Medhi, Stochastic models in queueing theory. 2nd edition, Academic Press, 2006.
- [6] N. Bailey, "On queueing processes with bulk service," Journal of the Royal Statistical Society. Series B (Methodological), vol. 16, no. 1, pp. 80–87, 1954.
- [7] M. F. Neuts, "A general class of bulk queues with Poisson input," The Annals of Mathematical Statistics, vol. 38, no. 3, pp. 759–770, 1967.
- [8] W. Powell and P. Humblet, "The bulk service queue with a general control strategy: theoretical analysis and a new computational procedure," *Operations Research*, vol. 34, no. 2, pp. 267–275, 1986.
- [9] N. Kim, K. Chae, and M. Chaudhry, "An invariance relation and a unified method to derive stationary queue-length distributions," *Operations Research*, vol. 52, no. 5, pp. 756–764, 2004.
- [10] K. C. Madan, "An M/G/1 queue with second optional service," Queueing Systems, vol. 34, no. 1-4, pp. 37–46, 2000.

- [11] Y. Levy and U. Yechiali, "Utilization of idle time in an M/G/1 queueing system," Management Science, vol. 22, no. 2, pp. 202–211, 1975.
- [12] L. D. Servi and S. G. Finn, "M/M/1 queues with working vacations (M/M/1/WV)," Performance Evaluation, vol. 50, no. 1, pp. 41–52, 2002.
- [13] S. K. Bar-Lev, M. Parlar, D. Perry, W. Stadje, and F. A. Van der Duyn Schouten, "Applications of bulk queues to group testing models with incomplete identification," *European Journal of Operational Research*, vol. 183, no. 1, pp. 226–237, 2007.
- [14] L. Abolnikov and A. Dukhovny, "Queueing processes and optimization problems in quality control systems with a group-individual testing procedure," *Engineering Simulation*, vol. 16, no. 3, pp. 165–178, 1999.
- [15] L. Abolnikov and A. Dukhovny, "Optimization in HIV screening problems," Journal of Applied Mathematics and Stochastic Analysis, vol. 16, no. 4, pp. 361–374, 2003.
- [16] S. K. Bar-Lev, H. Blanc, O. Boxma, G. Janssen, and D. Perry, "Tandem queues with impatient customers for blood screening procedures," *Methodology and Computing* in Applied Probability, vol. 15, no. 2, pp. 423–451, 2013.
- [17] D. Claeys, J. Walraevens, K. Laevens, and H. Bruneel, "A queueing model for general group screening policies and dynamic item arrivals," *European Journal of Operational Research*, vol. 207, no. 2, pp. 827–835, 2010.
- [18] A. Borthakur, "A Poisson queue with a general bulk service rule," J. Assam Sci. Soc, vol. 14, pp. 162–167, 1971.
- [19] J. Medhi, "Waiting time distribution in a Poisson queue with a general bulk service rule," *Management Science*, vol. 21, no. 7, pp. 777–782, 1975.
- [20] G. L. Curry and R. M. Feldman, "An M/M/1 queue with a general bulk service rule," Naval Research Logistics Quarterly, vol. 32, no. 4, pp. 595–603, 1985.
- [21] M. Jacob and T. Madhusoodanan, "Transient solution for a finite capacity M/G^(a,b)/1 queueing system with vacations to the server," Queueing Systems, vol. 2, no. 4, pp. 381–386, 1987.
- [22] M. Neuts, "Transform-free equations for the stationary waiting time distributions in the queue with Poisson arrivals and bulk services," Annals of Operations Research, vol. 8, no. 1, pp. 1–26, 1987.

