
Chapter 5

Analysis of MX/G
(a,Y )
r /1 queue

with second optional service and

queue length dependent single and

multiple vacation

5.1 Introduction

The concept of second optional service (SOS) was proposed by Madan [10]. He analyzed

the M/G/1 queueing model using SVT. Later, many researchers have analyzed different

queueing models with SOS, see, e.g., Medhi [111], Al-Jararha and Madan [112], Wang

[113], and Choudhury and Tadj [114]. There are few literatures available on bulk queues

with SOS, e.g., Ayyappan and Supraja [119], Singh et al. [120] , Ayyappan and Deepa [97],

etc., and references therein. Ayyappan and Supraja [119] analyzed MX/G(a,b)/1 queue

with unreliable server, second optional service, two different vacations, and restricted

admissibility policy and obtained the queue length distribution at random and departure

epoch using the SVT. Singh et al. [120] analyzed bulk arrival queue with different m-

SOS, vacation, and unreliable server using SVT. Ayyappan and Deepa [97] considered

MX/G(a,b)/1 queue with SOS, MV, and setup time. They obtained the PGF of the queue

size at different epochs using SVT. To the best of the author’s knowledge, the considered

model, i.e., MX/G(a,Y )/1 queue with SOS and queue length dependent SV and MV, has
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not been analyzed so far in the literature that analyzes the joint probabilities of queue and

server content for FES (SOS) at the service completion (arbitrary) epoch as well as joint

probabilities of queue content and type of vacation at the vacation termination (arbitrary)

epoch.

5.1.1 Practical motivation

Queueing models with SOS can be applied in many areas, viz., barber shop, malls, etc.

Considered model may be used to model blood sample testing in an epidemic situation

such as COVID-19, as batch service queues have efficacious application in blood pooling,

see, e.g., Abolnikov and Dukhovny [15], Bar-Lev et al. [13], and Claeys et al. [17]. In an

epidemic (viz., COVID-19), the health administration of any country wants to test more

and more samples using less number of kits. Hence, a mixed sample is used for testing

by taking a group of samples from the queue, see the references [124, 125, 126]. Further,

in a pandemic situation handling the health workers’ shortage is also a big challenge. To

deal with such situation, the health administration may provide some additional work to

the health workers (viz., visiting the quarantine room, stocking the health care inventory,

making people aware of the epidemic) when they have no primary work.

Suppose that a large number of samples arrive at the health department in bulk for testing

from different sectors, then the health worker tests these samples in batches, termed as

FES, according to the (a, Y ) rule with batch size dependent service. After FES, if the

mixed sample diagnosed negative then the health worker decides how many samples will be

mixed for the next test with a certain probability. For example, the health administration

instructs the health worker that if the mixed sample is found negative, select the batch

of maximum capacity for the next test, otherwise, choose the batch size of its minimum

capacity. Therefore, (a, Y ) rule is justified here. After FES, if the mixed sample diagnosed

positive then the sample go for the SOS to identify the infected sample.

Further, in the absence of primary work (which includes FES and SOS), the health worker

does some additional work (viz., stocking of health care inventory, increase people aware-

ness, visiting the quarantine room, etc.). Before going for this additional work, the health

worker always checks the queue size, and depending on the queue size, he fixed his return-

ing time in the primary system. Hence, the QSDV policy rule may have a wide impact on

the system’s performance. The practical application discusses above motivate us to work

on this problem.
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Section 5.2 presents the model description of the considered model. In Section 5.3, joint

probabilities of queue and server content as well as queue length and type of vacation

obtained at different epoch. Some marginal distributions are presented in Section 5.4.

The various important performance measures are presented in Section 5.5. The behavior

of the system is discussed by means of tables and graphs in Section 5.6. Section 5.7

presents a cost model. The whole study ends with the conclusion (i.e., Section 5.8).

5.2 Model description

The present chapter investigates infinite capacity bulk arrival, batch size dependent bulk

service queue with SOS, queue size dependent single (multiple) vacation. Here below is

the detail mathematical description of the model.

The customers are coming in packets (groups) following the Poison distribution with rate

λ. Let G be the size of the arriving group with probability mass function P (X = m) = gm,

m ∈ N associated with finite mean E(X) = g̃ and PGF X(z) =
∞∑
i=1

giz
i. The customers are

served in batches according to the VBS rule, i.e., (a, Y ) rule, where the random variable

Y , denoting service capacity, has the following probability mass function,

Pr(Y = i) =

yi, a ≤ i ≤ B

0, otherwise.

Here B is the maximum serving capacity of the server with yB > 0 and E(Y ) = ỹ. At

each service initiation epoch if the queue length lies in [a, i) (where i is the chosen service

capacity at the service initiation epoch) then server does not wait for the queue length to

reach i, but it takes entire customer for the service with probability yi, and if the server

finds the queue length ≥ i then it takes only i customers for the service with probability

yi. The service (FES) time (Tr), of a batch of size r (a ≤ r ≤ B) is generally distributed

along with probability density function (pdf) sr(t), distribution function (DF) Sr(t), the

Laplace-Stieltjes transform (LST) S̃r(θ) and the mean service time 1
µr

= sr = −S̃(1)
r (0)

(a ≤ r ≤ B), where S̃
(1)
r (0) is the derivative of S̃r(θ) evaluated at θ=0. After first essential

service (FES) the served batch may choose second optional service (SOS) with probability

α. The optional service time (T̂ ) of a batch is generally distributed along with probability

density function (pdf) s(t), distribution function (DF) S(t), the Laplace-Stieltjes transform

(LST) S̃(θ) and the mean service time 1
µ = ς = −S̃(1)(0), where S̃(1)(0) is the derivative

of S̃(θ) evaluated at θ = 0. After FES if the queue length is found to be less than the
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minimum threshold limit a and the batch served in FES does not choose SOS then the

server goes for the kth type of vacation where k (0 ≤ k ≤ a − 1) is the queue length at

vacation initiation epoch, similarly, after SOS if the queue length is found to be k < a

then the server goes for kth type of vacation . At the end of the vacation if the queue

length is ≥ a then it serves the customer as per the (a, Y ) rule, otherwise, depending on

the vacation policy the server remains in the system at dormant state until queue length

reaches at least the minimum threshold limit a or takes repeated vacation until it finds

queue length ≥ a at the end of the vacation. Vacation time Vk of the kth type of vacation

obeys general distribution with pdf vk(t), DF Vk(t), LST Ṽk(θ). The mean vacation time
1
νk

= xk = −Ṽ (1)
k (0) where Ṽ

(1)
k (0) is the derivative of Ṽk(θ) at θ = 0. The traffic intensity

of the system ρ =
λg̃

B∑
i=a

yi
µi

+λg̃ α
µ

ỹ (< 1) which ensures the stability of the system. In this

chapter, SV and MV queues have been studied in an unified way by defining a variable δ

as follows:

δ =

1, for MV,

0, for SV.

5.3 System analysis

This section is devoted in obtaining the joint probabilities of the queue length and server

content at the service (FES and SOS) completion epoch and the joint probabilities of the

queue size and the type of vacation at the vacation termination epoch. Later the joint

probabilities of the queue and server content are obtained during FES (SOS) and the joint

probabilities of queue length and type of vacation at an arbitrary epoch by relating it to

the joint probabilities at service completion and vacation termination epoch. From this

perspective, the following random variables, at time t, are defined as follows:

• Nq(t): be the number of customers in the queue.

• S1(t): be the number of customers with the server when the server is busy in FES.

• S2(t): be the number of customers with the server when the server is busy in SOS.

• K(t): be the type of vacation taken by the server, when the server is on vacation.

• U(t): remaining service (FES) time of the batch, if any.

• Û(t): remaining service (SOS) time of the batch, if any.
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• V (t): remaining vacation time of the server, if any.

Point to be noted here that S1(t) = 0 and S2(t) = 0 will represent the server is in the

dormant state at time t (for the case of SV).

