Chapter 2

Analysis of M/M(®?) /1 queue with
single and multiple vacation for

steady state joint distributions

2.1 Introduction

The bulk service queue with vacation has a remarkable influence in real life problems.
For example, in a transport system, when a ship undergoes maintenance then it may
be designed as the vacation model by considering the maintenance time as the vacation
time. The bulk service queues together with SV and MV have been studied by Lee et
al. [24], Sikdar and Gupta [99], Sikdar and Samanta [100], etc. In [24] authors presented
the analysis of M/G/1 queue in which customers are served in batches of fixed size.
Sikdar and Gupta [99] analyzed M* /GY /1/N queue and obtained stationary queue length
distribution. Sikdar and Samanta [100] considered BM AP/GY /1/N queue, they obtained
queue length distribution at service (vacation) completion as well as arbitrary epoch.
Recently, Gupta et al. [101] analyzed M/ G\ /1/N queue with SV and MV and obtained

the joint distributions at various epoch.

In this chapter, bulk service Poisson queue has been considered in which the arrivals and
departure both follow Poisson distribution, i.e., the inter-arrival time and the service time
both are exponentially distributed. A single server serves the customers in batches with

a minimum threshold value a and a maximum capacity b following general bulk service

The content of this chapter is published in OPSEARCH, Springer.
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(GBS) rule. At the end of a service if the server finds that the queue length £ is less than
a, then the server will go for a k" type of vacation of random length following exponential
distribution, otherwise, it will keep on servicing customers as per the GBS rule. Using
the probability generating function (PGF) technique, the joint distribution of queue and
server content (when the server is busy) as well as the joint distribution of queue content
and the type of vacation taken by the server (when the server is on vacation) have been

obtained.

There are few articles available in the literature which motivated the author to analyze the
queueing model under study. It may be remarked here that almost all the literature on
bulk service vacation queues have been discussed which provide only either queue length
distribution or PGF of the queue length, except Choi and Han [91] and Gupta et al.
[101]. In [91], authors obtained the joint distribution of queue and server content when
the server is busy and queue length distribution when the server is on vacation at pre-
arrival and arbitrary epoch for G/M(@?) /1 queue with MV. However, the model under
consideration differ from the model considered by Choi and Han [91] in such a way that
firstly, in [91] authors considered G/M(®?) /1 queue with MV only, whereas this chapter
consider M /M%) /1 queue with both SV and MV, secondly, in [91], authors obtained
the joint distribution of queue and server content when the server is busy and queue
length distribution when the server is on vacation at pre-arrival and arbitrary epoch,
whereas, the joint distribution of queue and server content (when the server is busy)
also the joint distribution of queue content and type of vacation (when the server is on
vacation) have been obtained here. Gupta et al. [101] considered M/ Gt /1/N queue
with SV and MV and derived the joint probabilities of the queue and server content,
also the joint probabilities of the queue content and type of vacation at various epoch.
Infinite buffer M/M(*%) /1 queue with SV and MV has been considered and the required
joint probabilities are obtained, however, the consideration of the infinite buffer queue
makes the model mathematically complex and the mathematical analysis is completely
different from that of Gupta et al. [101]. To the best of the author’s knowledge, the
considered model has not been analyzed so far in the literature for obtaining steady state
joint probabilities of the queue and server content, as well as the joint probabilities of

queue content and the type of vacation for infinite buffer queue.

The rest of the chapter is organized as follows, In Section 2.2 model description is pre-
sented. Using bivariate probability generating function method the steady state joint
probabilities have been obtained in Section 2.3. Section 2.4 presents some marginal prob-

abilities. Section 2.5 presents some important performance measures. For better system
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efficiency the numerical results are discussed in Section 2.6, and the chapter ends with

Section 2.7 where conclusion and future scope is discussed.

2.2 Model description

In this chapter, an infinite buffer, single server, bulk service queue with vacation is consid-
ered. The customers are arriving to the system according to the Poisson process with rate
A. The customers are served in batches according to the general bulk service (GBS) rule.
In GBS rule server serves the customers in batches with minimum threshold limit a(> 1)
and maximum capacity b (b > a). That is, after one service if there are at least [ (I > a)
customers waiting in the queue then the server serves a batch of size min(l,b), otherwise
remain in the idle state (which includes dormant state and/or vacation state) until the
queue length reaches minimum threshold limit a for starting another busy period. The
service time distribution of the batches are exponentially distributed with rate p. Newly
arriving customers are not allowed to join the ongoing service even if there is a free capac-
ity. At the end of a busy period when server finds that the queue length is less than a then
it takes k" type of vacation (where k (0 < k < a — 1) is the number of customers waiting
in the queue at vacation initiation epoch) following exponential vacation time distribution
with rate v. At the end of the vacation if server finds that at least a customers are waiting
in the queue then the server provides service according to the GBS rule, otherwise, it will
remain in dormant state until required number of customers to accumulate in the queue
for providing service, or takes another vacation depending on the vacation policy under
consideration, i.e., either single vacation (SV) or multiple vacation (MV). In this chapter,

SV and MV queues have been studied in an unified way by defining a variable ¢ as follows.

1, for MV,
0, for SV.

)=

The traffic intensity of the system is defined by p = ﬁ(< 1). The considered model is
presented schematically in Figure 2.1 for the case of SV, and in Figure 2.2 for the case of
MV.
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After the service During the dormant period if QL=a //
ifQL2a

After the vacation

After the service if
0<QL(=k)<a-1 if0< QL (=k) <a-1

After the vacation
P ifQL>a

QL = Queue Length

FIGURE 2.1: Schematic representation of the considered model for SV

After the vacation
if0<QL(=k) <a-1
After the service
ifQL>a

After the service if
0<QlL(=k)<a-1

After the vacation
ifQL=>a

~~

QL = Queue Length

FIGURE 2.2: Schematic representation of the considered model for MV

2.3 Steady state analysis

In this section, author obtains the steady state busy period joint distribution of the queue
and server content, and vacation period joint distribution of queue content and type of
vacation taken by the server. To this end, the following notations are defined, at time ¢,

for use in sequel.

e Ny(t): be the number in the queue,
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e N,(t): be the number with the server, when server is busy,

e K (t): be the type of vacation taken by the server, when server is in vacation.

Remark:- It is to be noted here that, Ns(t) = 0 represents that the server is in dormant
state for the case of SV model, and the type of vacation taken by the server denotes that

the queue content (i.e., number present in the queue) at vacation initiation epoch.