- [23] D. Jayaraman, R. Nadarajan, and M. Sitrarasu, "A general bulk service queue with arrival rate dependent on server breakdowns," *Applied Mathematical Modelling*, vol. 18, no. 3, pp. 156–160, 1994.
- [24] H. W. Lee, S. S. Lee, and K. C. Chae, "A fixed-size batch service queue with vacations," *International Journal of Stochastic Analysis*, vol. 9, no. 2, pp. 205–219, 1996.
- [25] G. K. Reddy and R. Anitha, "Markovian bulk service queue with delayed vacations," *Computers & Operations Research*, vol. 25, no. 12, pp. 1159–1166, 1998.
- [26] S. Ho Chang, D. Won Choi, and T.-S. Kim, "Performance analysis of a finite-buffer bulk-arrival and bulk-service queue with variable server capacity," *Stochastic Anal*ysis and Applications, vol. 22, no. 5, pp. 1151–1173, 2004.
- [27] A. D. Banik, "Queueing analysis and optimal control of BMAP/G^(a,b)/1/N and BMAP/MSP^(a,b)/1/N systems," Computers & Industrial Engineering, vol. 57, no. 3, pp. 748–761, 2009.
- [28] A. Banerjee and U. C. Gupta, "Reducing congestion in bulk-service finite-buffer queueing system using batch-size-dependent service," *Performance Evaluation*, vol. 69, no. 1, pp. 53 – 70, 2012.
- [29] A. Banerjee, U. C. Gupta, and K. Sikdar, "Analysis of finite-buffer bulk-arrival bulk-service queue with variable service capacity and batch-size-dependent service," *International Journal of Mathematics in Operational Research*, vol. 5, no. 3, pp. 358– 386, 2013.
- [30] A. D. Banik, "Single server queues with a batch Markovian arrival process and bulk renewal or non-renewal service," *Journal of Systems Science and Systems Engineering*, vol. 24, no. 3, pp. 337–363, 2015.
- [31] U. C. Gupta and S. Pradhan, "Queue length and server content distribution in an infinite-buffer batch-service queue with batch-size-dependent service," Advances in Operations Research, vol. 2015, 2015. DOI: 10.1155/2015/102824.
- [32] S. Pradhan, U. C. Gupta, and S. K. Samanta, "Analyzing an infinite buffer batch arrival and batch service queue under batch-size-dependent service policy," *Journal* of the Korean Statistical Society, vol. 45, no. 1, pp. 137 – 148, 2016.

- [33] S. Pradhan, U. C. Gupta, and S. K. Samanta, "Queue-length distribution of a batch service queue with random capacity and batch size dependent service: $M/G_r^Y/1$," *OPSEARCH*, vol. 53, no. 2, 2016.
- [34] S. Pradhan and U. C. Gupta, "Analysis of an infinite-buffer batch-size-dependent service queue with Markovian arrival process," *Annals of Operations Research*, vol. 277, no. 2, pp. 161–196, 2019.
- [35] S. Pradhan and U. C. Gupta, "Modeling and analysis of an infinite-buffer batcharrival queue with batch-size-dependent service: M^X/G_n^(a,b)/1," Performance Evaluation, vol. 108, pp. 16–31, 2017. DOI: 10.1016/j.peva.2016.12.002.
- [36] G. K. Gupta and A. Banerjee, "On finite buffer bulk arrival bulk service queue with queue length and batch size dependent service," *International Journal of Applied* and Computational Mathematics, vol. 5, no. 2, pp. 1–20, 2019.
- [37] S. Pradhan and U. C. Gupta, "Stationary queue and server content distribution of a batch-size-dependent service queue with batch Markovian arrival process: BMAP/G_n^(a,b)/1," Communications in Statistics-Theory and Methods, vol. 51, no. 13, pp. 4330–4357, 2022.
- [38] B. Bank and S. K. Samanta, "Analytical and computational studies of the BMAP/G^(a,Y)/1 queue," Communications in Statistics-Theory and Methods, vol. 50, no. 15, pp. 3586–3614, 2021.
- [39] S. K. Samanta and B. Bank, "Analysis of stationary queue-length distributions of the BMAP/R^(a,b)/1 queue," International Journal of Computer Mathematics: Computer Systems Theory, vol. 5, no. 3, pp. 198–223, 2020.
- [40] V. Goswami, M. Chaudhry, and A. D. Banik, "Sojourn-time distribution for M/G^a/1 queue with batch service of fixed size-revisited," Methodology and Computing in Applied Probability, pp. 1–16, 2022, DOI: 10.1007/s11009-022-09963-0.
- [41] U. C. Gupta and V. Goswami, "Performance analysis of finite buffer discretetime queue with bulk service," *Computers & Operations Research*, vol. 29, no. 10, pp. 1331–1341, 2002.
- [42] M. L. Chaudhry and S. H. Chang, "Analysis of the discrete-time bulk-service queue $Geo/G^Y/1/N + B$," Operations Research Letters, vol. 32, no. 4, pp. 355–363, 2004.