For SV, {
(
Nq(t), S1(t) = 0, S2(t) = 0

)
} ∪ {

(
Nq(t), S1(t), U(t)

)
} ∪ {

(
Nq(t), S2(t), Û(t)

)
} ∪

{
(
Nq(t),K(t), V (t)

)
} forms a Markov chain with state space {(n, 0, 0); 0 ≤ n ≤ a −

1}
⋃
{(n, r, u);n ≥ 0, a ≤ r ≤ B, u ≥ 0}

⋃
{(n, k, u); 0 ≤ k ≤ a− 1, n ≥ k, u ≥ 0}.

For MV, {
(
Nq(t), S1(t), U(t)

)
} ∪ {

(
Nq(t), S2(t), Û(t)

)
} ∪ {

(
Nq(t),K(t), V (t)

)
} forms a

Markov chain with state space {(n, r, u);n ≥ 0, a ≤ r ≤ B, u ≥ 0}
⋃
{(n, k, u); 0 ≤ k ≤

a− 1, n ≥ k, u ≥ 0}.

Define the state probabilities, at time t, as

• Rn(t) ≡ Pr{Nq(t) = n, S1(t) = 0, S2(t) = 0}, 0 ≤ n ≤ a− 1 (exist only for SV).

• Pn,r(u, t)du ≡ Pr{Nq(t) = n, S1(t) = r, u ≤ U(t) ≤ u+ du}, n ≥ 0 , a ≤ r ≤ B.

• Wn,r(u, t)du ≡ Pr{Nq(t) = n, S2(t) = r, u ≤ Û(t) ≤ u+ du}, n ≥ 0 , a ≤ r ≤ B.

• Q[k]
n (u, t)du ≡ Pr{Nq(t) = n,K(t) = k, u ≤ V (t) ≤ u+ du}, n ≥ k , 0 ≤ k ≤ a− 1.

In steady state, as t→∞, the limiting probabilities are defined as follows.

Rn = lim
t→∞

Rn(t) (0 ≤ n ≤ a− 1), (exist only for SV),

Pn,r(u) = lim
t→∞

Pn,r(u, t), n ≥ 0, a ≤ r ≤ B,

Wn,r(u) = lim
t→∞

Wn,r(u, t), n ≥ 0, a ≤ r ≤ B,

Q
[k]
n (u) = lim

t→∞
Q[k]
n (u, t), n ≥ k, 0 ≤ k ≤ a− 1.

Now the system equation that governs the system behavior is obtained. Analyzing the

system, at time t and t + dt, in steady state, the Kolmogorov equations are obtained as

follows:

0 = (1− δ)
(
− λR0 +Q

[0]
0 (0)

)
, (5.1)

0 = (1− δ)
(
− λRn + λ

n∑
i=1

giRn−i +

n∑
k=0

Q[k]
n (0)

)
, 1 ≤ n ≤ a− 1, (5.2)
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− d

du
P0,r(u) = −λP0,r(u) +

( a−1∑
k=0

Q[k]
r (0) +

B∑
j=a

Pr,j(0)(1− α) +

B∑
j=a

Wr,j(0)

) B∑
i=r

yisr(u)

+(1− δ)λ
a−1∑
j=0

Rjgr−j

B∑
i=r

yisr(u), a ≤ r ≤ B, (5.3)

− d

du
Pn,r(u) = −λPn,r(u) + λ

n∑
j=1

Pn−j,r(u)gj

+

( a−1∑
k=0

Q
[k]
n+r(0) +

B∑
j=a

Pn+r,j(0)(1− α) +
B∑
j=a

Wn+r,j(0)

)
yrsr(u)

+(1− δ)λ
a−1∑
j=0

Rjgn+r−jyrsr(u), a ≤ r ≤ B, n ≥ 1, (5.4)

− d

du
Q

[k]
k (u) = −λQ[k]

k (u) +

( B∑
r=a

Pk,r(0)(1− α) +
B∑
r=a

Wk,r(0)

+δ
k∑
j=0

Q
[j]
k (0)

)
vk(u), 0 ≤ k ≤ a− 1, (5.5)

− d

du
Q[k]
n (u) = −λQ[k]

n (u) + λ
n−k∑
i=1

giQ
[k]
n−i(u), n ≥ k + 1, 0 ≤ k ≤ a− 1, (5.6)

− d

du
W0,r(u) = −λW0,r(u) + P0,r(0)s(u)α, a ≤ r ≤ B, (5.7)

− d

du
Wn,r(u) = −λWn,r(u) + λ

n∑
j=1

Wn−j,r(u)gj + Pn,r(0)s(u)α, n ≥ 1, a ≤ r ≤ B. (5.8)

Further, define for Re θ ≥ 0,

S̃r(θ) =

∫ ∞
0

e−θudSr(u) =

∫ ∞
0

e−θusr(u)du, a ≤ r ≤ B, (5.9)

P̃n,r(θ) =

∫ ∞
0

e−θuPn,r(u)du, a ≤ r ≤ B, n ≥ 0, (5.10)

Pn,r ≡ P̃n,r(0) =

∫ ∞
0

Pn,r(u)du, a ≤ r ≤ B, n ≥ 0, (5.11)

S̃(θ) =

∫ ∞
0

e−θudS(u) =

∫ ∞
0

e−θus(u)du, a ≤ r ≤ B, (5.12)

W̃n,r(θ) =

∫ ∞
0

e−θuWn,r(u)du, a ≤ r ≤ B, n ≥ 0, (5.13)

Wn,r ≡ W̃n,r(0) =

∫ ∞
0

Wn,r(u)du, a ≤ r ≤ B, n ≥ 0, (5.14)

Ṽk(θ) =

∫ ∞
0

e−θudVk(u) =

∫ ∞
0

e−θuvk(u)du, 0 ≤ k ≤ a− 1, (5.15)
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Q̃[k]
n (θ) =

∫ ∞
0

e−θuQ[k]
n (u)du, 0 ≤ k ≤ a− 1, n ≥ k, (5.16)

Q[k]
n ≡ Q̃[k]

n (0) =

∫ ∞
0

Q[k]
n (u)du, 0 ≤ k ≤ a− 1, n ≥ k. (5.17)

One may note here that Pn,r (Wn,r) denotes the probability that there are n (n ≥ 0)

customers are in the queue and server is busy with r (a ≤ r ≤ B) customers during FES

(SOS), at an arbitrary epoch. Also, Q
[k]
n indicates the probability of n (n ≥ k) customers

in the queue and the server is on kth (0 ≤ k ≤ a − 1) type of vacation, at an arbitrary

epoch.

Multiplying (5.3)-(5.8) by e−θu and integrating with respect to u over 0 to ∞ one can

obtain

(λ− θ)P̃0,r(θ) =

( a−1∑
k=0

Q[k]
r (0) +

B∑
j=a

Pr,j(0)(1− α) +
B∑
j=a

Wr,j(0)

) B∑
i=r

yiS̃r(θ)

+(1− δ)λ
a−1∑
j=0

Rjgr−j

B∑
i=r

yiS̃r(θ)− P0,r(0), a ≤ r ≤ B, (5.18)

(λ− θ)P̃n,r(θ) = λ
n∑
j=1

gjP̃n−j,r(θ) +

( a−1∑
k=0

Q
[k]
n+r(0) +

B∑
j=a

Pn+r,j(0)(1− α)

+

B∑
j=a

Wn+r,j(0)

)
yrS̃r(θ) + (1− δ)λ

a−1∑
j=0

Rjgn+r−jyrS̃r(θ)

−Pn,r(0), a ≤ r ≤ B, n ≥ 1, (5.19)

(λ− θ)Q̃[k]
k (θ) =

( B∑
r=a

Pk,r(0)(1− α) +

B∑
r=a

Wk,r(0) + δ

k∑
j=0

Q
[j]
k (0)

)
Ṽk(θ)

−Q[k]
k (0), 0 ≤ k ≤ a− 1, (5.20)

(λ− θ)Q̃[k]
n (θ) = λ

n−k∑
i=1

giQ̃
[k]
n−i(θ)−Q

[k]
n (0), n ≥ k + 1, 0 ≤ k ≤ a− 1. (5.21)

(λ− θ)W̃0,r(θ) = P0,r(0)S̃(θ)α−W0,r(0), a ≤ r ≤ B (5.22)