Now {(Ng(t), Ns(t)) U (Ng(t), K(t))} constitute two dimensional continuous time Markov
chain with state space {(n,0);0 <n <a—1}J{(n,7);n >0,a <r <b}U{(n,k);0 < k <
a—1,n>k} {(n,r);n>0,a <r <btU{(n,k);0<k<a-1,n>k} for SV and MV,

respectively. Further, define the state probabilities, at time ¢, as follows.

o R,(t) = Pr{Ny(t) =n,Ns(t) =0}, 0 <n <a-—1, (exist only for SV),
o P (t)=Pr{Ny(t)=n,Ng(t) =7}, n>0, a <r <b,

o Q(t)= Pr{Ny(t)=nK(t)=k}, n>k 0<k<a—1.

In steady state, as t — oo, define,
R, = lim R,(t), 0 <n <a-—1 (for SV),
t—ro0
P,,= lim P,,(t), n>0, a<r<b,
t—o00
W= lim QW(t), 0<k<a—1,n>k
t—o0
More preciously, R,, represents the steady state probability that the server is in dormant
state (which exist only for SV) and queue length is n (0 < n < a —1); P, , represents the
steady state joint probability that the server is busy in serving a batch of r (a < r < b)
customers and queue length is n (> 0) and Q% ] represents the steady state joint probability
that the server is in k*" type of vacation and queue length is n > k. Now observing the
system at time ¢ and t 4 dt, the Kolmogorov equations of the model under consideration

are obtained as follows.

dﬁi?t(t) = (1-9) ( — ARy(t) + Q) (t)), (2.1)
dR;t(t) = (1-90) ( — AR, (t) + AR, _1(t) + VkZOQgﬂ(t)) l<n<a—1, (2.2)
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dPy . (t)
dt

Py, (t)
dt
Py (t)
dt
d P (1)
dt

Q1)
dt

dQi(¢)
dt

b
—(A+ 1) Poa(t) + (1 = 6)ARs1 +vZQ[k] )+ 1Y Parlt), (2.3)

—(A+p)Po(t +VZQ[k] —|—,uZPm(t), a+1<r<hb,

— A+ )Py (t) + APy—1,(t), a<r<b-1, n>1,

“ Ot @) Pay(t) + AP (1) + v Z QnLy(®)

b
‘|‘,UZ Pn-i—b,r(t), n=>1,

r=a

(2.6)

k
~(+ ) Qe +MZPM 5@2@%))OSkSa—L(N)
j=0

—O+ Q@) +AQM (1), 0<k<a—1, n>k+1.

(2.8)

Now letting ¢ — oo in (2.1) to (2.8), the corresponding steady state equations are obtained

as follows.

(1-96) ( — ARy + VQ([)O]),

(15)(ARH+ARM+VZQ§1>, 1<n<a-1,

k=0

_()\"i'ﬂ)PO,a (1_5))\Ra 1‘1’1/2@ +szara

k=0
a—1 b

A+ mPoy vy QY+ pd Py atl<r<b,

k=0 j=a

_()‘"’_M)Pn,r"’_)\Pn—l,r: a<r<b-1, n=>1,

a—1 b
_()‘ + :U’)Pn,b + )\Pn—l,b +v Z Qﬂb + Z Pn-‘rb,ra n =1

k=0 r=a

b k
~(A+ )@Y +uZPk,r+5(uZQE3]>, 0<k<a-—1,
r=a 7=0

~A+)QH QM 0<k<a—1, n>k+1.

The normalizing condition is given by

a—1 oo

a—1
D) DUEES DO I LRIED S !
n=0

n=0r=a k=0 n=~k

(2.9)

(2.10)

(2.11)

(2.12)
(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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The primary objective of the author is to solve (2.9) - (2.16) along with (2.17) for obtaining
the required joint probabilities. Towards this end, the bivariate probability generating
function is defined as follows:

R(z) + P(2,y) + Q(2,y), [2] <1, |y| <1, where

R(z) = > Rp2", |2 <1, (2.18)
© b

P(z,y) = >3 Pus2™y, 2 <1, Jyl <1, (2.19)
n=0r=a
a—1 oo

Qlzy) = Y D QWb |21 <1, y| <1 (2.20)
k=0 n==k

Substituting y = 1 in (2.19) and (2.20), respectively, the following expressions are obtained.

b
P(z,1) = iZPn,Tz ZP* "= P*z2), |7 <1, (2.21)

n=0r=a
a—1 oo oo min(n,a—1) o
and Q(z,1) = Y Y QW Z Z QW= =" Qne" = Q*(2),
k=0n=~k n=0
H<1, (222)
where
b
- Z Py, n >0, (2.23)
and
min(n,a—1)
%= 3 alflnzo (2:24)
Lemma 2.1. For the case of SV the following result is obtained
AR, =v> Qf, 0<n<a-L (2.25)

r=0

Proof. From equation (2.9) and (2.10), recursively the desired result (2.25) is obtained. [

In order to obtain steady state joint probabilities, multiplying (2.11)-(2.16) by proper

power of z and y and summing over the range of n,r and k, and using (2.21), (2.22) and
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Lemma 2.1 (for SV), the following expressions are obtained.

bz vQr +uP*)y + ( zyZQ* “
+y 1/ ZQ
b—1
+uy’ (P*(2) = ) Piz")
P(z,y) = ETpwa—— n=0 2l <1, |y <1, (2.26)
S (uPy 4 5v07) 2y
Q=y) = Sy <L k<t (2.27)

Lemma 2.2. For the case of SV the probabilities Q%] (0<k<a—1)and Pf (0<k<

a — 1) are connected by the following relation

P*
QI = % 0<k<a—1andn>k. (2.28)

Proof. From (2.27), after simplification, the following expression is obtained,

H - « k., k _ v
Q(z,y) = )\kZszy Z -, wherea—l—i-x. (2.29)

Now equating (2.20) and (2.29) and then collecting the coefficients of y* (0 < k < a — 1)

the following expression is obtained,

> P
3 QMen Z M’;‘L k" 0<k<a-l. (2.30)

Finally, collecting the coefficients of 2" from both the sides of (2.30), desired result (2.28)

O

is obtained.

Lemma 2.3. For the case of MV the probabilities Qw (0<k<a—1)and Pf (0<k

a — 1) are connected by the following relation

IN

</“D* Ny E a] kQ[J])
L I J=0
Qn - )\Oén k+1 )

0<k<a-1,n>k. (2.31)



Chapter 2. M /MY /1 queue with SV (MV) 25

Proof. From the equation (2.15) and (2.16), and using (2.23), after certain manipulation
desired result (2.31) is obtained. O

Hence, from Lemma 2.2 (or Lemma 2.3) the joint probabilities Qgﬁ] 0<k<a—-1,n>k)
are known if P} (0 <n <a — 1) are known.

