Chapter 5

Analysis of M~/ Gq(aa’y> /1 queue
with second optional service and
queue length dependent single and

multiple vacation

5.1 Introduction

The concept of second optional service (SOS) was proposed by Madan [10]. He analyzed
the M/G/1 queueing model using SVT. Later, many researchers have analyzed different
queueing models with SOS, see, e.g., Medhi [111], Al-Jararha and Madan [112], Wang
[113], and Choudhury and Tadj [114]. There are few literatures available on bulk queues
with SOS, e.g., Ayyappan and Supraja [119], Singh et al. [120] , Ayyappan and Deepa [97],
etc., and references therein. Ayyappan and Supraja [119] analyzed MX/G(*b) /1 queue
with unreliable server, second optional service, two different vacations, and restricted
admissibility policy and obtained the queue length distribution at random and departure
epoch using the SVT. Singh et al. [120] analyzed bulk arrival queue with different m-
SOS, vacation, and unreliable server using SVT. Ayyappan and Deepa [97] considered
MX/G(a’b)/l queue with SOS, MV, and setup time. They obtained the PGF of the queue
size at different epochs using SVT. To the best of the author’s knowledge, the considered
model, i.e., MX /G(*Y) /1 queue with SOS and queue length dependent SV and MV, has

The content of this chapter is published in Queueing Models and Service Management.
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not been analyzed so far in the literature that analyzes the joint probabilities of queue and
server content for FES (SOS) at the service completion (arbitrary) epoch as well as joint
probabilities of queue content and type of vacation at the vacation termination (arbitrary)

epoch.

5.1.1 Practical motivation

Queueing models with SOS can be applied in many areas, viz., barber shop, malls, etc.
Considered model may be used to model blood sample testing in an epidemic situation
such as COVID-19, as batch service queues have efficacious application in blood pooling,
see, e.g., Abolnikov and Dukhovny [15], Bar-Lev et al. [13], and Claeys et al. [17]. In an
epidemic (viz., COVID-19), the health administration of any country wants to test more
and more samples using less number of kits. Hence, a mixed sample is used for testing
by taking a group of samples from the queue, see the references [124, 125, 126]. Further,
in a pandemic situation handling the health workers’ shortage is also a big challenge. To
deal with such situation, the health administration may provide some additional work to
the health workers (viz., visiting the quarantine room, stocking the health care inventory,

making people aware of the epidemic) when they have no primary work.

Suppose that a large number of samples arrive at the health department in bulk for testing
from different sectors, then the health worker tests these samples in batches, termed as
FES, according to the (a,Y’) rule with batch size dependent service. After FES, if the
mixed sample diagnosed negative then the health worker decides how many samples will be
mixed for the next test with a certain probability. For example, the health administration
instructs the health worker that if the mixed sample is found negative, select the batch
of maximum capacity for the next test, otherwise, choose the batch size of its minimum
capacity. Therefore, (a,Y’) rule is justified here. After FES, if the mixed sample diagnosed
positive then the sample go for the SOS to identify the infected sample.

Further, in the absence of primary work (which includes FES and SOS), the health worker
does some additional work (viz., stocking of health care inventory, increase people aware-
ness, visiting the quarantine room, etc.). Before going for this additional work, the health
worker always checks the queue size, and depending on the queue size, he fixed his return-
ing time in the primary system. Hence, the QSDV policy rule may have a wide impact on
the system’s performance. The practical application discusses above motivate us to work

on this problem.
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Section 5.2 presents the model description of the considered model. In Section 5.3, joint
probabilities of queue and server content as well as queue length and type of vacation
obtained at different epoch. Some marginal distributions are presented in Section 5.4.
The various important performance measures are presented in Section 5.5. The behavior
of the system is discussed by means of tables and graphs in Section 5.6. Section 5.7

presents a cost model. The whole study ends with the conclusion (i.e., Section 5.8).

5.2 Model description

The present chapter investigates infinite capacity bulk arrival, batch size dependent bulk
service queue with SOS, queue size dependent single (multiple) vacation. Here below is

the detail mathematical description of the model.

The customers are coming in packets (groups) following the Poison distribution with rate

A. Let G be the size of the arriving group with probability mass function P(X = m) = g,
) .

m € N associated with finite mean E(X) = g and PGF X (z) = ) ¢;2". The customers are

=1
served in batches according to the VBS rule, i.e., (a,Y) rule, where the random variable

Y, denoting service capacity, has the following probability mass function,

¥y, a<i<DB

0, otherwise.

Here B is the maximum serving capacity of the server with yp > 0 and E(Y) = 3. At
each service initiation epoch if the queue length lies in [a, ) (where i is the chosen service
capacity at the service initiation epoch) then server does not wait for the queue length to
reach ¢, but it takes entire customer for the service with probability y;, and if the server
finds the queue length > 7 then it takes only 7 customers for the service with probability
y;. The service (FES) time (T;), of a batch of size r (a < r < B) is generally distributed
along with probability density function (pdf) s,(t), distribution function (DF) S,(¢), the
Laplace-Stieltjes transform (LST) S,(f) and the mean service time i =5, = —5’51)(0)
(a <7 < B), where 5'51)(0) is the derivative of S,(0) evaluated at §=0. After first essential
service (FES) the served batch may choose second optional service (SOS) with probability
a. The optional service time (T) of a batch is generally distributed along with probability
density function (pdf) s(t), distribution function (DF) S(t), the Laplace-Stieltjes transform
(LST) S(#) and the mean service time i =¢ = —-5SM(0), where SM(0) is the derivative
of S(0) evaluated at § = 0. After FES if the queue length is found to be less than the
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minimum threshold limit @ and the batch served in FES does not choose SOS then the
server goes for the k' type of vacation where k (0 < k < a — 1) is the queue length at
vacation initiation epoch, similarly, after SOS if the queue length is found to be k < a
then the server goes for k' type of vacation . At the end of the vacation if the queue
length is > a then it serves the customer as per the (a,Y’) rule, otherwise, depending on
the vacation policy the server remains in the system at dormant state until queue length
reaches at least the minimum threshold limit a or takes repeated vacation until it finds
queue length > a at the end of the vacation. Vacation time Vj, of the k** type of vacation
obeys general distribution with pdf vg(t), DF Vj(t), LST V4 (6). The mean vacation time
i = = —V,fl)(O) where ‘7,51)(0) is the derivative of V4(#) at # = 0. The traffic intensity
g f TGS

of the system p = %‘L(< 1) which ensures the stability of the system. In this
chapter, SV and MV queues have been studied in an unified way by defining a variable §
as follows:
1, for MV,
)=
0, for SV.

5.3 System analysis

This section is devoted in obtaining the joint probabilities of the queue length and server
content at the service (FES and SOS) completion epoch and the joint probabilities of the
queue size and the type of vacation at the vacation termination epoch. Later the joint
probabilities of the queue and server content are obtained during FES (SOS) and the joint
probabilities of queue length and type of vacation at an arbitrary epoch by relating it to
the joint probabilities at service completion and vacation termination epoch. From this

perspective, the following random variables, at time ¢, are defined as follows:
e N,(t): be the number of customers in the queue.
e Si(t): be the number of customers with the server when the server is busy in FES.
e S5(t): be the number of customers with the server when the server is busy in SOS.
e K(t): be the type of vacation taken by the server, when the server is on vacation.
e U(t): remaining service (FES) time of the batch, if any.