(λ− θ)W̃n,r(θ) = λ

n∑
j=1

W̃n−j,r(θ)gj + Pn,r(0)S̃(θ)α

−Wn,r(0), n ≥ 1, a ≤ r ≤ B (5.23)

Now the main objective is to obtain the joint probabilities of the queue and server content

during FES (SOS) as well as the joint probabilities of queue length and type of vacation at

an arbitrary epoch, these arbitrary epoch joint probabilities are obtained by establishing

a relationship between the joint probabilities of the queue length and server content at

the service completion epoch, and the joint probabilities of the queue length and type of
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vacation at the vacation termination epoch. Towards this end, define,

P+
n,r = Pr{n customers are in the queue at service (i.e., FES) completion epoch

of a batch of size r}, n ≥ 0, a ≤ r ≤ B, (5.24)

P+
n = Pr{n customers are in the queue at service (i.e., FES) completion epoch}

=
B∑
r=a

P+
n,r, n ≥ 0, (5.25)

W+
n,r = Pr{n customers are in the queue at service (i.e., SOS) completion epoch

of a batch of size r}, n ≥ 0, a ≤ r ≤ B, (5.26)

W+
n = Pr{n customers are in the queue at service (i.e., SOS) completion epoch}

=

B∑
r=a

W+
n,r, n ≥ 0, (5.27)

Q[k]+
n = Pr{n customers are in the queue at kth type of vacation termination epoch},

0 ≤ k ≤ a− 1, (5.28)

Q+
n = Pr{n customers are in the queue at the vacation termination epoch}

=

min(n,a−1)∑
k=0

Q[k]+
n , n ≥ 0. (5.29)

5.3.1 Joint probabilities at service (vacation) completion epoch

The primary objective of this section is to obtain P+
n,r (W+

n,r) (n ≥ 0, a ≤ r ≤ B) and Q
[k]+
n

(0 ≤ k ≤ a− 1, n ≥ k), i.e., the joint probabilities of the queue length and server content

at service (FES and SOS) completion epoch and the joint probabilities of the queue size

and the type of vacation at vacation termination epoch, in this connection the required

bivariate generating functions are defined as follows:

P (z, y, θ) =
∞∑
n=0

B∑
r=a

P̃n,r(θ)z
nyr, |z| ≤ 1, |y| ≤ 1, (5.30)

P+(z, y) =
∞∑
n=0

B∑
r=a

P+
n,rz

nyr, |z| ≤ 1, |y| ≤ 1, (5.31)

P+(z, 1) =
∞∑
n=0

B∑
r=a

P+
n,rz

n =
∞∑
n=0

P+
n z

n = P+(z), |z| ≤ 1 (5.32)

W (z, y, θ) =
∞∑
n=0

B∑
r=a

W̃n,r(θ)z
nyr, |z| ≤ 1, |y| ≤ 1, (5.33)
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W+(z, y) =

∞∑
n=0

B∑
r=a

W+
n,rz

nyr, |z| ≤ 1, |y| ≤ 1, (5.34)

W+(z, 1) =

∞∑
n=0

B∑
r=a

W+
n,rz

n =

∞∑
n=0

W+
n z

n = W+(z), |z| ≤ 1 (5.35)

Q(z, y, θ) =
a−1∑
k=0

∞∑
n=k

Q̃[k]
n (θ)znyk, |z| ≤ 1, |y| ≤ 1, (5.36)

Q+(z, y) =

a−1∑
k=0

∞∑
n=k

Q[k]+
n znyk, |z| ≤ 1, |y| ≤ 1, (5.37)

Q+(z, 1) =
a−1∑
k=0

∞∑
n=k

Q[k]+
n zn =

∞∑
n=0

min(n,a−1)∑
k=0

Q[k]+
n zn

=
∞∑
n=0

Q+
n z

n = Q+(z), |z| ≤ 1. (5.38)

Further, define

m
(r)
j = Pr{j arrivals during the service (i.e., FES) time of a batch size r}, a ≤ r ≤ B, j ≥ 0

=

∫ ∞
0

j∑
l=0

e−λt(λt)l

l!
g
l(∗)
j sr(t)dt, (5.39)

qj = Pr{j arrivals during the service (i.e., SOS) time}, j ≥ 0,

=

∫ ∞
0

j∑
l=0

e−λt(λt)l

l!
g
l(∗)
j s(t)dt, (5.40)

w
(k)
j = Pr{j arrivals during the kth type of vacation }, 0 ≤ k ≤ a− 1, j ≥ 0,

=

∫ ∞
0

j∑
l=0

e−λt(λt)l

l!
g
l(∗)
j vk(t)dt. (5.41)

Where g
l(∗)
j is l-fold convolution function of gj . Define the PGF (probability generating

function) of m
(r)
j , qj and w

(k)
j are as follows

M (r)(z) =

∞∑
j=0

m
(r)
j zj = S̃r(λ− λX(z)), a ≤ r ≤ B, |z| ≤ 1, (5.42)

Mos(z) =

∞∑
j=0

qjz
j = S̃(λ− λX(z)), |z| ≤ 1, (5.43)

N (k)(z) =

∞∑
j=0

w
(k)
j zj = Ṽk(λ− λX(z)), 0 ≤ k ≤ a− 1, |z| ≤ 1. (5.44)
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Lemma 5.1. The probabilities P+
n,r, W

+
n,r, Q

[k]+
n , Pn,r(0), Wn,r(0) and Q

[k]
n (0) (a ≤ r ≤

B, 0 ≤ k ≤ a− 1) are associated with the following relation

P+
n,r = σPn,r(0), (5.45)

W+
n,r = σWn,r(0), (5.46)

Q[k]+
n = σQ[k]

n (0), (5.47)

where σ−1 =
∞∑
m=0

B∑
r=a

Pm,r(0) +
∞∑
m=0

B∑
r=a

Wm,r(0) +
∞∑
m=0

min(m,a−1)∑
k=0

Q
[k]
m (0).

Proof. Since P+
n,r, W

+
n,r, and Q

[k]+
n are proportional to Pn,r(0), Wn,r(0) and Q

[k]
n (0), re-

spectively, applying the Bayes’ theorem and
∞∑
n=0

B∑
r=a

(P+
n,r +W+

n,r) +
∞∑
n=0

min(n,a−1)∑
k=0

Q
[k]+
n =1

the desired outcome is obtained.

Lemma 5.2. The value σ−1 is given by

σ−1 =

1− (1− δ)
a−1∑
n=0

Rn

∞∑
n=B+1

(
P+
n (1− α) +W+

n +Q+
n

) B∑
r=a

yrsr + (P+
a (1− α) +W+

a +Q+
a )sa

+
B∑

n=a+1

(
P+
n (1− α) +W+

n +Q+
n

)( n−1∑
i=a

yisi +
B∑
i=n

yisn
)

+

a−1∑
n=0

[
P+
n xn(1− α) +W+

n xn + (1− δ)
a−1∑
m=n

em,nQ
+
n

( B∑
r=a

gr−m

B∑
i=r

yiµr

+
∞∑
l=1

B∑
r=a

gr−m+lyrµr

)
+ δQ+

n xn

]

+
∞∑
n=0

P+
n ςα

. (5.48)

where en,m =
n−m∑
i=1

gien−i,m, 1 ≤ n ≤ a− 1, 0 ≤ m ≤ n− 1 and en,n = 1 , 0 ≤ n ≤ a− 1

Proof. Using (5.1) and (5.2), the following expression is obtained

λRn =
n∑

m=0

m∑
k=0

en,mQ
[k]
m (0), 0 ≤ n ≤ a− 1. (5.49)
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Using (5.49), summing (5.18)-(5.23), one have

∞∑
m=0

B∑
r=a

(P̃m,r(θ) + W̃m,r(θ)) +
∞∑
m=0

min(m,a−1)∑
k=0

Q̃[k]
m (θ) =

A(θ)

θ
, (5.50)

where

A(θ) =
∞∑

n=B+1

(
B∑
r=a

Pn,r(0)(1− α) +
B∑
r=a

Wn,r(0) +
a−1∑
k=0

Q
[k]
n (0)

)
B∑
r=a

yr(1− S̃r(θ))

+
B∑

n=a+1

(
B∑
r=a

Pn,r(0)(1− α) +
B∑
r=a

Wn,r(0) +
a−1∑
k=0

Q
[k]
n (0)

)(
n−1∑
i=a

yi(1− S̃i(θ))

+
B∑
i=n

yi(1− S̃n(θ))

)
+

a−1∑
n=0

(
B∑
r=a

Pn,r(0)(1− α) +
B∑
r=a

Wn,r(0) + δ
n∑
k=0

Q
[k]
n (0)

)
(1− Ṽn(θ)) +

(
B∑
j=a

Pa,j(0)(1− α) +
B∑
j=a

Wa,j(0) +
a−1∑
k=0

Q
[k]
a (0)

)
(1− S̃a(θ))

+

(
1−

a−1∑
m=n

em,n

(
B∑
r=a

gr−m
B∑
i=r

yiS̃r(θ) +
∞∑
l=1

B∑
r=a

gr−m+lyrS̃r(θ)

))
(1− δ)

a−1∑
n=0

n∑
k=0

Q
[k]
n (0) +

∞∑
n=0

B∑
r=a

Pn,r(0)α(1− S̃(θ)).