- [43] A. J. Janssen and J. Van Leeuwaarden, "Analytic computation schemes for the discrete-time bulk service queue," *Queueing Systems*, vol. 50, no. 2, pp. 141–163, 2005.
- [44] V. Goswami, J. Mohanty, and S. Samanta, "Discrete-time bulk-service queues with accessible and non-accessible batches," *Applied Mathematics and Computation*, vol. 182, no. 1, pp. 898 – 906, 2006.
- [45] D. Claeys, B. Steyaert, J. Walraevens, K. Laevens, and H. Bruneel, "Analysis of a versatile batch-service queueing model with correlation in the arrival process," *Performance Evaluation*, vol. 70, no. 4, pp. 300–316, 2013.
- [46] M. Yu and A. S. Alfa, "Algorithm for computing the queue length distribution at various time epochs in DMAP/G^(1,a,b)/1/N queue with batch-size-dependent service time," European Journal of Operational Research, vol. 244, no. 1, pp. 227–239, 2015.
- [47] Y. Lee, "Discrete-time bulk queueing system with variable service capacity depending on previous service time," *Mathematical Problems in Engineering*, vol. 2015, pp. 1–6, 2015. DOI: 10.1155/2015/482179.
- [48] G. K. Gupta and A. Banerjee, "Analysis of infinite buffer general bulk service queue with state dependent balking," *International Journal of Operational Research*, vol. 40, no. 2, pp. 137–161, 2021.
- [49] M. L. Chaudhry and J. G. Templeton, *First course in bulk queues*. A Wileyinterscience publication, Wiley, New York, 1983.
- [50] J. Medhi, Stochastic Models in Queueing Theory. Academic Press, 2002.
- [51] M. L. Chaudhry and J. Gai, "A simple and extended computational analysis of M/G_j^(a,b)/1 and M/G_j^(a,b)/1/(B+b) queues using roots," INFOR: Information Systems and Operational Research, vol. 50, no. 2, pp. 72–79, 2012.
- [52] R. Germs and N. van Foreest, "Analysis of finite-buffer state-dependent bulk queues," OR Spectrum, vol. 35, no. 3, pp. 563–583, 2013.
- [53] D. Claeys, B. Steyaert, J. Walraevens, K. Laevens, and H. Bruneel, "Tail probabilities of the delay in a batch-service queueing model with batch-size dependent service times and a timer mechanism," *Computers & Operations Research*, vol. 40, no. 5, pp. 1497–1505, 2013.

- [54] A. Banerjee, K. Sikdar, and U. C. Gupta, "Computing system length distribution of a finite-buffer bulk-arrival bulk-service queue with variable server capacity," *International Journal of Operational Research*, vol. 12, no. 3, pp. 294–317, 2011.
- [55] G. K. Gupta and A. Banerjee, "On M/G^(a,b)/1/N queue with batch size-and queue length-dependent service," in International Conference on Mathematics and Computing, pp. 249–262, Springer, 2018.
- [56] S. Pradhan, "On the distribution of an infinite-buffer queueing system with versatile bulk-service rule under batch-size-dependent service policy: M/G_n^(a,Y)/1," International Journal of Mathematics in Operational Research, vol. 16, no. 3, pp. 407–434, 2020.
- [57] U. C. Gupta, N. Kumar, S. Pradhan, F. P. Barbhuiya, and M. L. Chaudhry, "Complete analysis of a discrete-time batch service queue with batch-size-dependent service time under correlated arrival process: D – MAP/G_n^(a,b)/1," RAIRO-Operations Research, vol. 55, no. 3, pp. 1231–1256, 2021.
- [58] A. Dudin and S. Chakravarthy, "Optimal hysteretic control for the BMAP/G/1 system with single and group service modes," Annals of Operations Research, vol. 112, no. 1-4, pp. 153–169, 2002.
- [59] U. C. Gupta and P. V. Laxmi, "Analysis of the MAP/G^(a,b)/1/N queue," Queueing Systems, vol. 38, no. 2, pp. 109–124, 2001.
- [60] G. Singh, U. C. Gupta, and M. L. Chaudhry, "Computational analysis of bulk service queue with Markovian arrival process: MAP/R^(a,b)/1 queue," OPSEARCH, vol. 50, no. 4, pp. 582–603, 2013.
- [61] A. Banerjee, U. C. Gupta, and S. R. Chakravarthy, "Analysis of a finite-buffer bulkservice queue under Markovian arrival process with batch-size-dependent service," *Computers & Operations Research*, vol. 60, pp. 138 – 149, 2015.
- [62] M. L. Chaudhry and U. C. Gupta, "Analysis of a finite-buffer bulk-service queue with discrete-Markovian arrival process: D – MAP/G^(a,b)/1/N," Naval Research Logistics (NRL), vol. 50, no. 4, pp. 345–363, 2003.
- [63] G. Briere and M. L. Chaudhry, "Computational analysis of single-server bulk-arrival queues M^X/G/1," Computers & Operations Research, vol. 15, no. 3, pp. 283–292, 1988.