~

e U(t): remaining service (SOS) time of the batch, if any.
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e V(t): remaining vacation time of the server, if any.

Point to be noted here that S;(t) = 0 and S(t) = 0 will represent the server is in the

dormant state at time ¢ (for the case of SV).

For SV, {(I,(£). S1(t) = 0. Sa(¢) = 0)} U {(N(8), $1(8), U(1))} U { (N (8), Sa(8), T ($)) } U
{(Ng(t), K(t),V(t))} forms a Markov chain with state space {(n,0,0);0 < n < a —
1} U{(n,ru);n>0,a <r < B,u>0}U{(n,ku);0<k<a-—1,n>ku>0}

For MV, {(Ny(t),S1(t),U(t))} U {(Nq(t),SQ(t),ﬁ(t))} U {(Ng(t),K(t),V(t))} forms a
Markov chain with state space {(n,r,u);n > 0,a < r < B,u > 0} |J{(n,k,u);0 < k <
a—1,n>ku>0}.

Define the state probabilities, at time ¢, as

o R,(t) = Pr{Ny(t) =n,51(t) =0,52(t) =0}, 0<n<a—1 (exist only for SV).
o Pr(u,t)du=Pr{Ny(t)=n,51(t)=r,u<U(t)<u+du}, n>0, a<r<B.
o W, (u,t)du = Pr{Ny(t) =n,Sy(t) =r,u (t)<u+du}, n>0, a<r<B.

<U
o Q¥ (u,t)ydu= Pr{N,(t) =n,K(t) =k,u<V(t) <u+du}, n>k,0<k<a—1.

In steady state, as t — oo, the limiting probabilities are defined as follows.

R, = tliglo R, (t) (0 <n <a-—1), (exist only for SV),

P, (u) = tllglo Pyr(u,t), n>0, a<r<B,

Whr(u) = tliﬁrgloV[/,M(u,t)7 n>0, a<r<B,
Lf](u): tli)rglef](u,t), n>k 0<k<a-1.

Now the system equation that governs the system behavior is obtained. Analyzing the

)

system, at time ¢ and ¢ 4 dt, in steady state, the Kolmogorov equations are obtained as

follows:
0 = u—®<—M%+QPmO, (5.1)

0 = (1—5)(—ARn+AZgiRn_i+ZQ£ﬁ(0)>, 1<n<a-1, (5.2)
=1 k=0
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d

—%Po,,,«(u)

_)\PO’I‘

B
(ZQLk £ P O)1 - a) +
Jj=a
+(1—=9)A i R;gr—; Z yisr(u)
7=0 i=r
u) + A Z Pr—jr(u)g;
j=1
a—1 ’ B B
- ( S QM0+ P01 —a) + 3 Wn+r,j<o>)yrsr<u>
k=0 j=a

a<r<B,

j=a
a—1
+(1— 5)A2Rjgn+r_jyrsr(u), a<r<B,n>1,
j=0
B
QM (u (ZPM J1—a)+ > Wi, (0)

r=a

—1—52@[]] ) (u), 0<k<a-1,

QM (w) +Azgl QM (), n>k+1, 0<k<a-—1,

—MWor(u) + Por(0)s(u)a, a<r<B,

n

e
>
-
1
<
»

(5.4)

(5.6)

(5.7)

AW () + A W (w)gs + Pap(0)s(u)a, n>1,a<r < B. (5.8)

j=1

(5.9)
(5.10)
(5.11)
(5.12)
(5.13)
(5.14)

(5.15)
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QM (g) = / e QW (u)du, 0<k<a-1, n>k, (5.16)

0
QM = QlFl(0) = / QM (wydu, 0<k<a—-1, n>k (5.17)
0

One may note here that P,, (W,,) denotes the probability that there are n (n > 0)
customers are in the queue and server is busy with r (e < r < B) customers during FES
(SOS), at an arbitrary epoch. Also, Q,[ff lindicates the probability of n (n > k) customers

in the queue and the server is on & (0 < k < a — 1) type of vacation, at an arbitrary

epoch.
Multiplying (5.3)-(5.8) by =% and integrating with respect to u over 0 to oo one can
obtain
~ a—1 B B B ~
(A=0)Po,r(0) = <Z QI0) + D Prj(0) (L —a) + Y Wr,j(0)> > 4iS(0)
k=0 Jj=a Jj=a i=r

a—1 B
+1 =AY Rigr— Y 4iSe(0) = Por(0), a<r<B, (518)
7=0 =T

n a—1 B
Q—wﬂﬂm——AZﬁf%m@+<§}ﬁM®+ZFMm@ﬂ—®
j=1 k=0 j=a

B a—1
+ Z Wn+,«7j(0)>y7«§r(6) + (1 — (5)/\ Z Rjgn+r_jy,n§r(9)
i—a =0
—;3“,7“(0), a<r<B, n>1l, ’ (5.19)
~ B B k ) ~
A -0 = <Z Prr(0)(1—a) + 3 Wi (0)+6> QES](O)> Vi(0)
r=a r=a Jj=0
—Q™0), 0<k<a—1, (5.20)

n—=k
A-0)QM@e) = 2> aQM,0) - QM) n>k+1, 0<k<a-1.  (521)
=1

A=0OWo,0) = Py (0)SO)a— Wy, (0), a<r<B (5.22)
A= OWnr(0) = XY Wi jr(0)g; + Pur(0)S(0)c
j=1
—Wpr(0), n>1,a<r<B (5.23)

Now the main objective is to obtain the joint probabilities of the queue and server content
during FES (SOS) as well as the joint probabilities of queue length and type of vacation at
an arbitrary epoch, these arbitrary epoch joint probabilities are obtained by establishing
a relationship between the joint probabilities of the queue length and server content at

the service completion epoch, and the joint probabilities of the queue length and type of
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vacation at the vacation termination epoch. Towards this end, define,

+
PTL,’I’

Pl

Pr{n customers are in the queue at service (i.e., FES) completion epoch
of a batch of size r}, n>0, a<r <B, (5.24)

Pr{n customers are in the queue at service (i.e., FES) completion epoch}

B
> Ph, n>0, (5.25)
r=a

Pr{n customers are in the queue at service (i.e., SOS) completion epoch
of a batch of size r}, n>0, a<r <B, (5.26)

Pr{n customers are in the queue at service (i.e., SOS) completion epoch}
B
> Wi, n>0, (5.27)
r=a

Pr{n customers are in the queue at kt" type of vacation termination epoch},
0<k<a-1, (5.28)

Pr{n customers are in the queue at the vacation termination epoch}
min(n,a—1)

QE+ n>o. (5.29)
k=0

5.3.1 Joint probabilities at service (vacation) completion epoch

The primary objective of this section is to obtain ngr (W;T) (n>0,a <r < B)and QL{CH

(0<k<a-—1,n>k), ie., the joint probabilities of the queue length and server content

at service (FES and SOS) completion epoch and the joint probabilities of the queue size

and the type of vacation at vacation termination epoch, in this connection the required

bivariate generating functions are defined as follows:

o B

Pz, 0) = 3.3 Bus(0)2y |2 <1, Jyl <1, (5.30)
n=07r=a
o~ B

Pi(zy) = Y D) B2z <1,y <1, (5.31)
n=07r=a
co B 00

Pr(z,1) = Y D BLz"=) Prz"=Pz), [z <1 (5.32)
n=0r=a n=0
co B

W(zy,0) = >3 Wan(0)z"y |21 <1, |yl <1, (5.33)
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Wt(z,y) = ZZWJTZ"Z/U 2 <1, Jyl <1, (5.34)

