
Chapter 4

Analysis of MAP/G
(a,b)
r /1 queue

with queue length dependent

single and multiple vacation

4.1 Introduction

Bulk service queueing system with vacation where the authors considered Poisson/renewal

arrival process, can be found in the literatures [88, 93, 99, 100, 101, 102, 103, 127, 128] and

the references therein, however, in most of the real life queues (e.g., telecommunication,

computer network, etc.) the Poisson/renewal arrival process does not fit due to highly ir-

regular traffic. A good representation for analyzing such bursty and correlated traffic is a

non-renewal arrival process, i.e., the Markovian arrival process (MAP) proposed by Lucan-

toni et al. [4]. Some other input processes are also included in MAP, viz., Markov modu-

lated Poisson process (MMPP), the phase (PH)-type renewal process, the interrupted Pois-

son process (IPP), Poisson process. Gupta and Sikdar [85] and Sikdar and Samanta [100],

respectively, discussed MAP/G(a,b)/1/N queue with SV and BMAP/GY /1/N queue with

SV (MV), respectively, and obtained queue length distribution at various epoch using em-

bedded Markov chain technique (EMCT) and supplementary variable technique (SVT). In

discrete time set up, Nandy and Pradhan [103] considered discrete time batch size depen-

dent batch service queue with SV and MV. They carried out their analysis for queue and
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server content during busy period and queue length probabilities during vacation period

using the SVT and bivariate probability generating function technique.

In most of the vacation queueing models, authors considered the length of vacation of

the server as random and unaffected by the queue size at the vacation initiation epoch.

The queueing model with vacation where the length of vacation depends on the queue

size (length) at the vacation initiation epoch is known as the queue size dependent (QSD)

vacation model. Such QSD vacation models have been analyzed by few researchers, see

the references [74, 101, 108, 109]. Gupta et al. [101] considered M/G
(a,b)
r /1/N queue with

QSD SV (MV) and obtained the joint distribution of queue and server content and the joint

distribution of queue content and type of vacation using the SVT. In Chapter 3 author

analyzed the same model as Gupta et al. [101] for infinite buffer queue using the SVT

and bivariate generating function approach. To the extent of the author’s knowledge,

an infinite capacity queueing system (MAP/G
(a,b)
r /1 queue) with MAP and queue size

dependent SV and MV has not been investigated previously in the literature. Further, it

is observed that the queue size dependent vacation policy remarkably reduces congestion.

In computer network with highly irregular traffic, the proposed model is applicable. A

desktop computer system connects to a local area network (LAN) via Ethernet (IEEE802.11h)

link. Digital signals are transmitted over Ethernet in the form of a group (packet), with

the transmission rate varying with the packet under transmission. Power utility (power

utility increases with transmission rate) depends on transmission rate. The medium access

control (MAC) handshake protocol is helpful in decreasing the average power utility. It is

achieved by measuring the queue size (signals) waiting for transmission. After a transmis-

sion, if the number of signals are lower than the previously established lower threshold,

the handshake mechanism (vacation period) activates, and it depends on the queue size

at the vacation initiation epoch.

A model description of the considered model can be found in Section 4.2. In Section 4.3,

the model has been analyzed mathematically. Section 4.4 presents some marginal distribu-

tions. Section 4.5 contains the performance measures. Numerical results are presented in

Section 4.6. Section 4.7 presents a cost model, and for the conclusion, readers are invoked

to see Section 4.8.



Chapter 4. MAP/G
(a,b)
r /1 queue with SV (MV) 77

4.2 Model description

In this section, single server infinite capacity, batch size dependent bulk service queue

with queue size dependent vacation (single and multiple) is introduced, in which Markovian

arrival process (MAP) governs the customer’s arrival to the system. The MAP is governed

by the underlying Markov chain (UMC). In the UMC, there are transition from state i

to state j (1 ≤ i, j ≤ m). Assume that di,j be the transition rate from state i to j with

an arrival and ci,j be the transition rate from state i to j without an arrival. The m×m
matrix C = (ci,j) has non-negative off diagonal and negative diagonal members, whereas,

the m×m matrix D = (di,j) has non-negative elements. The infinitesimal generator of the

UMC is presented by the matrix (C +D). Assume that ξ = (ξ1, ξ2, ..., ξm) is a stationary

probability vector such that ξ(C+D) = 0, ξe=1, where e is m × 1 column matrix with

each element 1 and 0 is 1 ×m zero matrix. The fundamental arrival rate is determined

by λ = ξDe. Assume that I refers to an identity matrix with an appropriate dimension.

According to GBS rule, the costomers are served in batches (groups). The service time (Tr)

of a batch of size r (h ≤ r ≤ H) is generally distributed with probability density function

(pdf) sr(t), distribution function (DF) Sr(t), the Laplace-Stieltjes transform (LST) S̃r(θ)

and the mean service time 1
µr

= sr = −S̃(1)
r (0) (h ≤ r ≤ H), where S̃

(1)
r (0) is the derivative

of S̃r(θ) evaluated at θ=0. When a service is finished, and if the server determines that

the queue length is l (≥ h), it begins service in accordance with the GBS rule, i.e., it

serves a batch of size min(l,H), where H is the server’s maximum capacity. If the queue

length is k (< h) after a service, the server begins the vacation, which has a random length

and is dependent on the queue length k (0 ≤ k ≤ h − 1). Let Vk(t) {vk(t)} [Ṽk(θ)] be

the DF {pdf} [LST] of a typical vacation time Vk (0 ≤ k ≤ h − 1) which is generally

distributed. The mean vacation time 1
νk

= xk = −Ṽ (1)
k (0) where Ṽ

(1)
k (0) is the derivative

of Ṽk(θ) at θ=0. If the server finds at least h waiting customers at the end of the vacation,

it operates those customers in accordance with GBS rule, otherwise, it enters a state of

dormancy until the queue length reaches the minimum threshold h, or it takes another

vacation depending on the vacation policy being considered, namely either single vacation

(SV) or multiple vacation (MV). The system’s stability is ensured by the traffic intensity,

which is λsH
H (< 1). Using the following definition of the variable δ, single vacation (SV)

and multiple vacation (MV) queues are examined in this chapter in a unified manner.

δ =

1, for MV,

0, for SV.
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4.3 System analysis

The following random variables, at time t, are necessary for the mathematical analysis of

the considered model.

• Nq(t) ≡ Queue size waiting in line (queue).

• Ns(t) ≡ Batch size with the server when the server is busy.

• K(t) ≡ Type of vacation, when the server is on vacation.

• J(t) ≡ State of the underlying Markov chain of the MAP.

• U(t) ≡ Remaining service time (if any).

• V (t) ≡ Remaining vacation time (if any).