- [64] K. C. Madan and E. Malalla, "On a batch arrival queue with second optional service, random breakdowns, delay time for repairs to start and restricted availability of arrivals during breakdown periods," *Journal of Mathematical and Computational Science*, vol. 7, no. 1, pp. 175–188, 2016.
- [65] A. Banik, "The infinite-buffer single server queue with a variant of multiple vacation policy and batch Markovian arrival process," *Applied Mathematical Modelling*, vol. 33, no. 7, pp. 3025–3039, 2009.
- [66] F. van der Duyn Schouten, "An M/G/1 queueing model with vacation times," Zeitschrift für Operations Research, vol. 22, no. 1, pp. 95–105, 1978.
- [67] M. Scholl and L. Kleinrock, "On the M/G/1 queue with rest periods and certain service-independent queueing disciplines," Operations Research, vol. 31, no. 4, pp. 705–719, 1983.
- [68] C. M. Harris and W. G. Marchal, "State dependence in M/G/1 server-vacation models," Operations Research, vol. 36, no. 4, pp. 560–565, 1988.
- [69] H. Takagi, "Time-dependent analysis of M/G/1 vacation models with exhaustive service," Queueing Systems, vol. 6, no. 1, pp. 369–389, 1990.
- [70] H. Li and Y. Zhu, "Analysis of M/G/1 queues with delayed vacations and exhaustive service discipline," *European Journal of Operational Research*, vol. 92, no. 1, pp. 125 134, 1996.
- [71] E. Altman and P. Nain, "Optimality of a threshold policy in the M/M/1 queue with repeated vacations," Mathematical Methods of Operations Research, vol. 44, no. 1, pp. 75–96, 1996.
- [72] F. Karaesmen and S. Gupta, "The finite capacity GI/M/1 queue with server vacations," Journal of the Operational Research Society, vol. 47, no. 6, pp. 817–828, 1996.
- [73] A. Frey and Y. Takahashi, "An explicit solution for an M/GI/1/N queue with vacation time and exhaustive service discipline," Journal of the Operations Research Society of Japan, vol. 41, no. 3, pp. 430–441, 1998.
- [74] Y. W. Shin and C. E. Pearce, "The BMAP/G/1 vacation queue with queue-length dependent vacation schedule," The ANZIAM Journal, vol. 40, no. 2, pp. 207–221, 1998.