WH(z,1) = iZVW 2" = ZW+ n=Wt(2), |z|<1 (5.35)

n=0r=a
a—1 oo
Q(zy,0) = Y Y QW0)2 Y, |21 <1, |yl <1, (5.36)
k=0n=~k
a—1 oo
Qf(zy) = DY Qb o <1, y <1, (5.37)
k=0n==k
a—1 oo oo min(n,a—1)
Qt(z1) = Y > Qlts Z Z Qhrzr
k=0n=~k
=) Q" =Q"(2), [z <1 (5.38)
n=0
Further, define
mgr) = Pr{j arrivals during the service (i.e., FES) time of a batch size r}, a <r < B,j >0
00 I o=t \p)
= / 3 #gﬁ(”sr(t)dt, (5.39)
0o &
q¢; = Pr{j arrivals during the service (i.e., SOS) time}, j >0,
oo I =At(y\p)l
At .
= / 3 #gjﬁ Js(t)dt, (5.40)
0o 1= l!
wj(-k) = Pr{j arrivals during the k*" type of vacation }, 0 <k <a—1,j>0,
oo I =Xt y\p)l
At .
= / Z els)gé( )Uk(t)dt. (5.41)
0 =0 :

Where g;(*) is {-fold convolution function of g;. Define the PGF (probability generating
(r) (k)

function) of m;’, q; and w;" are as follows
MO (z) = Zm(” (A= AX(2)), a<r<B, |z <1, (5.42)
M,ys(z) = quz] =S(A—)AX(2), |7 <1, (5.43)

N®(z) = Zw Vi = V(A= AX(2)), 0<k<a—1, |2/<1.  (5.44)
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Lemma 5.1. The probabilities P,’,, W, Qn , Pr(0), Wy r(0) and Q[k]( 0) (a<r<
B,0 <k <a—1) are associated with the following relation

PJT = 0oPF,,(0), (5.45)
Wi = oW, (0), (5.46)
QI = oQ0), (5.47)
oo B o B oo min(m,a—1)
where o~ = Z_O 2 Py, (0) + Z_O Z Winr(0) + Z Z Q[k]( 0).

W+, and Q¥ are proportional to P, -(0), W, ,(0) and Q¥(0), re-

Proof. Since P, nr, g

o B oo min(n,a—1) &
spectively, applying the Bayes’ theorem and - > (P, + W[ ) + Z Z Q[ =
n=0r=a
the desired outcome is obtained. O

Lemma 5.2. The value o' is given by

a—1

1- (1 - 5) Z Rn
o= — =0 . (5.48)
S (Pra—a)+ W + Q)Y wese + (P — o) + W +QF)sa
n=B+1 r=a
+ Z 1—0( +WJ+Qn Z%&*’Zyz«%

n=a+1
a—1

+ Z [ijn(l —a)+ Wz, + (1 -9) z_: eme:{(Zgr_m Zyiur
n=0 m=n r=a i=r
o~ B
+ Z Z gr—m—&—lyrﬂr) + 5Q;~;xn:|

=1 r=a
o0
+Y P
n=0

n—m
where enm = Y. gien—im, 1<n<a—-1, 0<m<n—-1landey,=1,0<n<a-1
i=1

Proof. Using (5.1) and (5.2), the following expression is obtained

ARy =" enmQU(0), 0<n<a-1. (5.49)

m=0 k=0
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Using (5.49), summing (5.18)-(5.23), one have

[e'e) mznma 1

oo B ~ ~ A(@)
Z Z(Pm,r<9) + er + Z Z Q[TIZ](G) = 77 (5'50)

m=0r=a

where

00 B B
A0 = % (LR 00-0+ 3w+ E o)
n—1

B B B [k] ~
+ 2 (L P,O0-a+ w0+ T oo >> (' wa- 50
n= a+1 r=a
B n

FEu-5,00)+ S (£ P00 -a)+ X W0 +6 3 o)
L= Tlo) + (3 P =a)+ 32 Wey0)+ 5 0H0) )1 - $,00)
+ <1 - E emn( Zj: —m f: yzgr(e) +l grm+lyrSr<9)>>

(1 - )ZZQn( +ZZPM()(1—§(9))-

n=0 k= n=0r=a

(8
M

1r

a

Taking 6 — 0 in (5.50) and using L’Hospital’s rule, the normalization condition (1 —

co min(n,a—1)

0) Z R, + Z Z( e + W) + > > Qn =1, after few simplification desired

n=0r=a n=0 k=0
outcome is obtained. O

Lemma 5.3.
Wt(z) = PT(2)Mys(2)a. (5.51)

Proof. Multiplying (5.22)-(5.23) by proper power of z and y and summing over the range

of n and 7 the following result is obtained

A—0—AX(2))W(z,y,0 ZZPM 0)aS (6

n=0r=a

co B
=Y W (0)2"y" (5.52)

n=0r=a

Substituting § = A — AX (z) in the above expression and using Lemma 5.1 one have

WH(z Z Z P aMyg(2)2"y". (5.53)

n=0r=a
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Setting y = 1 in (5.53) and using (5.25) and (5.32) desired result (5.51) is obtained. [

Lemma 5.4.

n
wr = aZPfqn,i, n>0,a<r<B (5.54)

n
=0

Proof. Using (5.34), (5.32), and (5.43) and then collecting the coefficients of 2" (n > 0)
from both the side of (5.51) desired outcome (5.54) is obtained. O

Lemma 5.5.

a—1 oo a—1
QT (2)=>_ > QW =3 (P11 — o)+ W +6Q )N®)(2)2". (5.55)
k=0 n=~k k=0

Proof. Multiplying (5.20) and (5.21) by proper power of z and y and summing them over

the range of n and k, one can get
a—1 B k _
A= 0= AXEQ0) = 3 (L (P01 - a) + Wer(0) +5 3 QP10))Tut0)s44*
0 r 7=0

- fj Q(0)2"yF, (5.56)

k=0n=k

Now substituting =X — AX(z) in (5.56) and using Lemma 5.1, (5.25), (5.27) and (5.29)

one can obtain

a—1 oo a—1
Z Z QU+ gk — Z (PH1—a)+ W + 5QZ)N(k)(z)zkyk. (5.57)
k=0 n=~k k=0

Substituting y = 1 in (5.57) desired result is obtained. O

Lemma 5.6.

k
QI+ — (p,ju —a)+ W+ 52@%“)%’%, 0<k<a-ln>k (558
§=0

Proof. From (5.57) collecting the coefficients of y* (0 < k < a — 1) one can obtain,

> RN = (PH1— )+ W +6Q )NV (2)2". (5.59)
n==k
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Now using (5.44) and (5.29) in (5.59) and collecting the coefficients of 2" (n > k) the
desired result (5.58) is obtained. O

Hence, from Lemma 5.6 it is clear that once P,;" (0 < k < a—1) are known, the joint

probabilities QL{CH (0<k<a—1,n>k) are also known.