Taking θ → 0 in (5.50) and using L’Hôspital’s rule, the normalization condition (1 −

δ)
a−1∑
n=0

Rn +
∞∑
n=0

B∑
r=a

(Pn,r + Wn,r) +
∞∑
n=0

min(n,a−1)∑
k=0

Q
[k]
n =1, after few simplification desired

outcome is obtained.

Lemma 5.3.

W+(z) = P+(z)Mos(z)α. (5.51)

Proof. Multiplying (5.22)-(5.23) by proper power of z and y and summing over the range

of n and r the following result is obtained

(λ− θ − λX(z))W (z, y, θ) =
∞∑
n=0

B∑
r=a

Pn,r(0)αS̃(θ)znyr

−
∞∑
n=0

B∑
r=a

Wn,r(0)znyr. (5.52)

Substituting θ = λ− λX(z) in the above expression and using Lemma 5.1 one have

W+(z, y) =

∞∑
n=0

B∑
r=a

P+
n,rαMos(z)z

nyr. (5.53)
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Setting y = 1 in (5.53) and using (5.25) and (5.32) desired result (5.51) is obtained.

Lemma 5.4.

W+
n = α

n∑
i=0

P+
i qn−i, n ≥ 0, a ≤ r ≤ B (5.54)

Proof. Using (5.34), (5.32), and (5.43) and then collecting the coefficients of zn (n ≥ 0)

from both the side of (5.51) desired outcome (5.54) is obtained.

Lemma 5.5.

Q+(z) =

a−1∑
k=0

∞∑
n=k

Q[k]+
n zn =

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )N (k)(z)zk. (5.55)

Proof. Multiplying (5.20) and (5.21) by proper power of z and y and summing them over

the range of n and k, one can get

(λ− θ − λX(z))Q(z, y, θ) =
a−1∑
k=0

( B∑
r=a

(Pk,r(0)(1− α) +Wk,r(0)) + δ
k∑
j=0

Q
[k]
j (0)

)
Ṽk(θ)z

kyk

−
a−1∑
k=0

∞∑
n=k

Q[k]
n (0)znyk, (5.56)

Now substituting θ=λ − λX(z) in (5.56) and using Lemma 5.1, (5.25), (5.27) and (5.29)

one can obtain

a−1∑
k=0

∞∑
n=k

Q[k]+
n znyk =

a−1∑
k=0

(
P+
k (1− α) +W+

k + δQ+
k

)
N (k)(z)zkyk. (5.57)

Substituting y = 1 in (5.57) desired result is obtained.

Lemma 5.6.

Q[k]+
n =

(
P+
k (1− α) +W+

k + δ

k∑
j=0

Q
[j]+
k

)
w

(k)
n−k, 0 ≤ k ≤ a− 1, n ≥ k. (5.58)

Proof. From (5.57) collecting the coefficients of yk (0 ≤ k ≤ a− 1) one can obtain,

∞∑
n=k

Q[k]+
n zn = (P+

k (1− α) +W+
k + δQ+

k )N (k)(z)zk. (5.59)
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Now using (5.44) and (5.29) in (5.59) and collecting the coefficients of zn (n ≥ k) the

desired result (5.58) is obtained.

Hence, from Lemma 5.6 it is clear that once P+
k (0 ≤ k ≤ a − 1) are known, the joint

probabilities Q
[k]+
n (0 ≤ k ≤ a− 1, n ≥ k) are also known.

Multiplying (5.18)-(5.19) by proper power of z and y and summing over the range of n

and r the following expression is obtained

(λ− θ − λX(z))P (z, y, θ) =

B∑
r=a

( a−1∑
k=0

Q[k]
r (0) +

B∑
j=a

(Pr,j(0)(1− α) +Wr,j(0))

) B∑
i=r

yiS̃r(θ)y
r

+
∞∑
n=1

B∑
r=a

( a−1∑
k=0

Q
[k]
n+r(0) +

B∑
j=a

Pn+r,j(0)(1− α)

+

B∑
j=a

Wn+r,j(0)

)
S̃r(θ)yrz

nyr

+(1− δ)λ
B∑
r=a

a−1∑
j=0

Rjgr−j

B∑
i=r

yiS̃r(θ)y
r

+(1− δ)λ
∞∑
n=1

B∑
r=a

a−1∑
j=0

Rjgn+r−jyrS̃r(θ)z
nyr

−
∞∑
n=0

B∑
r=a

Pn,r(0)znyr.

Substituting θ = λ− λX(z) in the above expression and using Lemma 5.1, (5.25), (5.27),

(5.29) and (5.31), one can get

P+(z, y) =
B∑
r=a

(Q+
r + P+

r (1− α) +W+
r )

B∑
i=r

yiM
(r)(z)yr

+

∞∑
n=1

B∑
r=a

(Q+
n+r + P+

n+r(1− α) +W+
n+r)M

(r)(z)yrz
nyr

+(1− δ)
B∑
r=a

a−1∑
j=0

j∑
m=0

Q+
mej,m

(
gr−j

B∑
i=r

yi +

∞∑
n=1

gn+r−jyrz
n

)
M (r)(z)yr

. (5.60)
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Substituting y = 1 in (5.60) and using Lemma 5.5, (5.51) and (5.32) after some algebraic

manipulation following expression is obtained.

P+(z) =

{
zB

B−1∑
r=a

(P+
r (1− α) +W+

r +Q+
r )

B∑
i=r

yiM
(r)(z)

−
B−1∑
i=a

yiM
(i)(z)

i∑
n=0

(P+
n (1− α) +W+

n +Q+
n )zn+B−i

−
B−1∑
n=0

(P+
n (1− α) +W+

n +Q+
n )znyBM

(B)(z)

+
B∑
i=a

yiM
(i)(z)

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )N (k)(z)zB−i+k

+(1− δ)
a−1∑
n=0

Q+
n

a−1∑
m=n

em,n

(
zB

B∑
r=a

gr−m

B∑
i=r

yiM
(r)(z)

+
B∑
i=a

yiM
(i)(z)zB−i+m(X(z)−

i−m∑
n=1

gnz
n)

)}
zB − (1− α+ αMos(z))

B∑
i=a

yiM (i)(z)zB−i
. (5.61)

Finally, using (5.61) in (5.60) after some algebraic manipulation one can get

P+(z, y) =

∧
(z, y)

zB − (1− α+ αMos(z))
B∑
i=a

yiM (i)(z)zB−i
(5.62)

where∧
(z, y) =

B−1∑
r=a

(P+
r (1− α) +W+

r +Q+
r )

B∑
i=r

yiM
(r)(z)

{
yr
(
zB − (1− α+ αMos(z))

B∑
j=a

yjM
(j)(z)zB−j

)
+(1−α+αMos(z))

B∑
j=a

yjM
(j)(z)zB−jyj

}
+
B−1∑
i=a

yiM
(i)(z)z−i

i∑
n=0

(P+
n (1−

α) +W+
n +Q+

n )zn
{
− yi

(
zB − (1− α+ αMos(z))