Now substituting y = 1 in (2.27) the following expression is obtained.

a—1
kZ::O <,LLPI:< + 51/@2) Sk
@E) = B Hst (2.32)

Substituting y = 1 in (2.26) and using (2.24), (2.32), Lemma 2.2 (or Lemma 2.3) after

simplification, one can get,

P*(z) = |z] <1, (2.33)

where

b—1 b—1 min(n,a—1) P b—1
()\—I—V—)\z)u(zbZPﬁ-l-l/Z ,\anifkﬂ(zb—zn)_ Zpﬁkzn>
r=a n=0 k=0 n=0

a—1
+uv Y, P,;‘zk, for SV,
k=0

b—1 a—1 .
H(z) = A+v—X\z2) [ Z <1/zb kzo ak_JQggk] + Msz]’-k>
j=a =
min(n,a—1)

= * M k—nkl _n
- Zo <,uPnz +v o Y d"TQp 2 >}

k=0
a—1 k ) .
+v ;;o (MP,;"zk + V]Z:O oﬂngﬂzk>, for MV,

and L(z) = A4+ v —X2)(2°(\ + o — A2) — p).

It is to be noted here that the only unknown terms in Q*(z) and P*(z), as appeared in
(2.32) and (2.33), respectively, are P¥ (0 < n < b —1). Therefore, one can conclude here
that once P (0 < n < b—1) is known completely one can derive the steady state joint
probabilities Py, (n > 0,a <7 <b), Q¥ (0 <k <a—1,n > k) from (2.26), Lemma 2.2

(or Lemma 2.3). Hence forth, next section is dedicated for derivation of P} (0 <n < b—1).
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2.3.1 Determination of unknown terms P (0 <n <b—1) as appeared in
Pr(z)

To determine the unknowns P} (0 < n < b— 1) the knowledge of the zeros of L(z) inside
and on the unit circle {z € C : |z| = 1} is required. In L(z) the first factor, i.e., (A+v—Az)
is a linear polynomial having zero a (= 1+ § > 1), Therefore, it does not play any role
in getting unknowns P} (0 < n < b—1). To know the nature of the zeros of the second
factor of L(2), i.e., 2(A + p — A2) — p, consider f(2) = (A + p)2 and g(z) = —A2bt — p
and assume that C' be a closed contour defined by |z| = 1 + J, where ¢ is small positive
real number. It can be easily verified that |f(z)|>|g(z)] on C if and only if ﬁ<1.
Henceforth, Rouche’s theorem states that, f(z) + g(2)(=2"(A+p— Az) — p) has exactly b
zeros inside and on the unit circle. Assume these zeros as z1, 29, ..., 2p—1, 2p = 1. Note that
zp = 1 is the only zero of unit modulus of f(z)+ g(z). Therefore, f(z)+ g(z) has only one
zero say zg, out side the unit circle. Hence, L(z) has b zeros inside and on the unit circle
and they are z1, 29, ..., 2p_1, 2p = 1, and has two zeros out side the unit circle, and they are
20 and a. Due to analyticity of P*(z) in |z| < 1 the zeros z; (1 < i < b) of L(z) must be

the zeros of the numerator H(z). Hence,
H(z)=0, i=1,2,..b. (2.34)

Remark: Note that i=b gives the trivial equation, therefore, ultimately from (2.34) (b—1)
equations in b unknowns P (0 <n < b — 1) are obtained.

Now the next objective is to solve equation (2.34) for obtaining the unknowns P} (0 <
n < b—1). It should be noted here that the zeros of L(z), lying inside the unit circle, may
be all distinct or some of them are repeated. Therefore, depending on the nature of the
zeros following two cases are discussed.

Case 1: when all the zeros of L(z) in |z| < 1 are distinct

Assume that all the zeros of L(z) lying inside the unit circle are distinct, i.e., z; # z;
for all i # j and 1 < 4,5 < b—1. Hence, from (2.34) one can derive (b — 1) linearly
independent homogeneous equations in b unknowns P (0 < n < b— 1), which may results
in Py =¢&,P;5,0<n <b-—1, where each &, is known constants. (It is to be noted here
that £y=1).

Case 2: when some of the zeros of L(z) in |2|<1 are repeated

Assume that some of the zeros of L(z) lying inside the unit circle are repeated, and these

repeated zeros are denoted by x1,xo, ..., x; with multiplicity r1, 72, ..., 7, respectively, so
!
that m = > r;. The remaining distinct zeros lying inside the unit circle are denoted by
i=1
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Tin+1, Tm42, -+, Tp—1. Using the property of analyticity of P*(z) in |z| < 1, the following

system of equations are obtained.

H™ () = 0, j=1,2,...,1,i=1,2,..,rj, (2.35)
H(xz;) = 0, i=m+1,m+2,...,b—1, (2.36)

where H"(z) is the n'* derivative of H(z) at z = z, (n > 1) and H%(z) = H(x). Hence,
from (2.35) and (2.36) one can derive (b— 1) linearly independent homogeneous equations
in b unknowns P;(0 <n < b—1). Solving them P} =§¢,FP; (0 <n < b— 1) are obtained,
where each &, is known constants.

Hence, it concludes that all Py (0 <n <b— 1) will be known once Fj is known, which is

derived in the following section.

2.3.1.1 Derivation of Fj

Since H(z) is polynomial of degree (b+ 1) and z; (1 < i < b) are b zeros of H(z), assume
that all (b+ 1) zeros of H(z) are ay, z;(1 <1i <b).
Result 1: The zeros zy of L(z) and «; of H(z) are given by,

b
_ . — 1M
0 = ﬁ—;zz, B=1+7, (2.37)
o b
al_w_;% (2.38)
where
— b—1 min(n,a—1) ¢ a—1 ¢
A+ ) 2 PO+ Sl g 8 of Ay, for SV,
0= b—1 a—q
av Y. Y« ]S[k]—l—auzg—l—;@, 1—1—1/2:0/C bHS[] for MV,
j=a k=0 j=a
(2.39)
b—1 min(n,a—1)
AL Z &+ v Z Z nﬁ’;ﬂ, for SV,
w= bl ol [k] (2.40)
vy Y ks +,uZ§j, for MV,
j=a k=0 j=a

andS[O]:§Sgﬂ:§ %z:: ]kS][.j], 1<k<a-1.
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Proof. Since L(z) and H(z) are polynomials in z of degree (b+2) and (b+ 1), respectively,

hence,
coefficient of 2! of L(z)
sum of all the zeros of L(z) = a+ ) 2z + 20 = — 241
Z P oefficient of 2672 of L(z) (2.41)
fficient of H
sum of all the zeros of H(z Z zi+ap = coefficient of 2° in H(z) (2.42)
~ coefficient of z+!in H (z

which finally led to the derived results (2.37), (2.38) after some algebraic manipulation. [

Lemma 2.4. Sum of the zeros of L(z), which lies inside and on the unit circle {z € C :

|z| = 1}, can never be zero, i.e., Y z; # 0.

b

Proof. From (2.37), z9 = S if Y z; = 0 which means f(z) + g(z) vanishes at z = § which
i=1

is not possible. O

Hence from (2.37) and Lemma (2.4), it is found that zo # S.