Multiplying (5.18)-(5.19) by proper power of z and y and summing over the range of n

and r the following expression is obtained

(A—0—\X(2)P(z,y,0) = Z(ZQ[’“] Z G(0)(1 —a) +W,;(0 )Zyz

= Jj=a

B
33 (St rma-o
j=a

=1r=a

+ Z Witrj (0)> gr (D)yrz"y"

B a—1

+(1—9) AZZRJQT ]Z?Jz T

r=a j=0
oo B a-1

+(1=9)A Z Z Z Rjgnﬂ"ijrgr(e)znyr

n=1r=a j=0

oo B
- Z Z P, (0)z"y

n=0r=a

Substituting § = A — AX(z) in the above expression and using Lemma 5.1, (5.25), (5.27),
(5.29) and (5.31), one can get

B

B
Pi(zy) = Y (QF+PT(1—a)+ WD yM®

r=a

+ Z Z Qn—l—’/‘ +r(1 - a) + WJ—&-T)M(T)( )yrznyr

n=1r=a
B a-1 j

1_6 ZZZQ 63m<g7’ Jzyl+zgn+r jYrz )M(r)(z)yr
r=a j=0 m=0

(5.60)
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Substituting y = 1 in (5.60) and using Lemma 5.5, (5.51) and (5.32) after some algebraic

manipulation following expression is obtained.

B-1 B
{ZB Z(Pju —a)+ W+ QN> yM(z)

—Z:yM(Z ZP+(1—a)+WJ+Q;)z”+B*i
n=0

B—-1
=Y (BI1—a)+ W, +Q1)"ysMP)(2)
n=0
a—1
+ Zyz (P —a) + W, +0Q )NW (2) Pk

k 0

(1) ; Zm< Zgr mzyz
MO - 3 gnz”>> }

Pt(z) = =a = n=1 . (5.61)
— (1 — a+ aM,s(2)) 3 y; MO (z)2B-1

i=a

QII

Finally, using (5.61) in (5.60) after some algebraic manipulation one can get

P*(z,y) = Az9) (5.62)
—(1—a—|—aMos(z)) Zyl ( )ZB ‘
where
Aeoy) = 52 (B = ) + W+ Q) Sy 0z ){yf (zB (-t aMo()
Z y; MU (2 +(1—a+aM,s(z)) f ij(j)(z)zB_jyj}+leyiM(i)(z)z_i iO(P;(l
Jj=a j=a i=a n=

>+W++Q+{ ( (1~ a4 oMo >>2yg >Bf)
S0t aM(2)2 z g MU (2 >z—jyﬂ} 5 (B a) + W+ QDM ()

{8 (P Omarabto(e) £ 5100257 ) - £ M0 )2+ 8 (R -

=a k:O
B ) ) a—1 a—1
) + Wik +0QF)NW (2)28 37 y; M) (2)2579y7 + (1 - 6) ZO 5> emn
j=a n= m=n

grm X yM O (2)y"+ 30y M ()27 4y (X (2) = 30 gn2") | 27— (1—ataMos(2))
(- B Zon)(

i=r r=a
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B ) ) B B B
> ij(”(Z)ZB‘J> +(1— ot aMy(z) 3 ypM© ()Y ( S gem S yiM O (2)
j=a r=a l=a 1=l

B . ) i—m
55 MO () (x () — '3 gnzn>))
i1=a n=1

It may be observed from (5.62) that the generating function P*(z,y) has been expressed
in compact form, except for the B unknowns {P; }f;ol. One can further note that from
Lemma 5.6 once P;f (0 < k < a — 1) are known then the joint probabilities Q%C]Jr (0 <
k < a — 1) are completely known. Hence, to find P;:T (a <r < B,n>0)and QL{CH
(0 <k <a—1,n>k) one should find the unknowns {P;} }Z-!. Next section is dedicated

in getting these unknowns {P}}5-7.

5.3.2 Procedure of getting the unknowns P (0 <n < B-1)

It can be seen that the unknowns P} (0 < n < B — 1), as appeared in (5.62), are same
as the unknowns which are appeared in (5.61). Using the result, given in Abolnikov and
B
adnoag
Dukhovny [129, Theorem 4.1 and Lemma 4.1, page 341], for —=— <1 2B—(1—-a+
B . .
aM,s(2)) > y; M) (2)2B~" has (B—1) zeros, say, 1, T2, ..., 2; with multiplicity r1, ro, ..., 7y,
i=a
!
respectively, inside the unit circle |z| = 1 (where (I < B—1) and Y r; = (B — 1)) and
i=1
one simple zero, say, zg = 1, on the boundary of unit circle |z|=1. Due to analyticity of
(5.61) in |z| < 1 these zeros are also the zeros of numerator of (5.61). Hence, from (5.61)

set of (B — 1) linearly independent equations are obtained,

di_l B-1 B
et E MBI AR TS
B-1 _A i - )
=S MO ) SUPE( - a) + W + Q)
i=a n=0
B-1
=Y (BFA—a)+ W +QN)z"ysMP(2)
n=0
B a—1 ‘
£ 3 g MO () S(PF(L = a) + Wy + 6Q )N (2) 8-+
i=a k=0
a—1 a—1 B B
+(1 - 5) ;L’_ Z Em,n <ZBZgr—mzsz(T)(z)
n=0 m=n r=a 1=r

B
—i—ZyiM(i)(z)zB*”m(X(z) = Zgnz")> H =0, 1<j<l & 1<i<r(5.63)

n=1 J
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where Ci‘l—;h(z) = h(z2).
Now using (5.62), Lemma 5.5 and the normalization condition (1+«)PT(1)+Q*(1) =1,
after applying L’Hospital’s rule, one can get

B—-1 B
1+ a) (SR 0) 4 W +Q) D wi(B + A,
B-1 7 -

= ui Y (BI(1—a)+ W,F + Q) (n+ B —i+\jsi)

i=a n=0

B-1
- Z(PJ(l —a)+ W, +Q7)ys(n+ Agsg))
n=0
a—1 a—1 B B
+(1 - 5) Z Q;Li_ Z em,n(zgr—m Z yz(Agsr + B)
n=0 m=n r=a i=r
B i—m i—m
+ Zyz(g - Z ngn) + (1 — Z ngn)(B — i+ m + /\gs,)))
oo i=a n=1 n=1
D D (PFA-a) + W +6QH)(Ng(si +ax) + B—i+k)=§(1—p)  (5.64)
1=a k=0

Hence, (5.63) and (5.64) together forms non-homogenous system of B linearly independent
equations in B unknowns P} (0 < n < B — 1), solving them P (0 < n < B —1) are

uniquely determined.

Now using (5.31) in (5.62) and then collecting the coefficients of y" (a < r < B) the

following expression is obtained

n=0 — (1 — a+ aMys(2)) 3 yi MO (2)zB-1

i=a

where

() = (P (1=a)+ W +Q) ¥ yeM O (2) (zB—(l—amMos(z)) > MO )5 ) ¢

(1— 0+ Mo () MO ()8 S (B (1— ) + W7 + Q) Zszw ) =y M) (2)2"