Ns(t) = 0 reflects the server’s dormant status at time t. Depending on the considered

vacation policy the following Markov process describes the model.{(Nq(t), Ns(t)), J(t)} ∪ {
(
Nq(t), Ns(t), J(t), U(t)

)
∪
(
Nq(t),K(t), J(t), V (t)

)
}, for SV,

{
(
Nq(t), Ns(t), J(t), U(t)

)
∪
(
Nq(t),K(t), J(t), V (t)

)
}, for MV,

with state space

{(n, 0, i); 0 ≤ n ≤ h− 1, 1 ≤ i ≤ m}
⋃

{(n, r, i, u);n ≥ 0, h ≤ r ≤ H, 1 ≤ i ≤ m,u ≥ 0}
⋃

{(n, k, i, u); 0 ≤ k ≤ h− 1, n ≥ k, 1 ≤ i ≤ m,u ≥ 0}, for SV,

{(n, r, i, u);n ≥ 0, h ≤ r ≤ H, 1 ≤ i ≤ m,u ≥ 0}
⋃

{(n, k, i, u); 0 ≤ k ≤ h− 1, 1 ≤ i ≤ m,n ≥ k, u ≥ 0}, for MV.

The state probabilities, at time t, are defined as:

• Ri(n, 0, t) ≡ Pr{Nq(t) = n,Ns(t) = 0, J(t) = i, u ≤ U(t) ≤ u+ du}, 1 ≤ i ≤ m, 0 ≤
n ≤ h− 1, (for SV only).

• ξi(n, r, u, t)du ≡ Pr{Nq(t) = n,Ns(t) = r, J(t) = i, u ≤ U(t) ≤ u+ du}, 1 ≤ i ≤ m,n ≥
0 , h ≤ r ≤ H.
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• γi(n, k, u, t)du ≡ Pr{Nq(t) = n,K(t) = k, J(t) = i, u ≤ V (t) ≤ u+ du}, 1 ≤ i ≤
m,n ≥ k , 0 ≤ k ≤ h− 1.

In steady state, as t→∞,

Ri(n, 0) = lim
t→∞

Ri(n, 0, t), 0 ≤ n ≤ h− 1, 1 ≤ i ≤ m, (exist only for SV),

ξi(n, r, u) = lim
t→∞

ξi(n, r, u, t), n ≥ 0, h ≤ r ≤ H, 1 ≤ i ≤ m,

γi(n, k, u) = lim
t→∞

γi(n, k, u, t), n ≥ k, 0 ≤ k ≤ h− 1, 1 ≤ i ≤ m.
Further, define

• R(n, 0)=(R1(n, 0), R2(n, 0), .., Rm(n, 0)), 0 ≤ n ≤ h− 1.

• ξ(n, r, u)=(ξ1(n, r, u), ξ2(n, r, u), ..., ξm(n, r, u)), n ≥ 0, h ≤ r ≤ H.

• γ(n, k, u)=(γ1(n, k, u), γ2(n, k, u), ..., γm(n, k, u)), n ≥ k, 0 ≤ k ≤ h− 1.

Following an analysis of the system at time t and t+dt, the related steady state equations

are obtained as follows:

0 = (1− δ)
(
R(0, 0)C + γ(0, 0, 0)

)
, (4.1)

0 = (1− δ)
(
R(n, 0)C +R(n− 1, 0)D +

n∑
k=0

γ(n, k, 0)

)
, 1 ≤ n ≤ h− 1,

(4.2)

− d

du
ξ(0, h, u) = ξ(0, h, u)C + (1− δ)R(h− 1, 0)Dsh(u)

+

( h−1∑
k=0

γ(h, k, 0) +
H∑
r=h

ξ(h, r, 0)

)
sh(u), (4.3)

− d

du
ξ(0, r, u) = ξ(0, r, u)C +

( h−1∑
k=0

γ(r, k, 0) +
H∑
r=h

ξ(r, j, 0)

)
sr(u), h+ 1 ≤ r ≤ H,

(4.4)

− d

du
ξ(n, r, u) = ξ(n, r, u)C + ξ(n− 1, r, u)D, h ≤ r ≤ H − 1, n ≥ 1, (4.5)
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− d

du
ξ(n,H, u) = ξ(n,H, u)C + ξ(n− 1, H, u)D +

( h−1∑
k=0

γ(n+H, k, 0)

+
H∑
r=h

ξ(n+H, r, 0)

)
sH(u), n ≥ 1, (4.6)

− d

du
γ(k, k, u) = γ(k, k, u)C +

( H∑
r=h

ξ(k, r, 0) + δ
k∑
j=0

γ(k, j, 0)

)
vk(u), 0 ≤ k ≤ h− 1,

(4.7)

− d

du
γ(n, k, u) = γ(n, k, u)C + γ(n− 1, k, u)D, n ≥ k + 1, 0 ≤ k ≤ h− 1. (4.8)

Further, for Re θ ≥ 0, define,

S̃r(θ) =

∫ ∞
0

e−θudSr(u) =

∫ ∞
0

e−θusr(u)du, h ≤ r ≤ H, (4.9)

ξ̃(n, r, θ) =

∫ ∞
0

e−θuξ(n, r, u)du, h ≤ r ≤ H, n ≥ 0, (4.10)

ξ(n, r) ≡ ξ̃(n, r, 0) =

∫ ∞
0

ξ(n, r, u)du, h ≤ r ≤ H, n ≥ 0, (4.11)

Ṽk(θ) =

∫ ∞
0

e−θudVk(u) =

∫ ∞
0

e−θuvk(u)du, 0 ≤ k ≤ h− 1, (4.12)

γ̃(n, k, θ) =

∫ ∞
0

e−θuγ(n, k, u)du, 0 ≤ k ≤ h− 1, n ≥ k, (4.13)

γ(n, k) ≡ γ̃(n, k, 0) =

∫ ∞
0

γ(n, k, u)du, 0 ≤ k ≤ h− 1, n ≥ k. (4.14)

• R(n, 0)=(R1(n, 0), R2(n, 0), ..., Rm(n, 0)), 0 ≤ n ≤ h− 1.

• ξ(n, r)=(ξ1(n, r), ξ2(n, r), ..., ξm(n, r)), n ≥ 0, h ≤ r ≤ H.

• γ(n, k)=(γ1(n, k), γ2(n, k), ..., γm(n, k)), n ≥ k, 0 ≤ k ≤ h− 1.

Here the probability (Ri(n, 0)) {ξi(n, r)} [γi(n, k)] denotes that (queue size is n and the

sever is in dormant state, and the arrival process is in phase i, 0 ≤ n ≤ h− 1) {queue size

is n and r customers are being serviced, and the arrival process is in phase i, h ≤ r ≤ H,

n ≥ 0} [queue size is n and the server is on kth type of vacation, and the arrival process

is in phase i, 0 ≤ k ≤ h− 1, n ≥ k] at arbitrary epoch.