- [75] T. Cong, "Application of the method of collective marks to some M/G/1 vacation models with exhaustive service," Queueing Systems, vol. 16, no. 1-2, pp. 67–81, 1994.
- [76] U. C. Gupta, A. D. Banik, and S. S. Pathak, "Complete analysis of MAP/G/1/N queue with single (multiple) vacation(s) under limited service discipline," International Journal of Stochastic Analysis, vol. 2005, no. 3, pp. 353–373, 2005.
- [77] U. C. Gupta and K. Sikdar, "Computing queue length distributions in MAP/G/1/N queue under single and multiple vacation," Applied Mathematics and Computation, vol. 174, no. 2, pp. 1498–1525, 2006.
- [78] B. Mao, F. Wang, and N. Tian, "Fluid model driven by an M/M/1 queue with multiple vacations and N-policy," Journal of Applied Mathematics and Computing, vol. 38, no. 1-2, pp. 119–131, 2012.
- [79] K. Kalidass, J. Gnanaraj, S. Gopinath, and R. Kasturi, "Transient analysis of an M/M/1 queue with a repairable server and multiple vacations," International Journal of Mathematics in Operational Research, vol. 6, no. 2, pp. 193–216, 2014.
- [80] D. Yang and J. Ke, "Cost optimization of a repairable M/G/1 queue with a randomized policy and single vacation," Applied Mathematical Modelling, vol. 38, no. 21-22, pp. 5113–5125, 2014.
- [81] W. Wu, Y. Tang, and M. Yu, "Analysis of an M/G/1 queue with N-policy, single vacation, unreliable service station and replaceable repair facility," OPSEARCH, vol. 52, no. 4, pp. 670–691, 2015.
- [82] W. Kempa, "Transient workload distribution in the M/G/1 finite-buffer queue with single and multiple vacations," Annals of Operations Research, vol. 239, no. 2, pp. 381–400, 2016.
- [83] W. M. Kempa and R. Marjasz, "Distribution of the time to buffer overflow in the M/G/1/N-type queueing model with batch arrivals and multiple vacation policy," Journal of the Operational Research Society, vol. 71, no. 3, pp. 447–455, 2020.
- [84] H. W. Lee, S. S. Lee, K. C. Chae, and R. Nadarajan, "On a batch service queue with single vacation," *Applied Mathematical Modelling*, vol. 16, no. 1, pp. 36–42, 1992.
- [85] U. C. Gupta and K. Sikdar, "A finite capacity bulk service queue with single vacation and Markovian arrival process," *International Journal of Stochastic Analysis*, vol. 2004, no. 4, pp. 337–357, 1900.

- [86] U. C. Gupta and K. Sikdar, "The finite-buffer M/G/1 queue with general bulkservice rule and single vacation," *Performance Evaluation*, vol. 57, no. 2, pp. 199– 219, 2004.
- [87] K. Sikdar and U. C. Gupta, "Analytic and numerical aspects of batch service queues with single vacation," *Computers & Operations Research*, vol. 32, no. 4, pp. 943–966, 2005.
- [88] M. Haridass and R. Arumuganathan, "Analysis of a M^X/G(a, b)/1 queueing system with vacation interruption," RAIRO-Operations Research, vol. 46, no. 4, pp. 305– 334, 2012.
- [89] G. Ayyappan and S. Karpagam, "An M^[X]/G^(a,b)/1 queueing system with server breakdown and repair, stand-by server and single vacation," *International Journal* of Mathematics in Operational Research, vol. 14, no. 2, pp. 221–235, 2019.
- [90] R. Nadarajan and A. Subramanian, "A general bulk service queue with server's vacation," Operational Research in Management Systems, pp. 127–135, 1984.
- [91] B. D. Choi and D. H. Han, "G/M^(a,b)/1 queues with server vacations," Journal of the Operations Research Society of Japan, vol. 37, no. 3, pp. 171–181, 1994.
- [92] M. Jain and P. Singh, "State dependent bulk service queue with delayed vacations," *Engineering Sciences*, vol. 16, no. 1, pp. 3–15, 2005.
- [93] S. Jeyakumar and B. Senthilnathan, "Modelling and analysis of a M^X/G^(a,b)/1 queue with multiple vacations, setup time, closedown time and server breakdown without interruption," *International Journal of Operational Research*, vol. 19, no. 1, pp. 114–139, 2014.
- [94] S. Jeyakumar and R. Arumuganathan, "A non-Markovian bulk queue with multiple vacations and control policy on request for re-service," *Quality Technology & Quantitative Management*, vol. 8, no. 3, pp. 253–269, 2011.
- [95] M. Haridass and R. Arumuganathan, "A batch service queueing system with multiple vacations, setup time and servers choice of admitting reservice," *International Journal of Operational Research*, vol. 14, no. 2, pp. 156–186, 2012.
- [96] O. Ibe, "M/G/1 vacation queueing systems with server timeout," American Journal of Operations Research, vol. 5, no. 2, pp. 77–88, 2015.