Lemma 2.5. The value of Py is given by

a(f‘l_l)(zo_l))‘zal — , fO?“ S‘/,
(a1=D)azoN+par(z0-1) S &tarla1) (oL Y 30 3 —Sher
Pék - (a—l)k(;(?—l))\cu e (2'43)
—= —~ , for MV.
AMor—1)azo+pai(z0—1) ki_:ogk#»al(zofl) ZOJZ ad— kS[J]

Proof. As H(z) and L(z) are the polynomials of degree (b+1) and (b+2), respectively, due
to analyticity of (2.33) in |z| < 1, corresponding to each zero z; (1 <i <b) of L(z), both
H(z) and L(z) must have common factors of the form z — z; (1 < ¢ < b). On canceling
these common factors from H(z) and L(z), and using Case 1 (or Case 2), P*(z) can be

rewritten as,

v~ MB-a)
P = sy s (2.44)

where 7 is any constant. Using P*(0)=F; > 0 in (2.44) after some algebraic manipulation

one can obtain

n=-2 (2.45)
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Using (2.45) in (2.44) one can get

Prs) = — azoPy(z — o)

2] < 1. (2.46)

a1(z —a)(z —2)’

Using (2.46), (2.32), Lemma 2.1 (for SV), Lemma 2.2 (or Lemma 2.3) and the relation
=&, Py (0 <n <b-—1) in the normalizing condition P*(1) + Q*(1) 4+ (1 — §)R(1)=1,

after some algebraic manipulation desired result (2.43) is obtained. O

2.3.2 Determination of the steady state joint probabilities

In this section, the closed form expression for all the required joint probabilities (except
P, p, n > 0 which is obtained in Section 2.3.3) have been obtained in terms of P;. As
Py is already known from Lemma 2.5, these joint probabilities can be obtained in known

terms in Theorem 2.6 and Theorem 2.7.

Theorem 2.6. For the case of single vacation (SV) the steady state joint probabilities R,
0<n<a-1), Q,[f} (0<k<a-1,n>k)and P,, (n>0,a <7 <b—1) are given by,

pér Py

QW = D%, 0<k<a-landn>Fk, (2.47)
~ P,
- >3) 3 N EFEVE (2.45)
r=0 k=0

a min(r,a—1)

P *
vy > )\Zﬁk—k(}‘rl + péa By

Pra = r=0 k=0 Y ., n>0 (2.49)
— Py
)\Zﬁk T+ p&r U
k=0
P, = NTE ,ya+1<r<b-1, whereﬁ:1+x,n20.(2.50)

Proof. Using the relation P; = &,P; (0 < n < b—1) in Lemma 2.2 equation (2.47) is
obtained. Using (2.24) in Lemma 2.1 one have,

ZZQW 0<n<a-1. (2.51)

rOkO
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Using (2.47) in (2.51) desired result (2.48) is obtained.
Using (2.19) in (2.26) comparing the coefficient of y" (a < r < b— 1) one can get

a
VY Qi+ uPr
5=0

[o¢]
D Puat" = szn’ (2.52)
n=0 n=0
o0 o0

* P*
S Pyt = %Zz", a+1<r<b—1. (2.53)
n=0 ﬂ n=0

Now collecting the coefficients of 2™ from both the side of (2.52) and (2.53) one can obtain

a
VY Qi+ P

=0
Pha = JAT n >0, (2.54)
and

* P*
P, = % n>0, a+1<r<b—1. (2.55)

Using (2.24) and (2.47) and the relation Py = &, Py (0 <n <b—1) in (2.54) and (2.55),
respectively, (2.49) and (2.50) are obtained, respectively. O

Theorem 2.7. For the case of multiple vacation (MV) the steady state joint probabilities

QM (0<k<a—1,n>k) and P, (n>0,a<r <b—1) are given by,

ko ,
By <u§k vy a]_kS]m)

J

QM = T , n>k 0<k<a-1, (2.56)
a—1 (K]
vy aFrS g | By
k=0
Py, = N , n>0,a<r<b-—1. (2.57)

Proof. Using the relation Pf = ¢,P; (0 <n <b—1) in Lemma 2.3 after some algebraic
manipulation desired result (2.56) is obtained.
Using (2.19) in (2.26) collecting the coefficients of y" (a < r < b—1) the following expression

is obtained,

o VI P
n=0 n=0

Collecting the coefficients of z™ from both the side of (2.58) and using (2.24), Lemma 2.3
and the relation P} = &, P (0 <n <b— 1) after some simplification desired result (2.57)
is obtained. ]
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2.3.3 Determination of unknown probabilities P,;, (n > 0)

In previous section P,, (n >0, a <r <b—1) and Qw (0<k<a-—1, n>k) have
been successively obtained. Now the main task is to obtain the remaining steady state
joint probabilities P, (n > 0). To get these probabilities, substituting (2.19) in (2.26)

and comparing the coefficients of y® the following expression is obtained,

b—1 b—1
Q)= T Q) (P ) - X i)
z_: Fopz" = 2PN+ p—Az) ’

2] < 1. (2.59)

Using equations (2.46), (2.32) and Lemma 2.2 (or Lemma 2.3) in (2.59) then using the
analyticity of (2.59) in |z| < 1, after some algebraic manipulation, the following expression

is obtained,

EM (z)
ZPnbz RN 12| <1, (2.60)
where M(z) = z — 7,
a—1 —
( )sz v fgﬁ T+uép—2 Z k= b+23 +ubp o
y=a+z—(1-0 —0—2=0 ,
VZ v b e I vZa’“ b+13 gy

N(iz)=(z—a)(z— B)(z —29), and € = _)‘al(Vqu +ubyr ).

Now two cases arise which are discussed below.
Case (I): When zp # a # S for this case,

M(z) A B C
N(z)  (z—a) * (z—B) + (z — 20) (2.61)

where A, B and C are constants. Using the residue theorem the value of A, B and C are

given by,
M(z M(z M(z
A= [N’((Z))]z:a’ B = [N’((z))}z:ﬂ’ C= [N’((z))}z:zo'

Now using (2.61) and the value of € in (2.60) collecting the coefficients of 2™ the following

expression is obtained

~(vQy_ +uP ) (A B c
Py = ) T T g T ) > 0. (2.62)

Using (2.24) Lemma 2.2 (or Lemma 2.3) and the relation P = &,P; (0 <n <b—1)in
(2.62) P, (n > 0) is obtained.
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Case (II): Define a variable z such that,

B if a=z,
xr =
zo if a=g0.
Hence, % can be written as,
M(z) A 24
O AP DYy (2.63)
2 2
M) B d [ a=(za)? )\ g B
A= |:N/(Z):|Z:x’ A = |:M(Z)dz<ddd;N(z) t djz%N(z) (dzM(Z)) z:a’ Ag =

ﬁ z—a)?
{M@“()} .