Multiplying the equations (4.3)-(4.8) by e−θu and integrating with respect to u over the
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limits 0 to ∞, one can get

−θξ̃(0, h, θ) = ξ̃(0, h, θ)C + (1− δ)R(h− 1, 0)DS̃h(θ)

+

( h−1∑
k=0

γ(h, k, 0) +
H∑
r=h

ξ(h, r, 0)

)
S̃h(θ)− ξ(0, h, 0), (4.15)

−θξ̃(0, r, θ) = ξ̃(0, r, θ)C +

( h−1∑
k=0

γ(r, k, 0) +
H∑
r=h

ξ(r, j, 0)

)
S̃r(θ)

−ξ(0, r, 0), h+ 1 ≤ r ≤ H, (4.16)

−θξ̃(n, r, θ) = ξ̃(n, r, θ)C + ξ̃(n− 1, r, θ)D − ξ(n, r, 0), n ≥ 1, h ≤ r ≤ H − 1,

(4.17)

−θξ̃(n,H, θ) = ξ̃(n,H, θ)C + ξ̃(n− 1, H, θ)D

+

( h−1∑
k=0

γ(n+H, k, 0) +
H∑
r=h

ξ(n+H, r, 0)

)
S̃H(θ)

−ξ(n,H, 0), n ≥ 1, (4.18)

−θγ̃(k, k, θ) = γ̃(k, k, θ)C +

( H∑
r=h

ξ(k, r, 0) + δ

k∑
j=0

γ(k, j, 0)

)
Ṽk(θ)

−γ(k, k, 0), 0 ≤ k ≤ h− 1, (4.19)

−θγ̃(n, k, θ) = γ̃(n, k, θ)C + γ̃(n− 1, k, θ)D

−γ(n, k, 0) n ≥ k + 1, 0 ≤ k ≤ h− 1. (4.20)

Now the aim is to perceive the probability vector of the joint probabilities of the queue

content, server content (queue content, type of vacation), and the phase of the arrival

process at any time. However, direct analysis of these is quite challenging. The arbitrary

epoch probabilities determine in terms of service (vacation) completion epoch probabilities

after characterizing the system’s state at the service (vacation) completion epoch. Towards

this end, the following probabilities are defined at service (vacation) completion epoch

while the arrival process is in phase i (1 ≤ i ≤ m).

ξ+
i (n, r) = Pr{At the service completion epoch of a batch of size r,

queue size is n.}, n ≥ 0, h ≤ r ≤ H, (4.21)
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ξ+
i (n) = Pr{At the service completion epoch, queue size is n}

=

H∑
r=h

ξ+
i (n, r), n ≥ 0, (4.22)

γ+
i (n, k) = Pr{At kth type of vacation termination epoch,

queue size is n}, 0 ≤ k ≤ h− 1, n ≥ k, (4.23)

γ+
i (n) = Pr{At vacation termination epoch, queue size is n

=

min(n,h−1)∑
k=0

γ+
i (n, k), n ≥ 0. (4.24)

Consequently, the probability vectors are given as follows

ξ+(n, r) = (ξ+
1 (n, r), ξ+

2 (n, r), ..., ξ+
m(n, r)), n ≥ 0, h ≤ r ≤ H,

γ+(n, k) = (γ+
1 (n, k), γ+

2 (n, k), ..., γ+
m(n, k)), n ≥ k, 0 ≤ k ≤ h− 1,

ξ+(n) = (ξ+
1 (n), ξ+

2 (n), ..., ξ+
m(n)), n ≥ 0,

γ+(n) = (γ+
1 (n), γ+

2 (n), ..., γ+
m(n)), n ≥ 0.

Lemma 4.1. The probability vectors ξ+(n, r), γ+(n, k), ξ(n, r, 0) and γ(n, k, 0) (h ≤ r ≤
H, 0 ≤ k ≤ h− 1) are given by,

ξ+(n, r) = σξ(n, r, 0), n ≥ 0, (4.25)

γ+(n, k) = σγ(n, k, 0), n ≥ k, (4.26)

where σ−1 =
∞∑
m=0

H∑
r=h

ξ(m, r, 0)e+
∞∑
m=0

min(m,h−1)∑
k=0

γ(m, k, 0)e.

Proof. As a result of the fact that ξ+(n, r) and γ+(n, k) are proportional to ξ(n, r, 0) and

γ(n, k, 0), respectively, applying Bayes’ theorem and
∞∑
n=0

H∑
r=h

ξ+(n, r)e+
∞∑
n=0

min(n,h−1)∑
k=0

γ+(n, k)e

=1 the desired outcome is obtained.

Lemma 4.2. R(n, 0)De=
n∑

m=0

m∑
k=0

γ(m, k, 0)e

Proof. using (4.1) and (4.2) after some simplification the intended outcome is accom-

plished.
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Lemma 4.3. The expression for σ−1 is

σ−1 =

1− (1− δ)
h−1∑
n=0

R(n, 0)e

sH

∞∑
n=H+1

(
ξ+(n) + γ+(n)

)
e +

H∑
n=h

(
ξ+(n) + γ+(n)

)
esn

+
h−1∑
n=0

(
ξ+(n)xn + (1− δ)γ+(n)sh + δγ+(n)xn

)
e

. (4.27)

Proof. Post multiplying (4.15)-(4.20) by column vector e and summing them, using Lemma

4.2, after some simplification one can obtain

∞∑
m=0

( H∑
r=h

ξ̃(m, r, θ) +

min(m,h−1)∑
k=0

γ̃(m, k, θ)
)

=
1− S̃H(θ)

θ

∞∑
n=H+1

( H∑
r=h

ξ(n, r, 0) +

h−1∑
k=0

γ(n, k, 0)

)

+

H∑
n=h

( H∑
r=h

ξ(n, r, 0) +

h−1∑
k=0

γ(n, k, 0)

)
1− S̃n(θ)

θ

+

h−1∑
n=0

( H∑
r=h

ξ(n, r, 0) + δ

n∑
k=0

γ(n, k, 0)

)
1− Ṽn(θ)

θ

+(1− δ)1− S̃h(θ)

θ

h−1∑
n=0

n∑
k=0

γ(n, k, 0).

(4.28)

Applying θ → 0 in (4.28) and L’Hôspital’s rule, and (1−δ)
h−1∑
n=0

R(n, 0)e+
∞∑
n=0

H∑
r=h

ξ(n, r)e+

∞∑
n=0

min(n,h−1)∑
k=0

γ(n, k)e=1, after few simplification the desired outcome is obtained.