B∑
j=a

yjM
(j)(z)zB−j

)
− (1− α+ αMos(z))z

B
B∑
j=a

yjM
(j)(z)z−jyj

}
+
B−1∑
n=0

(P+
n (1− α) +W+

n +Q+
n )znyBM

(B)(z){
−z−ByB

(
zB−(1−α+αMos(z))

B∑
j=a

yjM
(j)(z)zB−j

)
−

B∑
j=a

yjM
(j)(z)z−jyj

}
+
a−1∑
k=0

(P+
k (1−

α) +W+
k + δQ+

k )N (k)(z)zk
B∑
j=a

yjM
(j)(z)zB−jyj + (1− δ)

a−1∑
n=0

Q+
n

a−1∑
m=n

em,n((
gr−m

B∑
i=r

yiM
(r)(z)yr+

B∑
r=a

yrM
(r)(z)z−r+myr(X(z)−

i−m∑
n=1

gnz
n)

)(
zB−(1−α+αMos(z))
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B∑
j=a

yjM
(j)(z)zB−j

)
+ (1− α+ αMos(z))

B∑
r=a

yrM
(r)(z)zB−ryr

(
B∑
l=a

gl−m
B∑
i=l

yiM
(l)(z)

+
B∑
i=a

yiM
(i)(z)z−(i−m)(X(z)−

i−m∑
n=1

gnz
n)

))
It may be observed from (5.62) that the generating function P+(z, y) has been expressed

in compact form, except for the B unknowns {P+
n }B−1

n=0 . One can further note that from

Lemma 5.6 once P+
k (0 ≤ k ≤ a − 1) are known then the joint probabilities Q

[k]+
n (0 ≤

k ≤ a − 1) are completely known. Hence, to find P+
n,r (a ≤ r ≤ B,n ≥ 0) and Q

[k]+
n

(0 ≤ k ≤ a− 1, n ≥ k) one should find the unknowns {P+
n }B−1

n=0 . Next section is dedicated

in getting these unknowns {P+
n }B−1

n=0 .

5.3.2 Procedure of getting the unknowns P+
n (0 ≤ n ≤ B − 1)

It can be seen that the unknowns P+
n (0 ≤ n ≤ B − 1), as appeared in (5.62), are same

as the unknowns which are appeared in (5.61). Using the result, given in Abolnikov and

Dukhovny [129, Theorem 4.1 and Lemma 4.1, page 341], for
λg̃

B∑
i=a

yi
µi

+λg̃ α
µ

ỹ < 1, zB−(1−α+

αMos(z))
B∑
i=a

yiM
(i)(z)zB−i has (B−1) zeros, say, x1, x2, ..., xl with multiplicity r1, r2, ..., rl,

respectively, inside the unit circle |z| = 1
(
where (l ≤ B − 1) and

l∑
i=1

ri = (B − 1)
)

and

one simple zero, say, zB = 1, on the boundary of unit circle |z|=1. Due to analyticity of

(5.61) in |z| ≤ 1 these zeros are also the zeros of numerator of (5.61). Hence, from (5.61)

set of (B − 1) linearly independent equations are obtained,

[
di−1

dzi−1

{
zB

B−1∑
r=a

(P+
r (1− α) +W+

r +Q+
r )

B∑
i=r

yiM
(r)(z)

−
B−1∑
i=a

yiM
(i)(z)

i∑
n=0

(P+
n (1− α) +W+

n +Q+
n )zn+B−i

−
B−1∑
n=0

(P+
n (1− α) +W+

n +Q+
n )znyBM

(B)(z)

+

B∑
i=a

yiM
(i)(z)

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )N (k)(z)zB−i+k

+(1− δ)
a−1∑
n=0

Q+
n

a−1∑
m=n

em,n

(
zB

B∑
r=a

gr−m

B∑
i=r

yiM
(r)(z)

+

B∑
i=a

yiM
(i)(z)zB−i+m(X(z)−

i−m∑
n=1

gnz
n)

)}]
z=xj

= 0, 1 ≤ j ≤ l & 1 ≤ i ≤ rj , (5.63)
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where d0

dz0
h(z) = h(z).

Now using (5.62), Lemma 5.5 and the normalization condition (1 +α)P+(1) +Q+(1) = 1,

after applying L’Hôspital’s rule, one can get

(1 + α)

(B−1∑
r=a

(P+
r (1− α) +W+

r +Q+
r )

B∑
i=r

yi(B + λg̃sr)

−
B−1∑
i=a

yi

i∑
n=0

(P+
n (1− α) +W+

n +Q+
n )(n+B − i+ λg̃si)

−
B−1∑
n=0

(P+
n (1− α) +W+

n +Q+
n )yB(n+ λg̃sB))

+(1− δ)
a−1∑
n=0

Q+
n

a−1∑
m=n

em,n
( B∑
r=a

gr−m

B∑
i=r

yi(λg̃sr +B)

+
B∑
i=a

yi(g̃ −
i−m∑
n=1

ngn) + (1−
i−m∑
n=1

ngn)(B − i+m+ λg̃si)
))

+

B∑
i=a

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )(λg̃(si + xk) +B − i+ k) = ỹ(1− ρ) (5.64)

Hence, (5.63) and (5.64) together forms non-homogenous system of B linearly independent

equations in B unknowns P+
n (0 ≤ n ≤ B − 1), solving them P+

n (0 ≤ n ≤ B − 1) are

uniquely determined.

Now using (5.31) in (5.62) and then collecting the coefficients of yr (a ≤ r ≤ B) the

following expression is obtained

∞∑
n=0

P+
n,rz

n =

∐
(z, r)

zB − (1− α+ αMos(z))
B∑
i=a

yiM (i)(z)zB−i
, a ≤ r ≤ B − 1, (5.65)

where∐
(z, r) = (P+

r (1−α)+W+
r +Q+

r )
B∑
i=r

yiM
(r)(z)

(
zB−(1−α+αMos(z))

B∑
j=a

yjM
(j)(z)zB−j

)
+

(1−α+αMos(z))yrM
(r)(z)zB−r

B−1∑
j=a

(P+
j (1−α) +W+

j +Q+
j )

B∑
i=j

yiM
(i)(z)− yrM (r)(z)z−r

r∑
n=0

(P+
n (1 − α) + W+

n + Q+
n )zn

(
zB − (1 − α + αMos(z))

B∑
j=a

yjM
(j)(z)zB−j

)
− (1 − α +

αMos(z))
B−1∑
i=a

yiM
(i)(z)

i∑
n=0

(P+
n (1−α)+W+

n +Q+
n )zn+B−r−iyrM

(r)(z)−(1−α+αMos(z))
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B−1∑
n=0

(P+
n (1−α)+W+

n +Q+
n )znyBM

(B)(z)yrM
(r)(z)z−r+

a−1∑
k=0

(P+
k (1−α)+W+

k +δQ+
k )N (k)(z)

zkyrM
(r)(z)zB−r + (1− δ)

a−1∑
n=0

Q+
n

a−1∑
m=n

em,n

((
gr−m

B∑
i=r

yiM
(r)(z) + yrM

(r)(z)z−r+m

(X(z)−
r−m∑
n=1

gnz
n)

)(
zB−(1−α+αMos(z))

B∑
j=a

yjM
(j)(z)zB−j

)
+(1−α+αMos(z))yrM

(r)(z)

zB−r
(

B∑
l=a

gl−m
B∑
i=l

yiM
(l)(z) +

B∑
i=a

yiM
(i)(z)z−(i−m)(X(z)−

i−m∑
n=1

gnz
n)

))
, a ≤ r ≤ B − 1

and

∞∑
n=0

P+
n,Bz

n =

∐
(z, b)

zB − (1− α+ αMos(z))
B∑
i=a

yiM (i)(z)zB−i
. (5.66)

where∐
(z, b) = (1 − α + αMos(z))yBM

(B)(z)
B−1∑
j=a

(P+
j (1 − α) + W+

j + Q+
j )

B∑
i=j

yiM
(i)(z) − (1 −

α + αMos(z))
B−1∑
i=a

yiM
(i)(z)

i∑
n=0

(P+
n (1 − α) + W+

n + Q+
n )zn−iyBM

(B)(z) −
B−1∑
n=0

(P+
n (1 −

α) + W+
n + Q+

n )znyBM
B(z)z−B

(
zB − (1 − α + αMos(z))

B∑
j=a

yjM
(j)(z)zB−j + (1 − α +

αMos(z))yBM
(B)(z)

)
+
a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )N (k)(z)zkyBM

(B)(z)

+ (1− δ)
a−1∑
n=0

Q+
n

a−1∑
m=n

em,n

(
gB−myBM

(B)(z) + yBM
(B)(z)z−B+m(X(z)−

B−m∑
n=1

gnz
n)

)
(
zB − (1−α+αMos(z))

B∑
j=a

yjM
(j)(z)zB−j

)
+ (1− δ)

a−1∑
n=0

Q+
n

a−1∑
m=n

em,n(1−α+αMos(z))

yBM
(B)(z)

(
B∑
l=a

gl−m
B∑
i=l

yiM
(l)(z) +

B∑
i=a

yiM
(i)(z)z−(i−m)(X(z)−

i−m∑
n=1

gnz
n)

)
.