Using (2.63) and the value of & in (2.60) collecting the coefficients of 2" the following

expression is obtained,

(VQZ_1 + /‘Pb*—l) A Aq Az(n+1)
Pup=— N T T T g (» 20 (2.64)

Using (2.24) Lemma 2.2 (or Lemma 2.3) and the relation Py = £,P; (0 <n <b—1)in
(2.64) P, (n > 0) is obtained.

2.4 Marginal Probabilities

In this section, the important marginal probabilities have been presented which can be

derived from the steady state join probabilities obtained in previous section.

b
1. Probability of the queue length when server is busy is given by Pf=>" P, ,, n > 0.
r=a

min(n,a—1)
2. Probability of the queue length when server is in vacation is given by Q;, = > Q,[f ],
k=0
n > 0.

3. Queue length distribution is given by

paueuve _ (1_5)Rn+PT>‘;+Q:L7OSn§a_1,
) =

P+ Qr, n>a.
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4. Probability that server is in dormant state is given by P%r= Z R,.

5. Probability that there are r (a < r < b) customers with the server is given by
[e.e]
Pr=3%" P, ,.
=0

6. Probability that the server is in k" (0 < k < a — 1) type of vacation is given by
k] _ § ol
vac— n -

n=~k
b
7. Probability that the server is busy is given by Pysy= > P,
r=an=0
a—1 oo (K]
8. Probability that the server is in vacation is given by Quac=>. > Qn .
k=0n=~k

9. Probability that the server is idle is given by Pige=(1 — 6)P%" + Qyuac.

2.5 Performance measure

Since all the steady state probabilities are known, in this section some important perfor-

mance measures of the model under consideration are presented.

a—1

1. The expected number of customers in the queue is given by L,= (1 —46) >  nR, +
=0
a—1 oo a—1 00 "
> Z nPy + Z > nQul=(1-06) X a4+ 3 P,
n=0r=a =0n=k n=>0 n=a—da
a—1
2. The expected number of customers in the system is given by Ly=(1 —4) > nR, +
=0
o b a—1 oo (K] "
Yo (n+1r)Ph,+ Z > nQn .
n=0r=a =0n=~k

3. The expected waiting time of a customer in the queue is given by Wq:%.

o . 3 . S _Ls
4. The expected waiting time of a customer in the system is given by Ws=5¢

5. Expected number of customers with the server when server is busy is given by
b

LSBT’: Z (T.P";Se’f‘/Pbusy>
r=a

6. Expected type of vacation taken by server when server is in vacation is given by

LYo = Z ( L@C/Qvac)

k=0



Chapter 2. M/M (b /1 queue with SV (MV) 34

2.6 Numerical results

In this section, some numerical observations are presented in order to validate the ana-
lytical results by means of graphs and tables. First, one real life example associated with
sugarcane-juice production are presented, by which the reader may easily connect the in-
sight of the possible application of the considered model.

Example: A practical situation for the proposed model may be observed in the sugarcane
juice production of the sugar mill industries wherein the attention is focused on the sug-
arcane juice machine. The machine operator produces the sugarcane juice by machining
operations like cane cutting, cleaning, peeling, and then producing juice. Suppose that
the machine (server), in a sugar mill, which extracts the juice, can take a minimum of
three packets and a maximum of six packets of sugarcane for producing juice (service).
After extraction of the juice if the server finds at least r (> 3) packets in the queue then
it takes minimum (r,6) packets for the service, as per the GBS rule, otherwise, it takes
either 0" type or 1" type or 2" type of vacation. In the case of 0! type of vacation,
the server removes waste, checks all the machinery parts, and purifies the extracted juice

1th or 2" type of vacation, either it checks the

assembled in the containers. In the case of
machinery parts (viz., greasing, fuel) or purifies the extracted juice which has collected in
the containers. Such a model may be analyzed as a bulk service queue with SV and MV.
For this example, assume that sugarcane packets are arriving in the system with rate 5.5
following Poisson process and the server provides service with rate 2.5, and the server takes
0" or 1*" or 2" type of vacation with rate 1.3. The service and vacation time follow an
exponential distribution. For this particular example, it is observed that on an average,
4.616 {5.017} packets are in sugarcane machine (i.e., with the server) when the server is
busy for SV {MV}, and when the server is on vacation, then an average type of vacation is
0.84'" for SV and 1.01** for MV. It is also observed that the average 4.295 {4.928} packets
are waiting in the queue for service, and the average waiting time in queue is 0.781 {0.896}
for SV {MV}. Assume that every service is costing the same amount, then the manager
would like to provide the server six packets each time for producing sugarcane juice. The
information on joint probabilities helps the manager to observe the expected number of
packets with the server during the busy period. The information on the expected type
of vacation may help the manager to arrange the minimum number of packets for service
during the vacation period. As a result, it may modulate queue length and waiting time

of packets for service, by which sugarcane can also be saved from drying.

Table 2.1 presents the steady state joint probabilities R,, (0 <n <a—1), P,, (n > 0,a <

r <b), 5] (0<k <a-1,n>k) for M/MG®1/1 queue with SV. The other input
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parameters are taken as A=120, u=15 and v=>5. The description of Table 2.1 is given as

follows:

e The first column presents the number of customer present in the queue (excluding

the number in service).

e The second column presents the probability that the system is in state (n,0), i.e.,

the system size isn (0 <n <a—1).

e 3rd to 8th column present the probability that the system is in state (n,r), i.e., the
system size isn+7 (n > 0,a < r <b).

e The 9th column presents the probability of the queue length when server is busy.

e 10th to 14th column present the server is in state (n, k), i.e., system size is n (> k)

when server is in k" type of vacation.
e 15th column presents the probability of the queue length when server is in vacation.
e The last column presents the queue length distribution.

e The last row presents performance measures defined in section 2.5 and the second

last row presents few more marginal probabilities defined in section 2.4.

Table 2.2 and Table 2.3 present steady state joint probabilities P, , (n > 0,a < r < b) and
Q%ﬂ] (0<k<a—1,n>k) for M/M1%19) /1 queue with MV. The other input parameters
for Table 2.2 and Table 2.3 are taken as A=135, y=9, v=4. Table 2.2 and Table 2.3 are

self explanatory as similar notation has been used as used in Table 2.1.

For the richer understanding of queueing models graphical representation is very much
needed. Figure 2.3 to Figure 2.12 show the effect of the key parameters, i.e., A\, 4 and
v, on some important performance measures for SV (MV). These graphs are presented
here to understand sensitivity of the system performance for considered model. For this

purpose, M/M(10’25)/1 queue is considered.