Further, define a few necessary generating functions, which are as follows:

Π̃i(z, y, θ) =
∞∑
n=0

H∑
r=h

ξ̃(n, r, θ)znyr, (4.29)

Π+
i (z, y) =

∞∑
n=0

H∑
r=h

ξ+
i (n, r)znyr, (4.30)

Ψ+
i (z) =

∞∑
n=0

H∑
r=h

ξ+
i (n, r)zn =

∞∑
n=0

ξ+
i (n)zn = Π+

i (z, 1), (4.31)
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Õi(z, y, θ) =
h−1∑
k=0

∞∑
n=k

γ̃i(n, k, θ)z
nyk, (4.32)

O+
i (z, y) =

h−1∑
k=0

∞∑
n=k

γ+
i (n, k)znyk, (4.33)

O+
i (z) =

h−1∑
k=0

∞∑
n=k

γ+
i (n, k)zn =

∞∑
n=0

min(n,h−1)∑
k=0

γ+
i (n, k)zn =

∞∑
n=0

γ+
i (n)zn,

(4.34)

where, |z| ≤ 1 and |y| ≤ 1. Hence,

Π̃(z, y, θ) = (Π̃1(z, y, θ), Π̃2(z, y, θ), ..., Π̃m(z, y, θ))

Π+(z, y) = (Π+
1 (z, y),Π+

2 (z, y), ...,Π+
m(z, y))

Ψ+(z) = (Ψ+
1 (z),Ψ+

2 (z), ...,Ψ+
m(z))

Õ(z, y, θ) = (Õ1(z, y, θ), Õ2(z, y, θ), ..., Õm(z, y, θ)

O+(z, y) = (O+
1 (z, y), O+

2 (z, y), ..., O+
m(z, y))

O+(z) = (O+
1 (z), O+

2 (z), ..., O+
m(z))

Lemma 4.4.

O+(z) =
∞∑
n=0

γ+(n)zn =
h−1∑
k=0

(ξ+(k) + δγ+(k))B(k)(z)zk (4.35)

Proof. Equations (4.19) and (4.20) are multiplied by the appropriate powers of z and y

and added throughout the range of n and k, hence, the following expression is obtained

Õ(z, y, θ)(−θI − (C +Dz)) =
h−1∑
k=0

( H∑
r=h

ξ(k, r, 0) + δ
k∑
j=0

γ(j, k, 0)

)
Ṽk(θ)z

kyk

−
h−1∑
k=0

∞∑
n=k

γ(n, k, 0)znyk. (4.36)

If the eigenvalues of −(C +Dz) are α1(z), α2(z), .., αm(z) and ε1(z), ε2(z), ..., εm(z) be the

corresponding eigenvectors, then

−(C +Dz)εi(z) = αi(z)εi(z), 1 ≤ i ≤ m. (4.37)

Now substituting θ = αi(z) in (4.36) and post multiplying by εi(z), using Lemma 4.1 and

Lemma 4.3 one can get

h−1∑
k=0

∞∑
n=k

γ+(n, k)znykεi(z) =
h−1∑
k=0

(ξ+(k) + δγ+(k))Ṽk(αi(z))εi(z)z
kyk, (4.38)
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Equation (4.38) is true for all αi(z), 1 ≤ i ≤ m, hence

h−1∑
k=0

∞∑
n=k

γ+(n, k)znyk =
h−1∑
k=0

(ξ+(k) + δγ+(k))∆(z)diag{Ṽk(αi(z))}mi=1(∆(z))−1zkyk.

(4.39)

where ∆(z) = (ε1(z), ε2(z), ..., εm(z)) and diag{Ṽk(αi(z))}mi=1 is a diagonal matrix whose

(i, i) entry is Ṽk(αi(z)), i = 1, 2, ...,m. Further, define

(B
(k)
l (x))i,j = Pr{Given a departure at time 0 which left k costumer in the queue,

kth type of vacation begins and the arrival process is in phase i

at the end of the kth type of vacation occurs no

later than time x, with the arrival process is in

phase j, and during the kth vacation

type l customers arrive}, 0 ≤ k ≤ h− 1.

Let B(k)(z) be the probability generating function of B
(k)
l = (B

(k)
l (x))i,j , and hence,

B(k)(z) =
∞∑
l=0

B
(k)
l zl =

∫∞
0 e−(C+Dz)tvk(t)dt = ∆(z)diag{Ṽk(αi(z))}mi=1(∆(z))−1, 0 ≤ k ≤

h− 1.

Hence, equation (4.39) expresses as,

h−1∑
k=0

∞∑
n=k

γ+(n, k)znyk =
h−1∑
k=0

(ξ+(k) + δγ+(k))B(k)(z)zkyk. (4.40)

Substituting y = 1 in (4.40) the desired result (4.35) is obtained.

Multiplying (4.15)-(4.18) by the appropriate powers of z and y and adding the results over

the range of n and r, the following expression is obtained.
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Π̃(z, y, θ)(−θI − (C +Dz)) = (1− δ)
h−1∑
n=0

n∑
k=0

γ(n, k, 0)D̃h−nS̃h(θ)yh

+
H∑
r=h

( h−1∑
k=0

γ(r, k, 0) +
H∑
r=h

ξ(r, j, 0)

)
S̃r(θ)y

r (4.41)

+
∞∑

n=H+1

( h−1∑
k=0

γ(n, k, 0) +
H∑
r=h

ξ(n, r, 0)

)
S̃H(θ)zn−HyH

−
∞∑
n=0

H∑
r=h

ξ(n, r, 0)znyr,

where D̃ = (−C)−1D. Now substituting θ = αi(z) in (4.41) and post multiplying by εi(z),

using Lemma 4.1 and Lemma 4.3 the following expression is obtained

∞∑
n=0

H∑
r=h

ξ+(n, r)znyrεi(z) = (1− δ)
h−1∑
n=0

γ+(n)D̃h−nS̃h(αi(z))εi(z)y
h

+
H∑
r=h

(
γ+(r) + ξ+(r)

)
S̃r(αi(z))εi(z)y

r

+
∞∑

n=H+1

(
γ+(n) + ξ+(n)

)
S̃H(αi(z))εi(z)z

n−HyH .

(4.42)

Equation (4.42) is true for all αi(z), 1 ≤ i ≤ m, hence

∞∑
n=0

H∑
r=h

ξ+(n, r)znyr = (1− δ)
h−1∑
n=0

γ+(n)D̃h−n∆(z)diag{S̃h(αi(z))}mi=1(∆(z))
−1
yh

+

H∑
r=h

(
γ+(r) + ξ+(r)

)
∆(z)diag{S̃r(αi(z))}mi=1(∆(z))

−1
yr (4.43)

+

∞∑
n=H+1

(
γ+(n) + ξ+(n)

)
∆(z)diag{S̃H(αi(z))}mi=1(∆(z))

−1
zn−HyH .
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Further, define

(A
(r)
l (x))i,j = Pr{Given a departure at time 0 which left r

(h ≤ r ≤ H) costumer in the queue and the arrival process,

is in phase i, next departure occurs no later than

time x with the arrival process is in phase j, and during the

service time of r customers l customers arrive}.

Let A(r)(z) be the probability generating function of A
(r)
l = (A

(r)
l (x))i,j , and hence,

A(r)(z) =
∞∑
l=0

A
(r)
l zl =

∫∞
0 e−(C+Dz)tsr(t)dt = ∆(z)diag{S̃r(αi(z))}mi=1(∆(z))−1, h ≤ r ≤

H.