For further investigation, assume that the LST of the vacation time distribution and service

time distribution, are rational function, i.e., Ṽk(θ) = Xk(θ)
Yk(θ) , S̃r(θ) = Xr(θ)

Yr(θ)
, and S̃(θ) = X̂(θ)

Ŷ (θ)

where Xk(θ), Yk(θ), Xr(θ), Yr(θ), X̂(θ), and Ŷ (θ) are polynomials in θ. Even, distribution

functions having transcendental LST can also be rationalized by padé approximation.

Substituting Ṽk(λ− λX(z)) = Xk(λ−λX(z))
Yk(λ−λX(z)) , 0 ≤ k ≤ a− 1, S̃r(λ− λX(z)) = Xr(λ−λX(z))

Yr(λ−λX(z)) ,

a ≤ r ≤ B, and S(λ− λX(z)) = X̂(λ−λX(z))

Ŷ (λ−λX(z))
in (5.65)-(5.66) after some simplification one

can get

∞∑
n=0

P+
n,rz

n =
Lr(z)

Dr(z)
, a ≤ r ≤ B. (5.67)
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Where Lr(z) and Dr(z) are polynomials of degree ur and dr, respectively, and Dr(z) is

monic. Now partial fraction method is applied to (5.67) for obtaining the joint probabil-

ities Pn,r (n ≥ 0, a ≤ r ≤ B). Since, (5.67) is analytic in |z| ≤ 1, therefore, the zeros

of Dr(z) (a ≤ r ≤ B) lying inside and on the unit circle |z| = 1 do not play any role in

getting Pn,r (n ≥ 0, a ≤ r ≤ B). Hence, in order to obtain all the joint probabilities Pn,r

(n ≥ 0, a ≤ r ≤ B), it is necessary to know about all the zeros of Dr(z) (a ≤ r ≤ B) of

modulus greater than one. Let γ1,r, γ2,r, ..., γlr,r be the zeros of Dr(z) of modules greater

than one with multiplicity τ1,r, τ2,r, ..., τlr,r, respectively, such that
lr∑
j=1

τj,r ≤ dr. Following

two cases may arise now.

Case I : dr ≤ ur
Applying the partial fraction method to the right hand side of (5.67) the following expres-

sion is obtained

∞∑
n=0

P+
n,rz

n =

ur−dr∑
i=0

%iz
i +

lr∑
j=1

τj,r∑
i=1

Bi,j,r
(z − γj,r)τj,r−i+1

, (5.68)

where

Bi,j,r =
1

(i− 1)!

[
di−1

dzi−1

(
Lr(z)

dτj,r

dzτj,r
(z − γj,r)τj,r

dτj,r

dzτj,r
(Dr(z))

)]
z=γj,r

, (5.69)

a ≤ r ≤ B, j = 1, 2, ..., lr, i = 1, 2, ..., τj,r.

Accumulating the coefficients of zn (n ≥ 0) from both side of (5.68), one can get for

a ≤ r ≤ B,

P+
n,r =


(
%n +

lr∑
j=1

τj,r∑
i=1

Bi,j,r

(−1)τj,r−i+1γ
τj,r+n−i+1

j,r

(τj,r−i+n
τj,r−i

))
, 0 ≤ n ≤ ur − dr,(

lr∑
j=1

τj,r∑
i=1

Bi,j,r

(−1)τj,r−i+1γ
τj,r+n−i+1

j,r

(τj,r−i+n
τj,r−i

))
, n > ur − dr.

(5.70)

Case II : dr > ur

Removing the first summation term of the right hand side of (5.68), for a ≤ r ≤ B, one

can obtain

P+
n,r =

( lr∑
j=1

τj,r∑
i=1

Bi,j,r

(−1)τj,r−i+1γ
τj,r+n−i+1
j,r

(
τj,r − i+ n

τj,r − i

))
, n ≥ 0. (5.71)
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Equation (5.70) [or (5.71)] gives the joint probabilities of queue and server content at

service completion epoch.

Theorem 5.7.

W+
n,r = α

n∑
i=0

P+
i,rqn−i, n ≥ 0, a ≤ r ≤ B. (5.72)

Proof. Using (5.34), and collecting the coefficients of yr (a ≤ r ≤ B) from both the side

of (5.53) one can get

∞∑
n=0

W+
n,rz

n =

∞∑
n=0

P+
n,rαMos(z)z

n. (5.73)

Using (5.43) in the above expression and collecting the coefficients of zn (n ≥ 0) the desired

outcome is obtained.

Thus the evaluation of the joint probabilities of queue and server content at service (FES

and SOS) completion epoch and the joint probabilities of queue length and type of vacation

at vacation termination epoch complete here.

5.3.3 Joint probabilities at arbitrary epoch

In the previous section the joint probabilities of the queue and server content at service

(FES and SOS) completion epoch, as well as the joint probabilities of the queue size and

the type of vacation at vacation termination epoch have been successfully achieved. In

this section, the main objective is focused for getting the joint probabilities at arbitrary

epoch.
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Theorem 5.8. The probabilities Rn (0 ≤ n ≤ a− 1), Pn,r (Wn,r) (n ≥ 0, a ≤ r ≤ B) and

Q
[k]
n (n ≥ k, 0 ≤ k ≤ a− 1) are given by,

Rn =

n∑
m=0

en,mQ
+
m

E
, 0 ≤ n ≤ a− 1 (exist only for SV ), (5.74)

P0,r =

(Q+
r + P+

r (1− α) +W+
r )(

B∑
i=r

yi)+

(1− δ)
a−1∑
n=0

a−1∑
m=n

em,ngr−mQ
+
n

B∑
i=r

yi − P+
0,r

E
, n ≥ 0, (5.75)

Pn,r =

n∑
j=1

Pn−j,rgj +

(Q+
n+r + P+

n+r(1− α) +W+
n+r)yr+

(1− δ)
a−1∑
m=0

Q+
m

a−1∑
j=m

ej,mgn+r−jyr − P+
n,r

E
,

n ≥ 1, a ≤ r ≤ B, (5.76)

Q
[k]
k =

P+
k (1− α) +W+

k + δQ+
k −Q

[k]+
k

E
, 0 ≤ k ≤ a− 1, (5.77)

Q[k]
n =

n−k∑
i=1

giQ
[k]
n−i −

Q
[k]+
n

E
, n ≥ k + 1, 0 ≤ k ≤ a− 1, (5.78)

W0,r =
P+

0,rα−W
+
0,r

E
, a ≤ r ≤ B (5.79)

Wn,r =

n∑
j=1

Wn−j,rgj +
P+
n,rα−W+

n,r

E
, n ≥ 1, a ≤ r ≤ B (5.80)

where E = λf + (1− δ)
a−1∑
n=0

n∑
m=0

en,mQ
+
m,

f =
∞∑

n=B+1

(
P+
n (1− α) +W+

n +Q+
n

) B∑
r=a

yrsr + (P+
a (1− α) +W+

a +Q+
a )sa

+
B∑

n=a+1

(
P+
n (1− α) +W+

n +Q+
n

)( n−1∑
i=a

yisi +
B∑
i=n

yisn
)