In Figure 2.3 to Figure 2.6 the effect of ;1 on performance measures Ly, Lg, Wy, W, L%
and LV are displayed for SV and MV, keeping the value of A\ and v fixed at 240 and 15,
respectively. It is observed from the figures that as p increases from 12 to 30 the values
of Ly, Lg, Wy, Ws, L*" and L"* decrease. This behavior of the considered performance

measures is quite obvious as for fixed A=240 and v=15, the value of p varies from 0.8 to
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0.32. As traffic intensity decreases it will obviously decrease the value of the performance

measures Lg, Lg, Wy, W,, L*" and L.

The effect of v on the performance measures Ly, Ls, Wy, and W are presented in Figure
2.7 and Figure 2.8 for SV and MV, respectively. In these figures the value of the parameter
v varies from 4 to 22 and the values of the other parameters, i.e., A and u, are kept fixed at
240 and 12, respectively. It is observed from Figure 2.7 and Figure 2.8 that as v increases
from 4 to 22, the value of Ly, Ls, Wy, and W, decreases significantly. This type of behavior
is observed because when v increases it eventually decreases the mean vacation time of the
server. As a result server became available to the system more frequently for providing
service, which eventually decreases the mean queue (system) length and mean waiting

time of a customer in the queue (system).

Figure 2.9 to Figure 2.12 present the effect of A on the performance measures Ly, Ls, Wy,
Ws, L and LY*¢. In these figures A varies from 11 to 20 and the values of 1 and v are
kept fixed at pu=1.1 and v=15. As A varies from 11 to 20 the values of p varies from 0.4
to 0.727. Due to increase in p the expected queue (system) length and expected waiting
time in queue (system) will obviously increase . As L4(Ls) is increasing it will eventually
increase L°¢" and L"*“. Hence, one can conclude here that the behavior of the graphs as

presented in Figure 2.9 to Figure 2.12 are on its expected direction.

Figure 2.13 to Figure 2.15 present a comparison between SV and MV model. In these
figures the effect of vacation rate, i.e., v is shown on some important probabilities, viz.,
Quacs Pousy and Py, respectively. For this purpose M /M (15,31) /1 is considered queue with
SV and MV. The values of the parameters A and u are kept fixed at A=150 and pu=6, and
v varies from 4 to 22. It is observed from the figures that as v increases, Py, increases,
however, P,g. and Q4. decreases significantly for both the cases SV and MV. Increase
in v, decrease the mean vacation time taken by the server, which eventually increase the
chance of the fraction of the time that server is busy, i.e., Pyysy, and decrease the chance
of the fraction of the time that the server is in vacation or idle state, i.e., Qyac Or Pige, and
this behavior is well reflected in Figure 2.13 to Figure 2.15. It is also observed in Figure
2.13 to Figure 2.15 that Quqc and Pg is less for SV, in comparison to MV, and Py, is

more for SV, in comparison to MV, which is quite expected.
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TABLE 2.2: The steady state joint probabilities of queue content and server content for

M/M1019) /1 queue with MV, A=135, =9 and

v=4.

n P10 P JCRD) P13 P14 P15 P16 P17 JORT P19 Py

0 0.0006267 | 0.0006290 | 0.0006307 | 0.0006318 | 0.0006325 | 0.0006326 | 0.0006323 | 0.0006316 | 0.0006305 | 0.0006291 | 0.0063068
1 0.0005876 | 0.0005897 | 0.0005912 | 0.0005923 | 0.0005929 | 0.0005931 | 0.0005928 | 0.0005922 | 0.0005911 | 0.0012169 | 0.0065398
2 0.0005508 | 0.0005528 | 0.0005543 | 0.0005553 | 0.0005559 | 0.0005560 | 0.0005558 | 0.0005552 | 0.0005542 | 0.0017659 | 0.0067561
3 0.0005164 | 0.0005183 | 0.0005196 | 0.0005206 | 0.0005211 | 0.0005213 | 0.0005210 | 0.0005205 | 0.0005195 | 0.0022780 | 0.0069564
4 0.0004841 | 0.0004859 | 0.0004872 | 0.0004881 | 0.0004886 | 0.0004887 | 0.0004885 | 0.0004879 | 0.0004871 | 0.0027553 | 0.0071413
5 0.0004539 | 0.0004555 | 0.0004567 | 0.0004575 | 0.0004580 | 0.0004581 | 0.0004579 | 0.0004574 | 0.0004566 | 0.0031997 | 0.0073115
9 0.0003506 | 0.0003519 | 0.0003528 | 0.0003534 | 0.0003538 | 0.0003539 | 0.0003538 | 0.0003534 | 0.0003527 | 0.0046823 | 0.0078586
10 0.0003287 | 0.0003299 | 0.0003308 | 0.0003314 | 0.0003317| 0.0003318 | 0.0003316 | 0.0003313 | 0.0003307 | 0.0049870 | 0.0079648
13 0.0002708 | 0.0002718 | 0.0002725 | 0.0002730 | 0.0002733 | 0.0002734 | 0.0002733 | 0.0002730 | 0.0002725 | 0.0057652 | 0.0082188
14 0.0002539 | 0.0002548 | 0.0002555 | 0.0002560 | 0.0002562 | 0.0002563 | 0.0002562 | 0.0002559 | 0.0002555 | 0.0059834 | 0.0082836
15 0.0002380 | 0.0002389 | 0.0002395 | 0.0002400 | 0.0002402 | 0.0002403 | 0.0002402 | 0.0002399 | 0.0002395 | 0.0061827 | 0.0083392
50 0.0000249 | 0.0000250 | 0.0000250 | 0.0000251 | 0.0000251 | 0.0000251 | 0.0000251 | 0.0000251 | 0.0000250 | 0.0068073 | 0.0070326
75 0.0000050 | 0.0000050 | 0.0000050 | 0.0000050 | 0.0000050 | 0.0000050 | 0.0000050 | 0.0000050 | 0.0000050 | 0.0049393 | 0.0049842
100 |0.0000010 |0.0000010 | 0.0000010 | 0.0000010 | 0.0000010 | 0.0000010 | 0.0000010 | 0.0000010 | 0.0000010 | 0.0032566 | 0.0032656
150 |0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0012366 | 0.0012369
200 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0004275 | 0.0004276
300 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000447 | 0.0000447
400 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000043 | 0.0000043
450 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000013 | 0.0000013
500 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000004 | 0.0000004
550 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000001 | 0.0000001
>600 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000

0.0100 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.7225 0.8134
PPy Pt Py Py P Pt P P P | Py




39

Chapter 2. M /MY /1 queue with SV (MV)