Substituting y = 1 in (4.42) and using Lemma 4.4 and equation (4.31) the following result

is obtained

Ψ+(z) =

{ h−1∑
n=0

[
(ξ+(n) + δγ+(n))

(
B(n)(z)− I

)
A(H)(z)zn

+(1− δ)γ+(n)
(
D̃h−nA(h)(z)zH −A(H)(z)zn

)]
+
H−1∑
n=h

(γ+(n) + ξ+(n))
(
A(n)(z)zH −A(H)(z)zn

)}
zHI −A(H)(z)

. (4.44)

Now using (4.44) in (4.42) after algebraic manipulation the following expression is obtained,

Π+(z, y) =

h−1∑
n=0

[
(1− δ)γ+(n)

(
D̃h−nzHA(h)(z)yh −A(H)(z)znyH

)
+(1− δ)γ+(n)D̃h−nA(h)(z)A(H)(z)

(
yH − yh

)
+yH(ξ+(n) + δγ+(n))

(
B(n)(z)− I

)
A(H)(z)zn

]
+
H−1∑
n=h

(
γ+(n) + ξ+(n)

)(
zHynA(n)(z)

+
(
yH − yn

)
A(n)(z)A(H)(z)− yHA(H)(z)zn

)
zHI −A(H)(z)

. (4.45)

The above bivariate vector generating function given in (4.45) contains H unknown vectors

{ξ+(n)}H−1
n=0 , i.e., total mH unknowns {ξ+

i (n)}H−1
n=0 , 1 ≤ i ≤ m which has to be determined

first. From (4.45), the bivariate generating function Π+(z, y) has been represented in

compact form, excluding the H unknowns {ξ+(n)}H−1
n=0 . Additionally, if ξ+(k) (0 ≤ k ≤
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h − 1) are known then from Lemma 4.4 the probability vectors γ+(n, k) (0 ≤ k ≤ h − 1)

are known. As a result, in order to determine all of the probability vectors at the service

(vacation) completion epoch, it is necessary to identify the unknowns {ξ+(n)}H−1
n=0 .

4.3.1 Procedure of obtaining the unknowns ξ+(n) (0 ≤ n ≤ H − 1)

Consider S̃r(θ) and Ṽk(θ) both as rational function. Then each element of A(r)(z) (h ≤
r ≤ H) and B(k)(z) (0 ≤ k ≤ h − 1) are rational functions having same denominator

say d(r)(z) (h ≤ r ≤ H) and d(k)(z) (0 ≤ k ≤ h − 1), respectively. Assign the (i, j)-th

element of A(r)(z) say
f
(r)
i,j (z)

d(r)(z)
, 1 ≤ i, j ≤ m, and the (i, j)-th element of B(k)(z) say

f
(k)
i,j (z)

d(k)(z)
,

1 ≤ i, j ≤ m. Consequently, the (i, j)-th element of zHI −A(H)(z) is

(zHI −A(H)(z))i,j =
νi,j(z)

d(H)(z)
, (4.46)

where

νi,j(z) =

zHd(H)(z)− f (H)
i,j (z), i = j,

−f (H)
i,j (z), i 6= j.

Hence, from (4.44) m system of equations are obtained in the matrix form

Ψ+(z)M(z) = Ω(z), (4.47)

where (i, j)-th entry of the matrix M(z) is νi,j(z), and Ω(z) = (Ω1(z),Ω2(z), ...,Ωm(z))T

is an m× 1 column matrix such that

Ωj(z) =

(1− δ)
( h−1∏
r=0

d(r)(z)
)( H−1∏

r=h+1

d(r)(z)
) h−1∑
n=0

m∑
i=1

γ+i (n)

(
zH

m∑
l=1

d̃
(h−n)
i,l f

(h)
l,j (z)d(H)(z)

−znd(h)(z)f (H)
i,j (z)

)
+

H−1∏
r=h

d(r)(z)

h−1∑
n=0

m∑
i=1

(ξ+i (n)

+δγ+i (n))

m∑
l=1

u
(n)
i,l (z)f

(H)
l,j (z)zn

h−1∏
r=0,r 6=n

d(r)(z)

+

h−1∑
r=0

d(r)(z)

H−1∑
n=h

m∑
i=1

(ξ+i (n) + γ+i (n))

(
zHd(H)(z)f

(n)
i,j (z)

−znf (H)
i,j (z)d(n)(z)

) H−1∏
r=h,r 6=n

d(r)(z)

∏H−1
r=0 d(r)(z)

, 1 ≤ j ≤ m,

(4.48)
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where u
(k)
i,j (z) = f

(k)
i,j (z) − d(k)(z), i 6= j, 0 ≤ k ≤ h − 1 and u

(k)
i,j (z) = f

(k)
i,j (z), i = j,

0 ≤ k ≤ h − 1. d̃
(h−n)
k,l is the (k, l)-th element of D̃h−n. To solve the system of equations

given in (4.47), Cramer’s rule is applied and the following result is obtained as follows.

Ψ+
j (z) =

|Mj(z)|
|M(z)|

, 1 ≤ j ≤ m, (4.49)

[Mj(z)]k,l =

Ωk(z), j = l,

νl,k(z), j 6= l.

Suppose that |M(z)| is a non-zero polynomial in variable z must posses a nonzero coefficient

of the power of z. It is clear to observe that |zHI−A(H)(z)| = |M(z)|
(d(H)(z))m

has precisely mH

zeros in {z : |z| ≤ 1} say p1, p2, ..., pl with multiplicity q1, q2, ..., ql, respectively,
(
where

(l ≤ mH−1) and
l∑

i=1
qi = (mH−1)

)
and pH = 1 is a simple zero. Since, Ψ+

j (z) is analytic

in |z| ≤ 1, therefore, these zeros are also the zeros of the numerator of Ψ+
j (z). Hence,

taking one component of Ψ+(z), say Ψ+
j (z) (1 ≤ j ≤ m), mH − 1 equations are obtained

as follows [
di−1

dzi−1
|Mj(z)|

]
z=px

= 0, 1 ≤ x ≤ l & 1 ≤ i ≤ qj , (4.50)

where d0

dz0
h(z) = h(z).

One more equation is obtained by the normalization condition Ψ+(1)e +O+(1)e = 1, i.e,

m∑
j=1

[
d

dz
|Mj(z)|

]
z=1

+

[
d

dz
|M(z)|

]
z=1

h−1∑
k=0

(ξ+(k) + δγ+(k))e =

[
d

dz
|M(z)|

]
z=1

. (4.51)

Solving (4.50) and (4.51) together mH unknowns ξ+
j (n) (1 ≤ j ≤ m, 0 ≤ n ≤ H − 1) are

obtained.

Theorem 4.5. The probability vectors of the joint probability of queue and server content

are given by

ξ+(n, h) =

(
(1− δ)

h−1∑
m=0

γ+(m)D̃h−m + γ+(h) + ξ+(h)

)
A(h)
n , (4.52)

ξ+(n, r) =

(
γ+(r) + ξ+(r)

)
A(r)
n , h+ 1 ≤ r ≤ H − 1. (4.53)
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Proof. Using (4.30) in (4.45), then collecting the coefficients of yr (h ≤ r ≤ H − 1), one

can get

coefficient of yh :

∞∑
n=0

ξ+(n, h)zn =

(
(1− δ)

h−1∑
m=0

γ+(m)D̃h−m + γ+(h) + ξ+(h)

)
A(h)(z),

(4.54)

coefficient of yr :

∞∑
n=0

ξ+(n, r)zn =

(
γ+(r) + ξ+(r)

)
A(r)(z), h+ 1 ≤ r ≤ H − 1. (4.55)

Accumulating the coefficients of zn, from both side of (4.54) and (4.55), the desired results

(4.52) and (4.53) are obtained.