+
a−1∑
n=0

[
P+
n xn(1− α) +W+

n xn + (1− δ)
a−1∑
m=n

em,nQ
+
n

(
B∑
r=a

gr−m
B∑
i=r

yiµr

+
∞∑
l=1

B∑
r=a

gr−m+lyrµr

)
+ δQ+

n xn

]
+
∞∑
n=0

P+
n ςα
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Proof. Dividing (5.1) by σ−1 and using Lemma 5.1, Lemma 5.2 and (5.29), one can obtain

R0 =

(1−
a−1∑
n=0

Rn)Q+
0

λf
. (5.81)

Similarly, from (5.49), one have

Rn =

(1−
a−1∑
i=0

Ri)
n∑

m=0

m∑
k=0

en,mQ
[k]+
m

λf
, 0 ≤ n ≤ a− 1. (5.82)

Using (5.81) in (5.82), one can obtain

Rn =
R0

Q+
0

n∑
m=0

m∑
k=0

en,mQ
[k]+
m , 0 ≤ n ≤ a− 1. (5.83)

Using (5.83) in (5.81) after some algebraic manipulation, one can obtain

R0 =
Q+

0

λf +
a−1∑
n=0

n∑
m=0

m∑
k=0

en,mQ
[k]+
m

. (5.84)

Using (5.84) in (5.83), one can obtain

Rn =

n∑
m=0

en,mQ
+
m

λf +
a−1∑
j=0

a−1∑
l=j

el,jQ
+
j

, 0 ≤ n ≤ a− 1. (5.85)

Setting θ=0 in (5.18)-(5.23), one can get

λP0,r =

a−1∑
k=0

Q[k]
r (0)

B∑
i=r

yi +

B∑
j=a

(Pr,j(0)(1− α) +Wr,j(0))

B∑
i=r

yi

+(1− δ)λ
a−1∑
j=0

Rjgr−j

B∑
i=r

yi − P0,r(0), a+ 1 ≤ r ≤ B, (5.86)

λPn,r = λ
n∑
j=1

Pn−j,rgj +
B∑
j=a

(Pn+r,j(0)(1− α) +Wn+r,j(0))yr +
a−1∑
k=0

Q
[k]
n+r(0)yr

+λ

a−1∑
j=0

Rjgn+r−jyr − Pn,r(0), n ≥ 1, a ≤ r ≤ B − 1, (5.87)
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λQ
[k]
k =

B∑
r=a

(Pk,r(0)(1− α) +Wk,r(0)) + δ
k∑
j=0

Q
[j]
k (0)−Q[k]

k (0),

0 ≤ k ≤ a− 1, (5.88)

λQ[k]
n = λ

n−k∑
i=1

giQ
[k]
n−i −Q

[k]
n (0), n ≥ k + 1, 0 ≤ k ≤ a− 1. (5.89)

λW0,r = P0,r(0)α−W0,r(0), a ≤ r ≤ B (5.90)

λWn,r = λ
n∑
j=1

Wn−j,rgj + Pn,r(0)α−Wn,r(0), n ≥ 1, a ≤ r ≤ B (5.91)

Dividing (5.86) by σ−1, respectively, and then using Lemma 5.1, Lemma 5.2, (5.25) and

(5.29), the following expression is obtained

P0,r =

(
1− (1− δ)

a−1∑
i=0

Ri
)(

(P+
r (1− α) +W+

r +Q+
r )

B∑
i=r

yi

+(1− δ)
a−1∑
n=0

a−1∑
m=n

gr−mem,nQ
+
n

B∑
i=r

yi − P+
0,r

)
λf

. (5.92)

Using (5.82) in (5.92), equation (5.75) is obtained.

Applying similar process to (5.87), (5.88), (5.89), (5.90), and (5.91), respectively, after

some algebraic manipulation desired results (5.76), (5.77), (5.78), (5.79), and (5.80) are

obtained.

5.4 Marginal Probabilities

In this section, some important marginal probabilities are presented that can be derived

from the steady state joint probabilities obtained in the previous section.

1. Queue length distribution is given by,

P queuen =


(1− δ)Rn +

B∑
r=a

(Pn,r +Wn,r) +
n∑
k=0

Q
[k]
n , 0 ≤ n ≤ a− 1,

B∑
r=a

(Pn,r +Wn,r) +
a−1∑
k=0

Q
[k]
n , n ≥ a.
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2. System length distribution is given by,

P systemn =



Rn +
n∑
k=0

Q
[k]
n , 0 ≤ n ≤ a− 1,

n∑
m=a

(Pn−m,m +Wn−m,m) +
a−1∑
k=0

Q
[k]
n , a ≤ n ≤ B,

B∑
r=a

(Pn−r,r +Wn−r,r) +
a−1∑
k=0

Q
[k]
n , n ≥ B + 1.

3. The server content distribution, when the server is busy in FES, is given by,

FESserr =

∞∑
n=0

Pn,r

B∑
r=a

∞∑
n=0

Pn,r

, (a ≤ r ≤ B) .

4. The server content distribution when the server is busy in SOS, is given by,

SOSserr =

∞∑
n=0

Wn,r

B∑
r=a

∞∑
n=0

Wn,r

, (a ≤ r ≤ B) .

5. The server content distribution when the server is busy, is given by,

P serr =

∞∑
n=0

(Pn,r+Wn,r)

B∑
j=a

∞∑
n=0

(Pn,j+Wn,j)

, (a ≤ r ≤ B).

6. The distribution of the type of vacation, when the server is on vacation, is given by,

Q
[k]
vac=

∞∑
n=k

Q
[k]
n

a−1∑
l=0

∞∑
n=l

Q
[l]
n

, 0 ≤ k ≤ a− 1.

7. The probability that the server is in a dormant state, is given by, P dor=(1−δ)
a−1∑
n=0

Rn.

8. The probability that the server is busy, is given by, Pbusy=
∞∑
n=0

B∑
r=a

(Pn,r +Wn,r).

9. The probability that the server is on vacation, is given by, Qvac=
∞∑
n=0

min(n,a−1)∑
k=0

Q
[k]
n .

10. The probability that the server is idle, is given by Pidle=(1− δ)P dor +Qvac.

5.5 Performance measure

Performance measure is the values that collects the information of the system and helps the

manager to run the system smoothly. Since all the steady state probabilities are known,

the present section presents some important performance measures of the model under

consideration.
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1. The expected number of customers in the queue (Lq) is given by

Lq = (1− δ)
a−1∑
n=0

nRn +
∞∑
n=0

B∑
r=a

n(Pn,r +Wn,r) +
a−1∑
k=0

∞∑
n=k

nQ
[k]
n =(1− δ)

a−1∑
n=0

nP queuen +

∞∑
n=a−δa

nP queuen .

2. The expected number of customers in the system (Ls) is given by

Ls = (1− δ)
a−1∑
n=0

nRn +
∞∑
n=0

B∑
r=a

(n+ r)(Pn,r +Wn,r) +
a−1∑
k=0

∞∑
n=k

nQ
[k]
n .

3. The expected waiting time of a customer in the queue (Wq) is given by

Wq =
Lq
λg̃ .

4. The expected waiting time of a customer in the system (Ws) is given by

Ws = Ls
λg̃ .

5. Expected number of customers with the server when server is busy in FES (Lserfes) is

given by

Lserfes =

B∑
r=a

(rPn,r)

∞∑
m=0

b∑
j=a

Pm,j

.

6. Expected number of customers with the server when server is busy in SOS (Lsersos) is

given by

Lsersos =

B∑
r=a

(rWn,r)

∞∑
m=0

b∑
j=a

Wm,j

.

7. Expected number of customers with the server when server is busy (Lser) is given

by

Lser =
B∑
r=a

(rP serr ).

8. Expected type of vacation taken by server when server is in vacation ( Lvac) is given

by

Lvac =
a−1∑
k=0

(kQ
[k]
vac).