- [97] G. Ayyappan and T. Deepa, "Analysis of batch arrival bulk service queue with additional optional service multiple vacation and setup time," *International Journal* of Mathematics in Operational Research, vol. 15, no. 1, pp. 1–25, 2019.
- [98] S. K. Samanta, M. L. Chaudhry, and U. C. Gupta, "Discrete-time Geo^X/G^(a,b)/1/N queues with single and multiple vacations," *Mathematical and Computer Modelling*, vol. 45, no. 1-2, pp. 93–108, 2007.
- [99] K. Sikdar and U. C. Gupta, "On the batch arrival batch service queue with finite buffer under servers vacation: M^X/G^Y/1/N queue," Computers & Mathematics with Applications, vol. 56, no. 11, pp. 2861–2873, 2008.
- [100] K. Sikdar and S. K. Samanta, "Analysis of a finite buffer variable batch service queue with batch Markovian arrival process and servers vacation," OPSEARCH, vol. 53, no. 3, pp. 553–583, 2016.
- [101] G. K. Gupta, A. Banerjee, and U. C. Gupta, "On finite-buffer batch-size-dependent bulk service queue with queue-length dependent vacation," *Quality Technology & Quantitative Management*, vol. 17, no. 5, pp. 501–527, 2020.
- [102] S. H. Chang and D. W. Choi, "Performance analysis of a finite-buffer discretetime queue with bulk arrival, bulk service and vacations," *Computers & Operations Research*, vol. 32, no. 9, pp. 2213–2234, 2005.
- [103] N. Nandy and S. Pradhan, "On the joint distribution of an infinite-buffer discretetime batch-size-dependent service queue with single and multiple vacations," *Quality Technology & Quantitative Management*, vol. 18, no. 4, pp. 432–467, 2021.
- [104] B. T. Doshi, "Queueing systems with vacations a survey," Queueing Systems, vol. 1, no. 1, pp. 29–66, 1986.
- [105] J. C. Ke, C. H. Wu, and Z. G. Zhang, "Recent developments in vacation queueing models: a short survey," *International Journal of Operations Research*, vol. 7, no. 4, pp. 3–8, 2010.
- [106] H. Takagi, "Queueing analysis: A foundation of performance evaluation," Vol. 1, Vacation and Priority, North-Holland, New York, 1991.
- [107] N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications, vol. 93. Springer Science & Business Media, 2006.

- [108] M. Thangaraj and P. Rajendran, "Analysis of batch arrival queueing system with two types of service and two types of vacation," *International Journal of Pure and Applied Mathematics*, vol. 117, no. 11, pp. 263–272, 2017.
- [109] A. D. Banik, "Analysis of queue-length dependent vacations and P-limited service in BMAP/G/1/N systems: Stationary distributions and optimal control.," International Journal of Stochastic Analysis, vol. 2013, 2013, DOI: 10.1155/2013/196372.
- [110] B. Lavanya, R. Vennila, M. Sankoh, et al., "Mathematical modelling of M^X/G^(a,b)/1 bulk service queue model with two vacations and setup time in ceramic technology," Mathematical Problems in Engineering, vol. 2022, 2022, DOI: 10.1155/2022/2771494.
- [111] J. Medhi, "A single server Poisson input queue with a second optional channel," *Queueing Systems*, vol. 42, no. 3, pp. 239–242, 2002.
- [112] J. Al-Jararha and K. C. Madan, "An M/G/1 queue with second optional service with general service time distribution," International Journal of Information and Management Sciences, vol. 14, no. 2, pp. 47–56, 2003.
- [113] J. Wang, "An M/G/1 queue with second optional service and server breakdowns," Computers & Mathematics with Applications, vol. 47, no. 10-11, pp. 1713–1723, 2004.
- [114] G. Choudhury and L. Tadj, "An M/G/1 queue with two phases of service subject to the server breakdown and delayed repair," Applied Mathematical Modelling, vol. 33, no. 6, pp. 2699–2709, 2009.
- [115] G. Choudhury and M. Paul, "A batch arrival queue with a second optional service channel under N-policy," *Stochastic Analysis and Applications*, vol. 24, no. 1, pp. 1– 21, 2006.
- [116] F. A. Maraghi, K. C. Madan, and K. Darby-Dowman, "Batch arrival vacation queue with second optional service and random system breakdowns," *Journal of Statistical Theory and Practice*, vol. 4, no. 1, pp. 137–153, 2010.
- [117] G. Ayyappan and S. Shyamala, "Transient solution of M^[X]/G/1 with second optional service, Bernoulli schedule server vacation and random break downs," International Journal of Management & Information Technology, vol. 3, no. 3, pp. 45–55, 2013.
- [118] G. Ayyappan, G. Devipriya, and A. M. Ganapathi, "Analysis of single server batch service queueing system under multiple vacations with second optional service," *International Journal of Mathematical Archive*, vol. 5, no. 2, pp. 126–144, 2014.