Now the current objective is to collect the remaining probability vectors ξ+(n,H) (n ≥ 0).

Towards this end, using (4.30) in (4.45) and then collecting the coefficients of yH one can

get

∞∑
n=0

ξ+(n,H)zn =

A(H)(z)

{ h−1∑
n=0

[
(ξ+(n) + δγ+(n))(B(n)(z)− I)zn

+(1− δ)γ+(n)(D̃h−nA(h)(z)− znI)

]
+
H−1∑
n=h

(γ+(n) + ξ+(n))(A(n)(z)− znI)

}
zHI −A(H)(z)

. (4.56)

Assign a symbol
∞∑
n=0

ξ+(n,H)zn as £+(z) = (£+
1 (z),£+

2 (z), ...,£+
m(z)), and replacing

Ψ+(z) and Ωj(z) by £+(z) and Θj(z), respectively, where Θj(z), (1 ≤ j ≤ m) is given by

Θj(z) =

(1− δ)
( h−1∏
r=0

d(r)(z)
)( H−1∏

r=h+1

d(r)(z)
) h−1∑
n=0

m∑
i=1

γ+i (n)

( m∑
w=1

m∑
l=1

d̃
(h−n)
i,l f

(h)
l,w (z)f

(H)
w,j (z)

−znd(h)(z)f (H)
i,j (z)

)
+

H−1∏
r=h

d(r)(z)

h−1∑
n=0

m∑
i=1

(ξ+i (n)

+δγ+i (n))

m∑
l=1

u
(n)
i,l (z)f

(H)
l,j (z)zn

h−1∏
r=0,r 6=n

d(r)(z)

+

h−1∏
r=0

d(r)(z)

H−1∑
n=h

m∑
i=1

(ξ+i (n) + γ+i (n))

m∑
w=1

(
f
(n)
i,w (z)f

(H)
w,j (z)

−znf (H)
i,j (z)d(n)(z)

) H−1∏
r=h,r 6=n

d(r)(z)

∏H−1
r=0 d(r)(z)

, 1 ≤ j ≤ m.

(4.57)
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Then £+
j (z) is expressed as

£+
j (z) =

|Nj(z)|
|M(z)|

, 1 ≤ j ≤ m, (4.58)

where,

[Nj(z)]k,l =

Θk(z), j = l,

νl,k(z), j 6= l.

It is assumed that degree of |Nj(z)| is d̂j and degree of |M(z)| is d̂.

The zeros of |Nj(z)| of modules with more than one must be known in order to derive the

probability vectors ξ+(n,H) (n ≥ 0).

Since (4.56) is analytic, in |z| ≤ 1, the roots of |M(z)| lying in |z| ≤ 1 are also the roots

of |Nj(z)|, hence, the roots lying in |z| ≤ 1 can not be used to calculate ξ+(n,H) (n ≥ 0).

Assume that β1, β2, ..., βl are the zeros of |M(z)| of modules greater than one having mul-

tiplicity η1, η2, ..., ηl, respectively, and
l∑

j=1
ηj < d̂. Here, two cases arrise

Case A: d̂ ≤ d̂j
Now applying the partial fraction method on (4.58), £+

j (z) can be written as,

£+
j (z) =

d̂j−d̂∑
i=0

%i,jz
i +

l∑
w=1

ηw∑
i=1

Bi,w,j
(z − βw)ηw−i+1

, (4.59)

where

Bi,w,j =
1

(i− 1)!

[
di−1

dzi−1

( |Nj(z)| d
ηw

dzηw (z − βw)ηw

dηw
dzηw |M(z)|

)]
z=βw

, w = 1, 2, ..., l, i = 1, 2, ..., ηw,

j = 1, 2, ...,m.

Collecting the coefficients of zn (n ≥ 0) from both side of (4.59) for (1 ≤ j ≤ m) one can

obtain

ξ+
j (n,H) =


%n,j +

l∑
w=1

ηw∑
i=1

Bi,w,j

(−1)ηw−i+1βηw+n−i+1
w

(
ηw−i+n
ηw−i

)
, 0 ≤ n ≤ d̂j − d̂,

l∑
w=1

ηw∑
i=1

Bi,w,j

(−1)ηw−i+1βηw+n−i+1
w

(
ηw−i+n
ηw−i

)
, n > d̂j − d̂.
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Case B : d̂ > d̂j

Removing the first summation term from the right hand side of (4.59) one can have

ξ+
j (n,H) =

l∑
w=1

ηw∑
i=1

Bi,w,j

(−1)ηw−i+1βηw+n−i+1
w

(
ηw − i+ n

ηw − i

)
, n ≥ 0. (4.60)

Theorem 4.6. Arbitrary epoch probability vectors are given by,

R(n, 0) =

n∑
m=0

γ+(m)D̃n−m(−C)−1

E
, 0 ≤ n ≤ h− 1 (exist only for SV ) (4.61)

ξ(0, h) = (1− δ)R(h− 1, 0)D +

(
ξ+(h) + γ+(h)− ξ+(0, h)

E

)
(−C)−1, n ≥ 0,

(4.62)

ξ(0, r) =

(
ξ+(r) + γ+(r)− ξ+(0, r)

E

)
(−C)−1, n ≥ 0, h+ 1 ≤ r ≤ H − 1, (4.63)

ξ(n, r) =

(
ξ(n− 1, r)D − ξ+(n, r)

E

)
(−C)−1, n ≥ 1, (4.64)

ξ(n,H) =

(
ξ(n− 1, H)D +

ξ+(n+H) + γ+(n+H)− ξ+(n,H)

E

)
(−C)−1, n ≥ 0,

(4.65)

γ(k, k) =

(
ξ+(k) + δγ+(k)− γ+(k, k)

E

)
(−C)−1, 0 ≤ k ≤ h− 1, (4.66)

γ(n, k) =

(
γ(n− 1, k)− γ+(n, k)

E

)
(−C)−1, n ≥ k + 1, 0 ≤ k ≤ h− 1, (4.67)

where E = ŵ + (1− δ)
h−1∑
n=0

n∑
m=0

γ+(m)D̃(n−m)(−C)−1e,

ŵ = sH
∞∑

n=H+1

(
ξ+(n)+γ+(n)

)
e+

H∑
n=h

(
ξ+(n)+γ+(n)

)
esn+

h−1∑
n=0

(
ξ+(n)exn+(1−δ)γ+(n)esh+

δγ+(n)exn
)
.