5.6 Numerical results

Table 5.1 and Table 5.2 present the steady state joint probabilities at service (FES and

SOS) completion, vacation completion and arbitrary epoch for M/G
(a,Y )
r /1 queue with

SOS and SV. Service time for both the FES and SOS follow the Erlang (E3) distribu-

tion, and vacation time follows E2 distribution. The other input parameters are taken
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as λ=26.098, µr = 67.5
r (4 ≤ r ≤ 7), µ = 17.5, and νk = νk−1 + 2.35 where ν0 = 1.01

(1 ≤ k ≤ 3). g1 = 0.45, g2 = 0.20, g3 = 0.35, gn = 0 (n ≥ 4). y4 = 0.2, y5 = 0, y6 = 0,

y7 = 0.8. The detail of Table 5.1 is given as follows:

• The 1st column presents the number of customers present in the queue (excluding

the number in service).

• 2nd to 5th column present the joint probabilities of the queue and server content at

service (FES) competition epoch.

• 6th to 9th column present the joint probabilities of the queue and server content at

service (SOS) competition epoch.

• The 10th to 13th column presents the joint probabilities of the queue length and

type of vacation at the vacation termination epoch.

• 14th column presents the queue length distribution at service or vacation completion

epoch.

The detail of Table 5.2 is given as follows:

• The 1st column presents the number of customers present in the queue (excluding

the number in service).

• 2nd column presents the queue length probability during server’s dormant period.

• 3rd to 6th column present the joint probabilities of queue and server content during

FES at arbitrary epoch.

• 7th to 10th column present the joint probabilities of queue and server content during

SOS at arbitrary epoch.

• 11th to 14th column present the joint probabilities of queue length and type of

vacation at arbitrary epoch.

• Last column presents the queue length distribution at arbitrary epoch.

• Performance measure (viz., Lq, Ls, Wq, etc.) can be seen just below the table.

Similarly, Table 5.3 presents the steady state joint probabilities at service (FES and SOS)

completion epoch and vacation completion epoch, and Table 5.4 presents the steady state

joint probabilities at arbitrary epoch for M/G
(a,Y )
r /1 queue with SOS and MV. The input

parameters, notations, and the service (vacation) time distribution are taken the same as

taken for Table 5.1 and for Table 5.2.
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5.6.1 Deduction of the results for M/M/1 queue

The model considered in this chapter reduces to the classical M/M/1 model when a = 1,

B = 1, X(z) = z, i.e., g1 = 1, gn = 0 (n ≥ 2), yB = 1, α = 0, service time is exponentially

distributed and vacation rate is taken considerably large. Table 5.5 and Table 5.6 give the

values of Lq, Ws, L
ser and Pidle which are obtained for M/M/1 model for following two

cases.

Case I: Results for M/M/1 model deduced from the analytical results presented in this

chapter by considering a = 1, B = 1, X(z) = z, i.e., g1 = 1, gn = 0 (n ≥ 2), yB = 1,

α = 0, exponential service time distribution and ν0 −→∞ (ν0 = 200000).

Case II: Results for classical M/M/1 model, for which performance measures Lq, Ws and

probability Pidle are calculated using standard formula Lq = λ2

µ1(µ1−λ) , Ws = 1
µ1−λ and

Pidle = 1− ρ.

The following details are provided for Table 5.5 and Table 5.6.

• 1st and 2nd column present the values of the input parameters λ and µ1, respectively,

for which ρ varies from 0.4375 to 0.875.

• 3rd, 4th, 5th and 6th column present the values of Lq, Ws, L
ser and Pidle, respectively,

for Case I.

• 7th, 8th and 9th column present the values of Lq, Ws and Pidle, respectively, for

Case II.

It is clearly observed from Table 5.5 and Table 5.6 that the results deduced from current

study as a special case matches exactly with the results obtained from classical M/M/1

model. Also, the value of Lser calculated from the current study as a special case always

gives the value 1 which is obvious and shows the correctness of present study.

Table 5.5: Table for Case I and Case II, for SV

Case I Case II

λ µ1 Lq Ws Lser Pidle Lq Ws Pidle

3.5 4 6.1249997 1.9999999 1.0000000 0.1250000 6.1250000 2.0000000 0.1250000
3.5 6 0.8166667 0.4000000 1.0000000 0.4166667 0.8166667 0.4000000 0.4166667
3.5 8 0.3402778 0.2222222 1.0000000 0.5625000 0.3402778 0.2222222 0.5625000
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Table 5.6: Table for Case I and Case II, for MV

Case I Case II

λ µ1 Lq Ws Lser Pidle Lq Ws Pidle

3.5 4 6.1250000 2.0000000 1.0000000 0.1250000 6.1250000 2.0000000 0.1250000
3.5 6 0.8166700 0.4000000 1.0000000 0.4166700 0.8166667 0.4000000 0.4166667
3.5 8 0.3402800 0.2222200 1.0000000 0.5625000 0.3402778 0.2222222 0.5625000

5.7 Cost model

A cost model is also presented in this section which helps the manager to determine the

optimal value of desired input parameters. The following cost parameters are taken for

this purpose.

Cst≡ Startup cost per customer per unit time.

Cb≡ Holding cost per customer per unit time when the server is busy.

Cv≡ Holding cost per customer per unit time when the server is on vacation.

Cd≡ Holding cost per customer per unit time when the server is dormant (exists only for

SV).

Cfes≡ Operating cost per customer per unit time when the server is busy in FES.

Cos≡ Operating cost per customer per unit time when the server is busy in SOS. Thus in

long run

Total System Cost (TSC) = λCst + Cb

∞∑
n=0

b∑
r=a

n
(Pn,r +Wn,r)

Pbusy
+ Cv

∞∑
n=0

min(n,a−1)∑
k=0

n
Q

[k]
n

Qvac

+(1− δ)Cd
a−1∑
n=0

n
Rn
P dor

+ CfesL
ser
fes + CosL

ser
sos.

Figure 5.1 reflects the behavior of TSC for different values of a (1 ≤ a ≤ 10) for SV and

for λ=3.5 and 7.5. The maximum capacity is fixed at B = 10. Service time follows a 2 -

stage hyper exponential distribution with service rate µr,j = r+j
5 , (a ≤ r ≤ B, j = 1, 2)

and µr =

(
2∑
j=1

α̃j,r
µj,r

)−1

where α̃1,r = 0.6 and α̃2,r = 0.4, (a ≤ r ≤ B). Vacation time

follows E2 distribution with vacation rate νk = νk−1 + 0.5 (1 ≤ k ≤ a− 1) where ν0 = 1.2.

Service time for SOS follows exponential distribution with rate µ = 3.5. The other input

parameters are considered as follows g1 = 0.65, g2 = 0.25, g3 = 0.10, gn = 0 (n ≥ 0),

yr = 0 (a ≤ r ≤ B − 1), yB = 1 and α = 0.25. The cost parameters are as follows:

Cst = 0.2, Cb = 2.0, Cv = 2.5, Cd = 1.0, Cfes = 4.2 and Cos = 3.2. From this particular

example, for λ = 3.5 (7.5) the optimum value for a is 2 (3) and the corresponding minimum
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value of TSC is 59.462 (101.277). Similarely, Figure 5.2 depicts the behavior of TSC for

different values of a (1 ≤ a ≤ 10) for MV and for λ=3.5 and 7.5. The input parameters,

cost parameters and the service (vacation) time distribution are taken the same as for

Figure 5.1. For λ = 0.5 (0.9), the optimum value for a is 2 (4) and the corresponding

minimum value of TSC is 59.482 (99.869). The minimum values of TSC, in each figure,

are indicated by arrow sign.
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Figure 5.1: Effect of a on TSC for SV
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Figure 5.2: Effect of a on TSC for
MV

5.8 Conclusion

In this chapter, the infinite buffer bulk arrival batch size dependent bulk service queue and

the queue length dependent SV (MV) with second optional service has been analyzed. The

server operates the customer according to the (a, Y ) rule. The fundamental mathematical

analysis of the model includes mainly the supplementary variable technique and bivariate

generating function technique. The considered model analyzed for the joint probabilities

of the queue and server content at service completion (arbitrary) epoch and the joint

probabilities of queue length and type of vacation at vacation termination (arbitrary)

epoch. Practical motivation and the numerical behavior of the considered model are also

provided to validate the considered model in real life congestion control. The present

model can be generalized with a more general arrival process (viz., BMAP ).
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