G88'Y = onaT ‘THF' ST=10sT ‘€FFG0="M ‘ FEEF'0="M ‘087" €L="T ‘91¢'8¢=""7

0000000°T

UGQ@
998T°0

0
G¢c00

sl
L120°0

0
60¢0°0

fol
0020°0

0
¢610°0

2D

7]
€810°0

0
7.10°0

el
c910°0

70
96100

“fol
9¥10°0

000000070
10000000
¥000000°0
€100000°0
€700000°0
947000070
9G77000°0
8VTET00°0
8009€00°0
66.9500°0
¢9.¥800°0
G0GECTIO0
LETVCIO0
1894¢10°0
9909¢10°0
6.€9¢10°0
T966110°0
00GETTIO0
8669010°0
LG¥00T0°0
088€600°0
0L2.L800°0
0€90800°0
€96€L00°0
€.¢2900°0

000000070
0000000°0
0000000°0
0000000°0
10000000
0T00000°0
181000070
6.,0000°0
€G€€000°0
£669000°0
9ET¥100°0
¢110700°0
T0ET¥00°0
¢804700°0
8179700°0
€6L.700°0
¥44¢¥00°0
76€L£00°0
0c€cE00°0
1¥€L200°0
29¥¢¢00°0
90LLT00°0
690€T00°0
7968000°0
G02¥000°0

000000070
0000000°0
0000000°0
0000000°0
000000070
T000000°0
#¢00000°0
SG0T0000°0
€670000°0
1¥60000°0
¢S6T000°0
G¢r5000°0
98G5000°0
£609000°0
8.¢9000°0
797900070

0000000°0
0000000°0
0000000°0
0000000°0
000000070
10000000
€¢00000°0
660000070
G¢¥0000°0
¢880000°0
0€8T000°0
#805000°0
¥€2¢5000°0
€1.5000°0
€885000°0
1609000°0
2€¢9000°0

000000070
0000000°0
0000000°0
0000000°0
000000070
T000000°0
12000000
¢600000°0
L6€0000°0
728000070
TTLT000°0
€4.7000°0
7687000°0
¢¥€S000°0
005600070
€996000°0
T€85000°0
7009000°0

000000070
000000070
000000070
000000070
000000070
100000070
020000070
980000070
12€£0000°0
69.0000°0
§6491000°0
€EY7000°0
7947000°0
¢867000°0
0€15000°0
¢8¢S000°0
8€¥5000°0
669500070
§9.5000°0

000000070
00000000
0000000°0
0000000°0
000000070
T000000°0
6100000°0
0800000°0
G¥€0000°0
G1.0000°0
87100070
€¢17000°0
G¥¢000°0
7€97000°0
1,.7000°0
¢16¥000°0
8G05000°0
80¢5000°0
¢9€45000°0
1245000°0

00000000
000000070
000000070
000000070
00000000
10000000
L100000°0
¥2.00000°0
61€0000°0
€990000°0
9.€T000°0
€¢8€000°0
9€6€000°0
96¢7000°0
€¢ry000°0
¥447000°0
6897000°0
8¢87000°0
1.67000°0
61150000
04250000

000000070
0000000°0
0000000°0
0000000°0
000000070
T000000°0
9100000°0
6900000°0
G6¢0000°0
€190000°0
T.21000°0
¢€S€000°0
9€9€000°0
696€000°0
2807000°0
80¢¥000°0
€€€7000°0
19%%000°0
€647000°0
6¢.¥000°0
6987000°0
¥105000°0

000000070
000000070
000000070
000000070
00000000
10000000
GT00000°0
€900000°0
¢Lc0000°0
¥950000°0
0LTTO00°0
06¢€000°0
9¥€€000°0
€69€000°0
19.€000°0
¢,8€000°0
L86€000°0
G0T¥000°0
L¢ev000°0
¢SEY000°0
I877000°0
¥19%000°0
162700070

000000070
0000000°0
0000000°0
0000000°0
000000070
10000000
€100000°0
8G00000°0
6¥¢0000°0
915000070
¢L0T000°0
£262000°0
990€000°0
9¥€€000°0
G¥17€000°0
L¥GE000°0
€489€000°0
19.€000°0
¢L8€000°0
286€000°0
G0Tv000°0
L2¢¥000°0
¢S€7000°0
18%%7000°0

000000070
000000070
000000070
000000070
00000000
10000000
¢100000°0
€500000°0
L¢¢0000°0
1.70000°0
9.60000°0
€1.2000°0
¥6.,¢000°0
6¥0€000°0
0¥T€000°0
€€¢€000°0
6¢€€000°0
Lev€000°0
6¢49€000°0
€€9€000°0
T¥,€000°0
¢G8€000°0
996€000°0
¥80%000°0
G0c¢¥000°0

009<
0sS
00g
0sv
007
00€
002
08T
00T

o = < 10 O W
S = = == - 0 D~

U
ononbd

L0

o]

Ll

50

[e]

O

[e]

20

(1l

00

SO~ N M < 1O © D~ 00

Ujim ononb H\SHFOSE\S‘ I0J JoAIos oY) Aq uaye} uorpedea Jjo adA) pue juejuod snenb jo senjfiqeqord jurol 8jels Apes)s o], :¢°'g A1V,

F=a pue =11 ‘GeT=Y ‘AN




Chapter 2. M/M (b /1 queue with SV (MV) 40

23
';’f — k(1)
20 LVEC(SV)

: 2

5 ]

2 8 17

£ E 16

Y S 46

go. E44f o

5 0. g 42 I

5o $ 4.0 R S,

o 0.15 — o 28 e,
0.10 S G e : _—
0.05 A 36
0.00.......... T 1 T 1 ‘' T ' T T T T Tt T Tt T T 7T

u u
FIGURE 2.3: Effect of 1 on performance FIGURE 2.4: Effect of 4 on L*¢" and
measure Lvee
80 24
72 —— Lq(MV) 23 Lse’(MV)
64 22
56 —e— L (MV) 21 1#MV)
48 A W MV) 20

g 40 — . e

3 32 . o . wmv) 5 1

g 2 . o § 17

g 16 £ 16

o 0.40 @

2 035 g 5.0

© ©

g 0.30 g€ 48 —o

o 0.25 S 46 b S

£ 020 24 .,

Q 0.15 vy o :‘2‘ —
0.10 —a ., Y
0.05 [ —— 4.0
0'00 T T T T T T T T T T 38 T T T T T T T T T

12 14 16 18 20 22 24 26 28 30 12 14 16 18 20 22 24 26 28 30
# “

FIGUReE 2.5: Effect of p on perfor- FIGURE 2.6: Effect of 4 on L*¢" and
mance measure Lvee

120 120

110 —=—LSV) 110 = LMV)

100 \ e L(SV) 100 \\ e L (MV)