Proof. Dividing equation (4.1) and (4.2) by σ−1 after simple algebraic manipulation, equa-

tion (4.61) is obtained. Further, taking θ → 0 in (4.15)-(4.20) and then diving by σ−1

after simple algebraic manipulation desired outcome (4.62)-(4.67) is obtained.

4.4 Marginal Probabilities

Some marginal probabilities are given as follows:
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1. Queue length distribution is given by

P queuen =


(1− δ)R(n, 0)e +

H∑
r=h

ξ(n, r)e +
min(n,h−1)∑

k=0

γ(n, k)e, 0 ≤ n ≤ h− 1,

H∑
r=h

ξ(n, r)e +
min(n,h−1)∑

k=0

γ(n, k)e, n ≥ h.

2. The probability that the server is in dormant state (P dor)=
h−1∑
n=0

R(n, 0)e.

3. Probability that r customers are with the server (P serr )=
∞∑
n=0

ξ(n, r)e, h ≤ r ≤ H.

4. Probability that server is in kth type of vacation (Q
[k]
vac)=

∞∑
n=k

γ(n, k)e, 0 ≤ k ≤ h−1.

5. The probability that the server is busy (Pbusy)=
H∑
r=h

∞∑
n=0

ξ(n, r)e.

6. The probability that the server is on vacation (Qvac)=
h−1∑
k=0

∞∑
n=k

γ(n, k)e.

4.5 Performance measure

Performance measures are presented for observing the system performance. It helps the

system manager for observe the system behavior so that he can modify the system for more

efficient result. In this section, a significant performance measures are obtained which are

as follows.

1. The expected number in the queue (Lq) = (1− δ)
h−1∑
n=0

nR(n, 0)e+
∞∑
n=0

H∑
r=h

nξ(n, r)e+

h−1∑
k=0

∞∑
n=k

nγ(n, k)e=(1− δ)
h−1∑
n=0

nP queuen +
∞∑

n=h−δh
nP queuen .

2. The expected number in the system (Ls) = (1 − δ)
h−1∑
n=0

nR(n, 0)e +
∞∑
n=0

H∑
r=h

(n +

r)ξ(n, r)e +
h−1∑
k=0

∞∑
n=k

nγ(n, k)e.

3. The expected waiting time of a customer in the queue (Wq) =
Lq
λ .

4. The expected waiting time of a customer in the system (Ws) =Ls
λ .

5. Expected number with the server when server is busy (Lser) =
H∑
r=h

(rP serr /Pbusy).
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6. Expected type of vacation when server is on vacation (Lvac) =
h−1∑
k=0

(kQ
[k]
vac/Qvac).

4.6 Numerical results

The main objective for presenting this section is to validate the mathematical results,

derived in the previous section, with some numerical results. These results are displayed

in the tabular and graphical form, considering the service (vacation) time distribution

as phase (PH) - type, which is usually represented as (α, T ), where α is a row vector of

order 1× n, and T is a square matrix of order n. The joint probabilities with predefined

notations are presented for MAP/G
(5,9)
r /1 queue with queue size dependent SV (MV) in

the tabular form in Table 4.1 - Table 4.8. The input parameters are given below.

TheMAP is represented by the matrices C =

(
−91.8125 14.1250

49.4375 −77.6875

)
andD =

(
49.4375 28.2500

7.0625 21.1875

)
.

The service time of each batch under service follow the Erlang (E3) distribution hav-

ing PH-type representation (αr, Tr), where Tr=


−µr µr 0.0

0.0 −µr µr

0.0 0.0 −µr

, µr = r(5.2)
2 , αr=

(
1.0 0.0 0.0,

)
, 5 ≤ r ≤ 9. The vacation time of the server follows E2 distribution, hav-

ing PH-type representation (αk, Tk), Tk=

(
−νk νk

0.0 −νk

)
, νk = (k + 1.0)20.5, 0 ≤ k ≤ 4.

αk=
(

1.0 0.0
)

, 0 ≤ k ≤ 4. ξ=[0.57143, 0.42857], λ = 56.50.
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Table 4.1: Joint probabilities (queue size and server content) at service completion
epoch for SV

n ξ+1 (n, 5) ξ+2 (n, 5) ξ+1 (n, 6) ξ+2 (n, 6) ξ+1 (n, 7) ξ+2 (n, 7) ξ+1 (n, 8) ξ+2 (n, 8) ξ+1 (n, 9) ξ+2 (n, 9)

0 0.00243 0.00173 0.00227 0.00162 0.00256 0.00183 0.00274 0.00196 0.00283 0.00203

1 0.00430 0.00317 0.00371 0.00275 0.00390 0.00289 0.00389 0.00289 0.00626 0.00459

2 0.00508 0.00379 0.00405 0.00304 0.00395 0.00297 0.00368 0.00278 0.00888 0.00659

3 0.00500 0.00376 0.00369 0.00278 0.00334 0.00253 0.00291 0.00221 0.01035 0.00773

4 0.00443 0.00334 0.00302 0.00229 0.00254 0.00193 0.00207 0.00158 0.01086 0.00814

5 0.00366 0.00277 0.00231 0.00175 0.00181 0.00138 0.00137 0.00105 0.01074 0.00807

6 0.00288 0.00219 0.00168 0.00128 0.00122 0.00093 0.00087 0.00066 0.01027 0.00772

7 0.00219 0.00166 0.00118 0.00090 0.00080 0.00061 0.00053 0.00040 0.00964 0.00725

8 0.00162 0.00123 0.00080 0.00061 0.00050 0.00039 0.00031 0.00024 0.00897 0.00675

9 0.00117 0.00089 0.00054 0.00041 0.00031 0.00024 0.00018 0.00014 0.00832 0.00626

10 0.00083 0.00063 0.00035 0.00027 0.00019 0.00015 0.00010 0.00008 0.00773 0.00581

31 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00294 0.00220

32 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00285 0.00214

152 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00046 0.00035

153 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00046 0.00034

302 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00004

303 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00004

372 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00001

373 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00001

442 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001

443 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000

444 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000

459 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000

460 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000

461 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000

≥ 462 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Total 0.0353 0.0265 0.0242 0.0181 0.021 0.0160 0.0188 0.0141 0.363 0.272
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After tabular representation the behavior of the considered model is presented in graphical

form which represents the comparison of the queue size dependent vacation (QSDV) and

queue size independent vacation (QSIV) policy. The following two cases are considered

for the comparison scenario.

Case 1. The QSDV rates are considered as νk = (k + 1)2(1.1), 0 ≤ k ≤ 2.

Case 2. The QSIV rates are considered as νk = ν0, 0 ≤ k ≤ 2.

The vacation time decreases with increasing queue size at vacation initiation epoch for

case 1, however, for Case 2, the vacation time remains constant irrespective of queue size,

at vacation initiation epoch. The other input parameters for Figure 4.1 to Figure 4.2 are

taken as follows.

• The vacation time of the server follows E2 distribution, having PH-type representa-

tion (αk, Tk), Tk=

(
−νk νk

0.0 −νk

)
, αk=

(
1.0 0.0

)
, 0 ≤ k ≤ 2.