- [119] G. Ayyappan and R. Supraja, "Batch arrival bulk service queue with unreliable server, second optional service, two different vacations and restricted admissibility policy," *Applications and Applied Mathematics: An International Journal (AAM)*, vol. 13, no. 2, pp. 600–627, 2018.
- [120] C. J. Singh, S. Kaur, and M. Jain, "Analysis of bulk queue with additional optional service, vacation and unreliable server," *International Journal of Mathematics in Operational Research*, vol. 14, no. 4, pp. 517–540, 2019.
- [121] P. V. Laxmi and A. A. George, "Transient and steady state analysis of M/M^([b])/1 queue with second optional service," Journal of Industrial and Production Engineering, vol. 39, no. 4, pp. 306–316, 2022.
- [122] T. Deepa and A. Azhagappan, "Analysis of state dependent M^[X]/G^(a,b)/1 queue with multiple vacation second optional service and optional re-service," International Journal of Operational Research, vol. 44, no. 2, pp. 254–278, 2022.
- [123] G. K. Gupta, Studies on some state dependent bulk service queues with balking or queue length dependent vacation. PhD thesis, IIT (BHU), Varanasi, 2018.
- [124] I. Yelin, N. Aharony, E. S. Tamar, A. Argoetti, E. Messer, D. Berenbaum, E. Shafran, A. Kuzli, N. Gandali, O. Shkedi, et al., "Evaluation of covid-19 rt-qpcr test in multi sample pools," *Clinical Infectious Diseases*, vol. 71, no. 16, pp. 2073–2078, 2020.
- [125] "Pool testing of SARS-CoV-02 samples increases worldwide test capacities many times over." Retrieved from https://aktuelles.uni-frankfurt.de/englisch/pooltesting-of-sars-cov-02-samples-increases-worldwide-test-capacities-many-timesover/.
- [126] W. K. Chow and C. L. Chow, "A discussion on implementing pooling detection tests of novel coronavirus (sars-cov-2) for a large population," *Epidemiology & Infection*, vol. 149, no. e17, pp. 1–6, 2021.
- [127] G. Ayyappan and S. Karpagam, "Analysis of a bulk service queue with unreliable server, multiple vacation, overloading and stand-by server," *International Journal* of Mathematics in Operational Research, vol. 16, no. 3, pp. 291–315, 2020.
- [128] G. Ayyappan and T. Deepa, "Analysis of batch arrival bulk service queue with multiple vacation closedown essential and optional repair.," *Applications and Applied Mathematics: An International Journal (AAM)*, vol. 13, no. 2, pp. 578–598, 2018.

[129] L. Abolnikov and A. Dukhovny, "Markov chains with transition delta-matrix: ergodicity conditions, invariant probability measures and applications," *Journal of Applied Mathematics and Stochastic Analysis*, vol. 4, no. 4, pp. 333–355, 1991.

List of Publications

(Published)

- G. K. Tamrakar and A. Banerjee, "On steady-state joint distribution of an infinite buffer batch service Poisson queue with single and multiple vacation", *OPSEARCH*, vol. 57, no. 4, pp 1337–1373, 2020.
- G. K. Tamrakar and A. Banerjee, "Study on Infinite Buffer Batch Size Dependent Bulk Service Queue with Queue Length Dependent Vacation", *International Journal* of Applied and Computational Mathematics, vol. 7, no. 6, pp 1–25, 2021.
- G. K. Tamrakar and A. Banerjee, "On steady state analysis of an infinite capacity M^X/G^(a,Y)/1 queue with optional service and queue length dependent single (multiple) vacation", Queueing Models and Service Management, vol. 6, no. 1, pp 27–61, 2023.

(Accepted)

1. G. K. Tamrakar and A. Banerjee, "On state dependent batch service queue with single and multiple vacation under Markovian arrival process", *International Journal of Operational Research*, 2022.