T

5 (B )+ Wi+ QD) (2 = (1 =+ abln(2) £y MO ) — (1=t

n=0

aMos(2)) Bil yiM W (2) Z (P (1= a) + Wi + Q)= P77l M) (2) — (1 - a+ aMos())

n=0
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B-1 a—l1

ngo(PJ(l—a)JrWJJrQI)Z"yBM(B)(Z)er(T)(Z)Z‘r+kZO(P+(1—Oé)+W/f+5Qk+)N(k)(Z)
a—1 a—1

2y, M (2)2877 + (1 - 6) ZOQ’JLF 2 em’n(<9r m Z Yy M) (2) 4y, M) ()77 4m

(X()-'S ) ) (47~ (1-atadln(2) X ij<j>(z>zB—j>+<1a+aMos<z>>er<r><z>
gi B B ) = ) i—m
Br(lz om S 0MO) + 3 MO (e)e () - 8 gnzn>)), a<r<B-1

i=a

and

iPnfBz" - H(zb) . . (5.66)
n=0 — (1 — a+ aMys(2)) 3 yi M (z)2B-i

i=a
where

L1(:18) = (1= @M (&M PI(2) S (B (1= ) + W+ Q) 3w O(e) = (1 -

i=j
B-1 A i ‘ B-1
a4+ aMos(2)) X yiMW(2) 3 (BF(1 = a) + W,F + Q1)z""ysMP)(z) — 3 (PF(1 -
i= n=0 n=0
B
a) + W,F + Q)2"ypMP ()2~ <ZB — (1= a4 aMy(2)) 3 y;MY(2)2P7 + (1 —a +
j=a

aMos(Z))yBM(B)(Z)> + af(lﬁ(l —a) + Wif +6QNW (2)2Fyp MP)(2)

ta-aS oS m<g e MB)(2) 4 ypMB) () Bom (X (2) - B;Tgnzw)

n=0 m=n

(5 - =0+ ada(e) 3 MO ) +(1=0) S QF T emall ~ ot abln(2)
ysMP)(z) <§: Gi—m iyiM (2) + Z yiM O ()2~ 7m)(X (2) — 12?: gnz")>.

i=a
For further investigation, assume that the LST of the vacation time distribution and service

time distribution, are rational function, i.e., V4 (8) = X’“((g)) , S.(0) = f,:((g)) and S(0) = Xég;

where X (6), Y (), X,.(0), Y,.(0), X(0), and Y () are polynomials in 6. Even, distribution

functions having transcendental LST can also be rationalized by padé approximation.

Substituting Vi(A = AX (2) = $E3500 0 <k <a—1, (A = AX(2) = 753300

a<r<B,and S(A\—XX(z)) = % in (5.65)-(5.66) after some simplification one

can get

[o¢]
d Phem = ,a<r<B. (5.67)
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Where L,(z) and D,(z) are polynomials of degree u, and d,, respectively, and D,(z) is
monic. Now partial fraction method is applied to (5.67) for obtaining the joint probabil-
ities P, (n > 0,a < r < B). Since, (5.67) is analytic in |z| < 1, therefore, the zeros
of D,(z) (a < r < B) lying inside and on the unit circle |z] = 1 do not play any role in
getting P, (n > 0,a < r < B). Hence, in order to obtain all the joint probabilities P,
(n > 0,a <r < B), it is necessary to know about all the zeros of D,(z) (a < r < B) of

modulus greater than one. Let v1,,72,, ..., 7, » be the zeros of D, (z) of modules greater

than one with multiplicity 71, 72y, ..., 71, r, respectively, such that > 7, < d,. Following
j=1
two cases may arise now.

Case I : d, < u,
Applying the partial fraction method to the right hand side of (5.67) the following expres-

sion is obtained

[ele} ly Tjr
> Pt = Z iz +ZZ J;ﬂ 1 (5.68)
n=0 j=1

=1
where
B = 1 [ d! (LT(Z);IZYJTT (2 = )" T>} (5.69)
Lg,r — 7~ i—1 = ) .
(i =1t dz dci#j,r (Dr(2)) 2=Yjr

a<r<B,j=1,2 .0, i=1,2 .7

)

Accumulating the coefficients of 2" (n > 0) from both side of (5.68), one can get for
a<r<B,

l'r Tjﬂ‘ .
B'L, j, 7 jr—t+
<9n - gjl ; H),jﬂﬂfy PRSI (Tﬂ;j,rii")>, 0<n<u —d,
Pl = I r (5.70)

n,r T
| 5 5 () n>u—d
_1+1 TJ rtn—i+l1 T]',T—i bl T T

]121(1]T Vi

Case II : d, > u,
Removing the first summation term of the right hand side of (5.68), for a < r < B, one

can obtain

r Thr ) +

Tir — 1 n

- Bijr (T, om0 (5.71)

i TJ T—H—l,yTJ b=t Tjr — &
Jj=li= Jr ’



Chapter 5. MX/Ggﬂa’Y)/l queue SV(MV) and SOS 127

Equation (5.70) [or (5.71)] gives the joint probabilities of queue and server content at

service completion epoch.

Theorem 5.7.

n
= @) Plagni,n>0a<r<B (5.72)

Proof. Using (5.34), and collecting the coefficients of y" (a < r < B) from both the side
of (5.53) one can get

i W, 2" = Z P aM,, (5.73)
n=0

Using (5.43) in the above expression and collecting the coefficients of 2™ (n > 0) the desired

outcome is obtained. O

Thus the evaluation of the joint probabilities of queue and server content at service (FES
and SOS) completion epoch and the joint probabilities of queue length and type of vacation

at vacation termination epoch complete here.

5.3.3 Joint probabilities at arbitrary epoch

In the previous section the joint probabilities of the queue and server content at service
(FES and SOS) completion epoch, as well as the joint probabilities of the queue size and
the type of vacation at vacation termination epoch have been successfully achieved. In
this section, the main objective is focused for getting the joint probabilities at arbitrary

epoch.
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Theorem 5.8. The probabilities R, (0 <n <a-—1), P,, (Wy,)(n>0,a <r <B) and

w (n>k,0<k<a-—1) are given by,

n
> enmQm

R, = %, 0<n<a-1 (exist only for SV),

B
@QF+Pf1-a)+ WMZ yi)+

a—1 a—1
=)D D emngr-mQl Zyz Py,
Py, = P , 20,
(Qn—l-r n—i—'r(l - Oé) + w, +r)yT+
— a—1
n (1-9) Z Q:_n Z €j,mIn+r—jlYr — Pr—:r
-0 =
Por = > Pujugi+ = — :

n>1,a<r<B,

QL’“] = E , 0<k<a-1,
n—k [+

QM = > aQi - nzk+l,0<k<a-1,
=1
Proa—W;

Wo, = —2 0 4 <r<B

’ E

- Pra—W}

Wiy = ZWn—j,rngr%,nzl,aSrSB

a—1 n
where E=Af+ (1-108) > > enmQ;,
n=0m=0

o 3 (B o)+ Wi +Q8) S s+ (P (1 a) + Wi+ Qs

n=B+1

B n—1 B
+ X (P —a)+ W+ QF) (X wisi + X visn)

n=a+1

a—1 a—1 B B
+z[wmuﬂwww%+u—®zamm<zwmz%m
n=0 m=n r=a i=r

B

+ Z Z gr—m—i—lQer) + 5Q7erl'n:|

l=1r=a

o0
+ > Plca
n=0

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)
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Proof. Dividing (5.1) by 0! and using Lemma 5.1, Lemma 5.2 and (5.29), one can obtain

a—1
(1 - ZO RVL)Q(J]r
Ry = Y
Similarly, from (5.49), one have
a—1 n m
(1= R) > > enm@n
Rn: =0 m=0 k=0 0<n<a-l1.