• The service time of each batch under service follow the Erlang (E3) distribution

having PH-type representation (αr, Tr), where Tr=


−µr µr 0.0

0.0 −µr µr

0.0 0.0 −µr

, µr = 0.3r

, αr=
(

1.0 0.0 0.0,
)

, 3 ≤ r ≤ 5.

• The MAP is represented by the matrices Cl =

(
−4.657l 1.761l

1.128l −3.941l

)
and Dl =(

1.657l 1.239l

0.872l 1.941l

)
. ξ(Cl +Dl)=0. l=1.0, 1.1,..., 2.0. ξ=[0.4, 0.6].

It is observed from Figure 4.1 to Figure 4.2 that as the effective arrival rate λ increases,

the expected queue length Lq increases in both the cases, this is because increasing the

effective arrival rate increases the traffic intensity, and this behavior reflects the increase in

Lq. Also, it can be marked here, Lq is lower in Case 1 than Case 2 for a fixed λ. Hence, the

consideration of QSDV policy is more versed, because consideration of QSDV minimizes

Lq in comparison to the QSIV.
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Figure 4.1: Effect of λ on Lq

3.0 3.5 4.0 4.5 5.0 5.5
2

3

4

5

6

7

L
q



 Case 2(SV)
 Case 1(SV)

Figure 4.2: Effect of λ on Lq

4.6.1 Deduction of the results for M/M/1 queue

The model considered in this chapter reduces to M/M/1 model if a = 1, b = 1, C = −λ,

D = λ, service time follows exponential distribution and the vacation rate is taken to be

considerably large (i.e., vacation time almost tends to zero). Table 4.9 and Table 4.10 are

presented to show the values of Lq, Ws, L
ser and Pidle which are obtained for M/M/1

model for the following two cases.

Case I: Results for M/M/1 model deduced from the analytical results presented in this

chapter by considering C = −λ, D = λ, a = b = 1, exponential service time distribution

and ν0 −→∞ (ν0 = 200000).

Case II: Results for classical M/M/1 model, for which performance measures Lq, Ws and

probability Pidle are calculated using standard formula Lq = λ2

µ1(µ1−λ) , Ws = 1
µ1−λ and

Pidle = 1− ρ.

Table 4.9 and Table 4.10 are described as follows.

• 1st and 2nd column present the values of input parameters λ and µ1, respectively,

for which ρ varies from 0.4166 to 0.833.

• 3rd, 4th, 5th and 6th column present the values of Lq, Ws, L
ser and Pidle, respectively,

for Case I.

• 7th, 8th and 9th column present the values of Lq, Ws and Pidle, respectively, for

Case II.
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It is clearly observed from Table 4.9 and Table 4.10 that the results deduced from current

study as a special case matches exactly with the results obtained from M/M/1 model.

Also, the value of Lser calculated from the current study as a special case always gives the

value 1 which is obvious and shows the correctness of present study.

Table 4.9: Table for Case I and Case II, for SV

Case I Case II

λ µ1 Lq Ws Lser Pidle Lq Ws Pidle

5 6 4.1666658 0.9999998 1.0000000 0.1666667 4.1666667 1.0000000 0.1666667
5 9 0.6944444 0.2500000 1.0000000 0.4444444 0.6944444 0.2500000 0.4444444
5 12 0.2976190 0.1428571 1.0000000 0.5833333 0.2976190 0.1428571 0.5833333

Table 4.10: Table for Case I and Case II, for MV

Case I Case II

λ µ1 Lq Ws Lser Pidle Lq Ws Pidle

5 6 4.1666691 1.0000005 1.0000000 0.1666667 4.1666667 1.0000000 0.1666667
5 9 0.6944469 0.2500005 1.0000000 0.4444444 0.6944444 0.2500000 0.4444444
5 12 0.2976215 0.1428576 1.0000000 0.5833333 0.2976190 0.1428571 0.5833333

4.7 Cost model

A cost model is also presented in this section which helps the manager to determine the

optimal value of desired input parameters . The following cost parameters are taken for

this purpose.

Cst≡ Startup cost per customer per unit time.

Cb≡ Holding cost per customer per unit time when the server is busy.

Cv≡ Holding cost per customer per unit time when the server is on vacation.

Cd≡ Holding cost per customer per unit time when the server is dormant (exists only for

SV).

Co≡ Operating cost per customer per unit time. Thus in long run,

total system cost (TSC) = λCst + Cb
∞∑
n=0

b∑
r=a

n ξ(n,r)ePbusy
+ Cv

∞∑
n=0

min(n,a−1)∑
k=0

nγ(n,k)e
Qvac

+

(1− δ)Cd
a−1∑
n=0

nR(n,0)e
P dor

+ CoL
ser.

Figure 4.3 reflects the behavior of TSC for different values of a (1 ≤ a ≤ 10) for SV and

for λ= 0.5, 0.9. The maximum capacity of the server is fixed at b = 10. Service time

follows E4 distribution with service rate µr = r
75 , (a ≤ r ≤ b). Vacation time follows E2
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distribution with vacation rate νk = (2k+1)0.3, (0 ≤ k ≤ a−1). The MAP representation

is taken as follows



C =

−0.8125 0.1250

0.4375 −0.6875

 and D =

0.4375 0.2500

0.0625 0.1875

 , for λ = 0.5,

C =

−1.4625 0.2250

0.7875 −1.2375

 and D =

0.7875 0.4500

0.1125 0.3375

 , for λ = 0.9.

TSC are calculated with the following cost parameters: Cst = 0.4, Cb = 1.2, Cv = 1.5,

Cd = (1− δ)1.5 and Co = 4.2. Here our objective is to identify the optimum value of a at

which TSC is minimum. From Figure 4.3, it is clear that for λ = 0.5 (0.9) the optimum

value for a is 2 (3) and the corresponding minimum value of TSC is 35.409 (52.838).

Similarely, Figure 4.4 depicts the behavior of TSC for different values of a (1 ≤ a ≤ 10)

for MV and for λ= 0.5 (0.9). The input parameters, cost parameters and the service

(vacation) time distribution are taken same as taken for Figure 4.3. For λ = 0.5 (0.9),

the optimum value for a is 3 (4) and the corresponding minimum value of TSC is 33.913

(49.825). The minimum values of TSC, in each figure, are indicated by arrow sign.
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Figure 4.3: Effect of a on TSC for SV
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Figure 4.4: Effect of a on TSC for
MV

4.8 Conclusion

An infinite capacity MAP/G
(a,b)
r /1 queue with queue size dependent SV (MV) is discussed

in this chapter. Bivariate vector generating function method and the supplementary vari-

able approach have been used to extract steady state joint probabilities of queue content,
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server content (type of vacation) and the phase of arrival process. The present model can

be extended for analyzing different queueing models with batch Markovian arrival pro-

cess (BMAP) and different vacation policies (viz., BMAP/G
(a,b)
r /1 queue with queue size

dependent single and multiple working vacation), which is left for the future study.
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