90 + 7 —a— W (SV) 90 . A W (MV)

g 80 e Y " g 80, T wmv

5 701 ——~v— W/(SV) 5 0 - v W mv)

3 b

g 604 § 6]

£ 504 £

e = S 50

© 0.5 o
s S 0.5
£ 0.4 - E gal
S 0.3 D S A o S S A s 1\.\\1"”’7——7
‘E \\"\fﬂffffk\ A % 0.3 N v v v v
& 0.2 — o g2 e s
0.1 0.1
0.0 -1 T T T T T T T T T 0.0, : : : : : : : : :
4 6 8 10 12 14 16 18 20 22 4 6 8 10 12 14 16 18 20 22
v v
FIGURE 2.7: Effect of v on performance Fi1cURE 2.8: Effect of v on performance

measure measure



Chapter 2. M /MY /1 queue with SV (MV) 41

55 - 20
50 LsV) /./. 19 )= L¥(SV)
45 e LS(SV) o 18 vac,
40 P —e— L7T(SV)
354 | A W/SV) - 17
2 391 [ v wisve o 16
=] —
o 20 215
i o
E s g 13
e ]
£ 3.0 < 46
§ 25 - § 44 .
v e
520, + v v T 7 _a S 4.2 /,,——/——o——//—sff""" °
o 45 /A/’/ a 4.0 P s
JUE 385
104 & —a— 36
0'5 T T T T T T T T T T T T T T T T T T T ’ T T T T T T T T T T
11 12 13 14 15 16 17 18 19 20 1 12 13 14 15 16 17 18 19 20
2 A
FiGURE 2.9: Effect of A on perfor- FIGURE 2.10: Effect of A on L*" and
mance measure Lvee
56
52 ]
- ] 1] [ £7omv)
10 —e— L (MV) //./ 18]
81 . wmy) e 71 e 1)
S 3831 v wmv e o 16]
g 20 —w a 154
S 16 2 14
£ 1% o 13]
8 3.0 E 121
S 25 S, g 5.8
£ 20 e e N—T T £ 5.64-
g —v ¥ S —o
1.5 /‘/ e
S e A E 5.60 P S o ¢
104 o a4 o 5561 e
0.5 ’
00 +———F——F—— T 77— T T T 5.52-'|'|'|'|'|'|'|'|'|
1M1 12 13 14 15 16 17 18 19 20 M 12 13 14 15 16 17 18 19 20
2 2
FIGURE 2.11: Effect of A on perfor- FIGURE 2.12: Effect of A on L*¢" and
mance measure Lvee
0.16
—e— MV M
0.92
0.914
0.90
o 0.89 -
%0.09 by
< o 0.88-
0.87
0.86
0.85-
0.84
6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 22

v

FIGURE 2.13: Effect of v on Qe FIGURE 2.14: Effect of v on Ppysy



Chapter 2. M/M (b /1 queue with SV (MV) 42

4 6 8 10 12 14 16 18 20 22
v

FiGURE 2.15: Effect of v on P;ge

2.6.1 Cost model

The objective of this section is to optimize the minimum threshold of the GBS rule (a,b)
for the queueing model under study. Keeping this in mind, a cost function is formulated
for the long run system. Define the following notations for the considered cost model.
Cst= Startup cost per customer per unit time.

Choi= Holding cost per customer per unit time.

C,= Operating cost per customer per unit time.

Thus, in the long run, the total system cost (TSC) is given by:

TSC:)\CSt—l—ChOqu—{—COLser.

The minimum threshold limit a is optimized by keeping b fixed at 10, i.e., b=10 and
for different service rates p. The values of total system cost (T'SC) for different values of
a and p are presented in Table 2.4 for SV and MV. The other input parameters are taken
as, A=1.5,v=1.3, Cy =0.15, Cy, = 0.90, C, = 0.333.

In Table 2.4 the first column represents the value of a. The 2nd, 3rd, and 4th columns
represent the value of TSC for the MV and for 4=0.3, 0.25, 0.22, respectively. Similarly,
5th, 6th and 7th columns of Table 2.4 represent the value of TSC for different values of
w, ie, p=0.3, 0.25, 0.22 and for SV. In Table 2.4 the minimum TSC, corresponding to
each p, and for MV (SV) are mentioned by bold letter in each column, which results in
obtaining the corresponding optimum value of a, for example, in 4th column the minimum
TSC is 13.28201 and the corresponding value of a is 6. Hence, one can conclude from
this observation that for b=10, MV, and ©=0.22, the minimum value of TSC is 13.28201,

and the optimum value of a is 6. Similar observation can be made for each column. The
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TABLE 2.4: TSC for the fixed value of b=10 for the different values of a and u

a | p=03 | p=025 | p=022 | p=030 | pu=025 | u=0.22
(MV) (MV) (MV) (SV) (SV) (SV)
1 | 7.68418 | 10.57045 | 14.08282 | 7.71110 | 10.60578 | 14.12252
2 | 7.56123 | 10.39092 | 13.87081 | 7.58379 | 10.44922 | 13.94946
3 | 7.52192 | 10.24694 | 13.66072 | 7.49760 | 10.29843 | 13.75895
4 | 7.58406 | 10.16446 | 13.47838 | 7.47903 | 10.17719 | 13.56967
5 | 7.75175 | 10.16059| 13.34564 | 7.54493 | 10.10624 | 13.40109
6 | 8.02187 | 10.24661 | 13.28201| 7.70159 | 10.10019| 13.27019
7 | 838945 | 10.43184 | 13.30788 | 7.94733 | 10.16727 | 13.19031
8 | 8.85219 | 10.72852 | 13.44979 | 8.27571 | 10.31065 | 13.17123
9 |9.41617 | 11.15925 | 13.74932 | 8.67817 | 10.53008 | 13.22002

graphical representation of Table 2.4 is presented in Figure 2.16 (for MV) and Figure 2.17

(for SV) and the corresponding minimum value of TSC for each u (=0.3, 0.25, 0.22) are

indicated by arrow sign in the figures.
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FIGURE 2.17:
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SV

Effect of a on TSC for

In this chapter, an M /M (a.b) /1 queue with single and multiple vacation has been analyzed

and steady state joint distribution of the queue content and server content (when server

is busy) and the joint distribution of the queue content and the type of vacation taken

by the server (when server is in vacation) are obtained by using bivariate probability

generating function (PGF) method. Various performance measures, such as, the average

number in the queue (system), the average waiting time in queue (system) are presented.

A cost model is also presented in which the minimum threshold limit for GBS rule is
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numerically optimized, which eventually minimizes the total system cost of the model for
a particular example. The proposed analysis may be helpful to analyze infinite buffer batch
size dependent bulk service vacation queueing models with general arrival and/or service
and general vacation time distribution and are left for the future study. Such models may

be very useful for controlling the congestion in the real life phenomenon.
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