A 9
Using (5.81) in (5.82), one can obtain
’I’L Zzean +, O<n<a_1
0 m=0 k=0

Using (5.83) in (5.81) after some algebraic manipulation, one can obtain

+
Ry = QO
(k4
Af+ Z Z Z en,mEm
n=0m=0 k=
Using (5.84) in (5.83), one can obtain
Z enm@rm,
R, = , 0<n<a-1.
Af+ Z Z el,JQ+
J=01=j

Setting =0 in (5.18)-(5.23), one can get

a—1 B B

APy = D QMO i+ (Prj(0)(1 — @) + Wi (0 Z?Jl
k=0 i=r j=a
+(1 - 5))‘ZRJ'9T*J' Zyz —Pyr(0), a+1<r<B,

n B
APy =AY Pujirgy + ) (Pairj(0)(1 = @) + Wi (0))yr + Z Quti(0)
j= j= k=0
a—1
+)\ZRjgn+r,jyr —P,r(0), n>1, a<r<B-1,
=0

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)



Chapter 5. MX/Gﬁa’Y)/l queuwe SV(MV) and SOS 130

Q) = i(zﬂk,rw)(l — @) + Wi, (0 +5ZQ“] (0),
i 0<k<a-—1,(588)
QI — )\Zgz Ko _QH0), n>k+1, 0<k<a-1. (5.89)
AW, = PO,T( Ja — Wor(0), a<r<B (5.90)
AWy, = /\Zn: Wi_irgi + Poy(0)a — W, (0), n>1,a<r<B (5.91)
j=1

Dividing (5.86) by o~ !, respectively, and then using Lemma 5.1, Lemma 5.2, (5.25) and
(5.29), the following expression is obtained

a—1 B
(1-1=8)) R)((BQ-a)+ W +Q1) ) i
=0 i=r
a—1 a—1
E:jE:Eﬁ mean? E:Zh }F}
_ n=0m=n
Py, = Y (5.92)

Using (5.82) in (5.92), equation (5.75) is obtained.

Applying similar process to (5.87), (5.88), (5.89), (5.90), and (5.91), respectively, after
some algebraic manipulation desired results (5.76), (5.77), (5.78), (5.79), and (5.80) are
obtained. ]

5.4 Marginal Probabilities

In this section, some important marginal probabilities are presented that can be derived

from the steady state joint probabilities obtained in the previous section.

1. Queue length distribution is given by,

B n

(1=8)Rn+ X (Par+War)+ 2 QM 0<n<a—1,
puete = & o r=a . k=0
Z(Pn,T+Wn7r)+ ZQ%], nZa.

r=a k=0
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2. System length distribution is given by,

(

- lk]
Rn"‘ZQn ,0<n<a—-1,
k=0 L
n a—
Pnsystem = Z (Pnfm,m + anm,m) + Z Q%f]a a<n< 37
m=a k=0
B a—1 (k]
E (Pnfr,r + anr,r‘) + Z Qn’s, n>B+1.
=a k=0

T

3. The server content distribution, when the server is busy in FES, is given by,

S P,
FESsr=—1=0___ (4 <r<B).

B oo

> > Par

r=a n=0

4. The server content distribution when the server is busy in SOS, is given by,

5> W
s (a<r<B).
r;a z*:OM/TL’T

5. The server content distribution when the server is busy, is given by,

> (Par A War)
, (a<r <B).

6. The distribution of the type of vacation, when the server is on vacation, is given by,

> QY
M=t 0<k<a-1
> Qi
=0 n=1
a—1
7. The probability that the server is in a dormant state, is given by, P4"=(1—-§) 3_ R,.
n=0
oo B
8. The probability that the server is busy, is given by, Pyyey=>_ > (Puyr + Wyy).
n=0r=a

oo min(n,a—1) .
9. The probability that the server is on vacation, is given by, Quac= > > Q,[l].
n=0 k=0

10. The probability that the server is idle, is given by Pige=(1 — 6)P%" 4+ Quac-

5.5 Performance measure

Performance measure is the values that collects the information of the system and helps the
manager to run the system smoothly. Since all the steady state probabilities are known,
the present section presents some important performance measures of the model under

consideration.
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1. The expected number of customers in the queue (L ) is given by

a—1 00 a—1
Lq=(1—5)ZnR +ZZ n( m+Wm)+Z ZnQ[k]_( 5) S npIene
n=0 n=0r=a n=0
Z nPgueue.
n=a—da

2. The expected number of customers in the system (L) is given by

a—1 co B a—1 oo
Li=1-96) > nRy+ > > (n+7)(Pop+Wyr)+ > > nQM
n=0 n=0r=a k=0 n=~k

3. The expected waiting time of a customer in the queue (W) is given by

_Lq
We=%5

4. The expected waiting time of a customer in the system (Wj) is given by
— Ls
Ws = 3%

5. Expected number of customers with the server when server is busy in FES (Ljfeg) i

given by
B
ser rzz:a(rpn T)
Lfes = o) b :
2 2 P
m=0j=a

6. Expected number of customers with the server when server is busy in SOS (L:5;) is

given by
B
ser TZG(TW’R T)
LSOS = oo_ b
2 2 Wi
m=0j=a

7. Expected number of customers with the server when server is busy (L*¢") is given
by
B
LSGT — Z (TPﬁeT)‘

r=a
8. Expected type of vacation taken by server when server is in vacation ( LV%¢) is given
by
a—1
k
12 = 5 (kQude)-

k=0
5.6 Numerical results

Table 5.1 and Table 5.2 present the steady state joint probabilities at service (FES and
SOS) completion, vacation completion and arbitrary epoch for M/ G&a’y) /1 queue with
SOS and SV. Service time for both the FES and SOS follow the Erlang (E3) distribu-

tion, and vacation time follows Fo distribution. The other input parameters are taken
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as A=26.098, u, = @ (4<r<7),pn=175 and vy = vp_1 + 2.35 where 1y = 1.01

(1 <k<3). g1 =045 g2 =0.20, g3 =0.35, 9, =0 (n >4). ys = 0.2, y5 =0, y6 = 0,
y7 = 0.8. The detail of Table 5.1 is given as follows:

e The 1st column presents the number of customers present in the queue (excluding
the number in service).

e 2nd to 5th column present the joint probabilities of the queue and server content at

service (FES) competition epoch.

e Gth to 9th column present the joint probabilities of the queue and server content at

service (SOS) competition epoch.

e The 10th to 13th column presents the joint probabilities of the queue length and

type of vacation at the vacation termination epoch.
e 14th column presents the queue length distribution at service or vacation completion
epoch.
The detail of Table 5.2 is given as follows:
e The 1st column presents the number of customers present in the queue (excluding
the number in service).
e 2nd column presents the queue length probability during server’s dormant period.

e 3rd to 6th column present the joint probabilities of queue and server content during

FES at arbitrary epoch.

e 7th to 10th column present the joint probabilities of queue and server content during

SOS at arbitrary epoch.

e 11th to 14th column present the joint probabilities of queue length and type of

vacation at arbitrary epoch.
e Last column presents the queue length distribution at arbitrary epoch.

e Performance measure (viz., Ly, Ly, Wy, etc.) can be seen just below the table.

Similarly, Table 5.3 presents the steady state joint probabilities at service (FES and SOS)
completion epoch and vacation completion epoch, and Table 5.4 presents the steady state
joint probabilities at arbitrary epoch for M/ G&a’y) /1 queue with SOS and MV. The input
parameters, notations, and the service (vacation) time distribution are taken the same as
taken for Table 5.1 and for Table 5.2.
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TABLE 5.1: Steady state joint probabilities for .\EX\QTL\V\H queue with SV and SOS at service (vacation) completion epoch

n| Ph OB PR PR wil ] wih T wik ] wii ] Q] o] QT o [P + @f
0[0.0038]0.0024[0.0021]0.0016]0.0003] 0.0002] 0.0002] 0.0001 | 0.0000 [ 0.0000|0.0000[0.0000|  0.0109
110.0025|0.0013|0.0012[0.0027|0.0004|0.0002 0.0002 0.0003 | 0.0000|0.0003|0.0000|0.0000|  0.0091
2(0.0025(0.0010|0.0010{0.0037|0.0004|0.0002| 0.0002| 0.0005 | 0.0000| 0.0002| 0.0007 |0.0000| ~ 0.0105
3/0.0034(0.0015(0.0016]0.0051|0.0007| 0.0003|0.0003 | 0.0008 |0.0001 |0.0002|0.0004|0.0015| 00158
4/0.0030{0.0010{0.0011|0.0062|0.0007| 0.0003| 0.0003| 0.0010|0.0001 |0.0003| 0.0004|0.0008| ~ 0.0152
5(0.0030|0.0008|0.0009|0.0071|0.0007|0.0003{0.0003|0.0013|0.0001 | 0.0003| 0.0006|0.0007|  0.0160
15]0.0029|0.0000{0.0001|0.0108| 0.0009| 0.0001 |0.0001 |0.0031 |0.0001 |0.0002|0.0002|0.0003| ~ 0.0186
16]0.0028|0.0000{0.0001|0.0107|0.0009| 0.0000| 0.0001 | 0.0031 |0.0001 |0.0002|0.0002|0.0002| ~ 0.0185
29/0.0022|0.0000 00000 |0.0085|0.0007 | 0.0000{0.0000{0.0027 |0.0001 [0.0001 |0.0000|0.0000|  0.0143
30/0.0021 |0.0000|0.0000 |0.0083 |0.0007 |0.0000{0.0000{0.0027 0.0001 [0.0001 | 0.0000|0.0000|  0.0139
31/0.0021 |0.0000|0.0000 |0.0081 | 0.0007 | 0.00000.0000{0.0026 0.0001 [0.0001 | 0.0000|0.0000|  0.0136
51/0.0012|0.0000 00000 0.0047 |0.0004|0.0000{0.0000{0.0015|0.0001 |0.0000|0.0000|0.0000|  0.0080
52/0.0012|0.0000 |0.0000 |0.0046 |0.0004|0.00000.0000{0.0015 0.0001 [0.0000{0.0000{0.0000|  0.0077
750.0006 |0.0000 |0.0000 [0.0024|0.0002|0.0000{0.0000{0.0008 |0.0000|0.0000|0.0000|0.0000|  0.0041
76/0.0006 |0.0000 00000 0.0023 | 0.0002|0.00000.0000|0.0008 |0.0000|0.0000|0.0000|0.0000|  0.0039
77/0.0006 |0.0000 |0.0000 | 0.0023 | 0.0002|0.00000.0000{0.0007 | 0.0000|0.0000|0.0000|0.0000|  0.0038
135[0.0001 [0.0000{0.0000|0.0004|0.0000|0.0000|0.0000|0.0001 | 0.0000|0.0000|0.0000{0.0000{  0.0007
136{0.0001 [0.0000{0.0000|0.0004|0.0000|0.0000|0.0000|0.0001 | 0.0000{0.0000{0.0000|0.0000|  0.0006
155[0.0001 0.0000{0.0000|0.0002|0.0000|0.0000|0.0000|0.0001 | 0.0000{0.0000{0.0000|0.0000|  0.0004
156{0.0001 0.0000{0.0000|0.0002|0.0000|0.0000|0.0000|0.0001 | 0.0000{0.0000{0.0000|0.0000|  0.0003
197[0.0000{0.0000{0.0000|0.0001 | 0.0000|0.0000|0.0000|0.0000{0.0000|0.0000{0.0000|0.0000|  0.0001
198(0.0000{0.0000{0.0000|0.0001 |0.0000|0.0000|0.0000|0.0000{0.0000|0.0000{0.0000|0.0000|  0.0001
212(0.0000{0.0000{0.0000|0.0000|0.0000| 0.0000|0.0000|0.0000 |0.0000 |0.00000.0000{0.0000| ~ 0.0001
213/0.0000{0.0000{0.0000|0.0000|0.0000| 0.0000|0.0000 0.0000 |0.0000 |0.0000 | 0.0000|0.0000| ~ 0.0001
> 214/0.0000|0.0000|0.00000.0000{0.0000{0.0000|0.0000{0.0000|0.0000|0.0000|0.0000|0.0000|  0.0000
sum|0.15960.0107|0.0118|0.56250.0479] 0.0032[0.0035|0.1687|0.0079|0.0065| 0.0071 [0.0102|  0.9996
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TABLE 5.3: Steady state joint probabilities for ix\QmPS\H queue with MV and SOS at service

(vacation) completion epoch

n| Ph| Prs| Pl Pl W wils] wile[ wi| @] Qi ] ot o
0[0.0035{0.0023|0.0020{0.0017{0.0003|0.0002 |{0.0002{0.0001|0.0000|0.0000 | 0.0000|0.0000 0.0104
1]0.0023{0.0012]0.0012|0.0028|0.0003|0.0002|0.0002|0.0003 |0.0000{0.0003|0.0000 | 0.0000 0.0089
2/0.002410.0010{0.0010{0.0038]0.0004|0.0002|0.0002|0.0005|0.0000|0.0002 | 0.0007|0.0000 0.0104
3(0.0032{0.0015|0.0015]0.0052{0.0006|0.0003 |0.0003 | 0.0008 |0.0001 {0.0002|0.0005 |0.0018 0.0160
4(0.0029{0.0010|0.0011}0.0064 |0.0007|0.0003 {0.0003{0.0011|0.0001 |0.0003|0.0004 |0.0010 0.0155
5/0.0029]0.0007{0.0009(0.0074|0.0007{0.0003 |0.0003|0.0013|0.0001 |0.0003 | 0.0006 | 0.0009 0.0164
15]0.002910.0000{0.0001|0.0111{0.0009{0.0000|0.0001 |0.0032{0.0001|0.0002|0.0002|0.0003 0.0192
1610.002910.0000{0.00010.0110{0.0009{0.0000|0.0001|0.0032{0.0001|0.0002|0.0002|0.0003 0.0190
2910.0022|0.00000.0000{0.0085|0.0007|0.0000|0.0000{0.0027{0.0001 | 0.0001|0.0000 |0.0000 0.0144
3010.0021|0.00000.0000{0.0083|0.0007|0.0000{0.0000{0.0027{0.0001 |{0.0001|0.0000|0.0000 0.0140
3110.0021|0.0000|0.00000.0081|0.0007|0.0000|0.0000{0.0026 {0.0001 {0.0001|0.0000|0.0000 0.0137
5110.0012|0.00000.0000{0.0046|0.0004|0.0000{0.0000{0.0015|0.0001 {0.0000{0.0000|0.0000 0.0078
52(0.0011|0.0000|0.0000{0.0045|0.0004|0.0000|0.0000{0.0015|0.0001 | 0.0000{0.0000 |0.0000 0.0076
7510.0006|0.0000|0.0000{0.0023|0.0002|0.0000|0.0000{0.0008 {0.0000 | 0.0000{0.0000 |0.0000 0.0039
7610.0006|0.0000|0.00000.0023|0.0002|0.0000|0.0000{0.0007|{0.0000 |0.0000{0.0000|0.0000 0.0038
135(0.0001{0.0000|0.0000{0.0004 |0.0000{0.0000{0.0000{0.0001|0.0000|0.0000|0.0000{0.0000 0.0006
136(0.0001{0.0000|0.0000|0.0004 |0.0000{0.0000{0.0000{0.0001|0.0000|0.0000|0.0000{0.0000 0.0006
155(0.0001{0.0000|0.0000 |0.0002|0.0000{0.0000 |{0.0000{0.0001|0.0000|0.0000 | 0.0000{0.0000 0.0003
156{0.0000{0.0000|0.0000{0.0002|0.0000{0.0000|0.0000{0.0001|0.0000|0.0000|0.0000{0.0000 0.0003
211{0.0000{0.0000{0.0000|0.00000.0000|0.0000|0.00000.0000{0.0000{0.0000|0.0000 |0.0000 0.0001
212{0.0000{0.0000{0.0000|0.00000.0000|0.0000|0.00000.0000{0.0000{0.0000|0.0000 |0.0000 0.0001
> 213{0.0000{0.0000|0.0000 |0.0000{0.0000{0.0000 |{0.0000|0.0000|0.0000|0.0000 | 0.0000|0.0000 0.0000
sum|0.1581{0.0102{0.0114|0.5625|0.0474|0.0031|0.0034|0.1687{0.0075|0.0066|0.0080|0.0126 0.9996
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5.6.1 Deduction of the results for M/M/1 queue

The model considered in this chapter reduces to the classical M /M /1 model when a = 1,
B=1,X(2)=zie,91=1,9,=0(n>2), yg =1, a = 0, service time is exponentially
distributed and vacation rate is taken considerably large. Table 5.5 and Table 5.6 give the
values of Ly, W,, L**" and P;q. which are obtained for M /M /1 model for following two

cases.

Case I: Results for M/M/1 model deduced from the analytical results presented in this
chapter by considering a = 1, B =1, X(2) = z,ie, 91 =1, 9, =0 (n > 2), yp = 1,
a = 0, exponential service time distribution and vy — oo (9 = 200000).

Case II: Results for classical M /M /1 model, for which performance measures Ly, W and

A2 1
Wy =

p1(pi—A)’ p1—A and

probability P,q. are calculated using standard formula L, =

Pige=1—p.

The following details are provided for Table 5.5 and Table 5.6.

e 1st and 2nd column present the values of the input parameters A and 1, respectively,
for which p varies from 0.4375 to 0.875.

e 3rd, 4th, 5th and 6th column present the values of L,, W, L*" and P,q., respectively,

for Case I.

e 7th, 8th and 9th column present the values of L,, W, and Pig., respectively, for
Case II.

It is clearly observed from Table 5.5 and Table 5.6 that the results deduced from current
study as a special case matches exactly with the results obtained from classical M/M/1
model. Also, the value of L*¢" calculated from the current study as a special case always

gives the value 1 which is obvious and shows the correctness of present study.

TABLE 5.5: Table for Case I and Case II, for SV

Case 1 Case 11
A M1 Lq Ws Leer -Pidle Lq Ws Pidle
3.5 4 | 6.1249997| 1.9999999 | 1.0000000/ 0.1250000 | 6.1250000 2.0000000 | 0.1250000
3.5 6 | 0.8166667 | 0.4000000| 1.0000000f 0.4166667 | 0.8166667 0.4000000 | 0.4166667
3.5 8 | 0.3402778 | 0.2222222| 1.0000000/ 0.5625000 | 0.3402778 0.2222222| 0.5625000
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TABLE 5.6: Table for Case I and Case II, for MV
Case 1 Case 11
A M1 Lq W, Lser Piale Lq W, Piie
3.5 4 | 6.1250000 | 2.0000000| 1.0000000; 0.1250000| 6.1250000 2.0000000 | 0.1250000
3.5 6 | 0.8166700| 0.4000000| 1.0000000| 0.4166700| 0.8166667 0.4000000 | 0.4166667
3.5 8 | 0.3402800 | 0.2222200| 1.0000000| 0.5625000 | 0.3402778 0.2222222 | 0.5625000

5.7 Cost model

A cost model is also presented in this section which helps the manager to determine the
optimal value of desired input parameters. The following cost parameters are taken for
this purpose.

Cs= Startup cost per customer per unit time.

Cp= Holding cost per customer per unit time when the server is busy.

C,= Holding cost per customer per unit time when the server is on vacation.

Cy= Holding cost per customer per unit time when the server is dormant (exists only for
SV).

Ctes= Operating cost per customer per unit time when the server is busy in FES.

C,s= Operating cost per customer per unit time when the server is busy in SOS. Thus in

long run
LW oo min(n,a—1) [k]
Total System Cost (TSC) = M\C4q +C s nr) + C, -
Y ( ) ! ’ 7;) ; Pbusy Z Z Qvac
a—1 R
+(1—6)Cy Z_%npdm, + Ces L7, + Cos L35k

Figure 5.1 reflects the behavior of TSC for different values of a (1 < a < 10) for SV and

for A=3.5 and 7.5. The maximum capacity is fixed at B = 10. Service time follows a 2 -

stage hyper exponential distribution with service rate p,; = %j, (a<r<B,j=12)
9 -1
and p, = (E /O:jr) where @1, = 0.6 and &z, = 0.4, (a < r < B). Vacation time
j=1"""

follows Fs distribution with vacation rate vy = 51 +0.5 (1 <k < a—1) where vy = 1.2.
Service time for SOS follows exponential distribution with rate 4 = 3.5. The other input
= 0.65, g2 = 0.25, g3 = 0.10, g, = 0 (n > 0),

1 and @ = 0.25. The cost parameters are as follows:

parameters are considered as follows g1
yr =0(a <r < B-1), yp =
Csq =02,Cp=2.0,C, =25, Cqg=1.0, Cfes = 4.2 and Cys = 3.2. From this particular

example, for A = 3.5 (7.5) the optimum value for a is 2 (3) and the corresponding minimum
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value of TSC is 59.462 (101.277). Similarely, Figure 5.2 depicts the behavior of TSC for
different values of a (1 < a < 10) for MV and for A=3.5 and 7.5. The input parameters,
cost parameters and the service (vacation) time distribution are taken the same as for
Figure 5.1. For A = 0.5 (0.9), the optimum value for a is 2 (4) and the corresponding
minimum value of TSC is 59.482 (99.869). The minimum values of TSC, in each figure,

are indicated by arrow sign.

120

120 A 17,6693 —m3-35 1149517
—m— =35 1142305 __—® - 118102
— e 1-175 107247 _ e & 1=15 1na.501/1//‘/

- 110
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100

TSC
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a
FIGURE 5.1: Effect of @ on TSC for SV FIGURE 5.2: Effect of @ on TSC for
MV

5.8 Conclusion

In this chapter, the infinite buffer bulk arrival batch size dependent bulk service queue and
the queue length dependent SV (MV) with second optional service has been analyzed. The
server operates the customer according to the (a,Y’) rule. The fundamental mathematical
analysis of the model includes mainly the supplementary variable technique and bivariate
generating function technique. The considered model analyzed for the joint probabilities
of the queue and server content at service completion (arbitrary) epoch and the joint
probabilities of queue length and type of vacation at vacation termination (arbitrary)
epoch. Practical motivation and the numerical behavior of the considered model are also
provided to validate the considered model in real life congestion control. The present

model can be generalized with a more general arrival process (viz., BM AP).
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