
Chapter 2

Analysis of M/M (a,b)/1 queue with

single and multiple vacation for

steady state joint distributions

2.1 Introduction

The bulk service queue with vacation has a remarkable influence in real life problems.

For example, in a transport system, when a ship undergoes maintenance then it may

be designed as the vacation model by considering the maintenance time as the vacation

time. The bulk service queues together with SV and MV have been studied by Lee et

al. [24], Sikdar and Gupta [99], Sikdar and Samanta [100], etc. In [24] authors presented

the analysis of M/G/1 queue in which customers are served in batches of fixed size.

Sikdar and Gupta [99] analyzed MX/GY /1/N queue and obtained stationary queue length

distribution. Sikdar and Samanta [100] considered BMAP/GY /1/N queue, they obtained

queue length distribution at service (vacation) completion as well as arbitrary epoch.

Recently, Gupta et al. [101] analyzed M/G
(a,b)
r /1/N queue with SV and MV and obtained

the joint distributions at various epoch.

In this chapter, bulk service Poisson queue has been considered in which the arrivals and

departure both follow Poisson distribution, i.e., the inter-arrival time and the service time

both are exponentially distributed. A single server serves the customers in batches with

a minimum threshold value a and a maximum capacity b following general bulk service
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(GBS) rule. At the end of a service if the server finds that the queue length k is less than

a, then the server will go for a kth type of vacation of random length following exponential

distribution, otherwise, it will keep on servicing customers as per the GBS rule. Using

the probability generating function (PGF) technique, the joint distribution of queue and

server content (when the server is busy) as well as the joint distribution of queue content

and the type of vacation taken by the server (when the server is on vacation) have been

obtained.

There are few articles available in the literature which motivated the author to analyze the

queueing model under study. It may be remarked here that almost all the literature on

bulk service vacation queues have been discussed which provide only either queue length

distribution or PGF of the queue length, except Choi and Han [91] and Gupta et al.

[101]. In [91], authors obtained the joint distribution of queue and server content when

the server is busy and queue length distribution when the server is on vacation at pre-

arrival and arbitrary epoch for G/M (a,b)/1 queue with MV. However, the model under

consideration differ from the model considered by Choi and Han [91] in such a way that

firstly, in [91] authors considered G/M (a,b)/1 queue with MV only, whereas this chapter

consider M/M (a,b)/1 queue with both SV and MV, secondly, in [91], authors obtained

the joint distribution of queue and server content when the server is busy and queue

length distribution when the server is on vacation at pre-arrival and arbitrary epoch,

whereas, the joint distribution of queue and server content (when the server is busy)

also the joint distribution of queue content and type of vacation (when the server is on

vacation) have been obtained here. Gupta et al. [101] considered M/G
(a,b)
r /1/N queue

with SV and MV and derived the joint probabilities of the queue and server content,

also the joint probabilities of the queue content and type of vacation at various epoch.

Infinite buffer M/M (a,b)/1 queue with SV and MV has been considered and the required

joint probabilities are obtained, however, the consideration of the infinite buffer queue

makes the model mathematically complex and the mathematical analysis is completely

different from that of Gupta et al. [101]. To the best of the author’s knowledge, the

considered model has not been analyzed so far in the literature for obtaining steady state

joint probabilities of the queue and server content, as well as the joint probabilities of

queue content and the type of vacation for infinite buffer queue.

The rest of the chapter is organized as follows, In Section 2.2 model description is pre-

sented. Using bivariate probability generating function method the steady state joint

probabilities have been obtained in Section 2.3. Section 2.4 presents some marginal prob-

abilities. Section 2.5 presents some important performance measures. For better system
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efficiency the numerical results are discussed in Section 2.6, and the chapter ends with

Section 2.7 where conclusion and future scope is discussed.

2.2 Model description

In this chapter, an infinite buffer, single server, bulk service queue with vacation is consid-

ered. The customers are arriving to the system according to the Poisson process with rate

λ. The customers are served in batches according to the general bulk service (GBS) rule.

In GBS rule server serves the customers in batches with minimum threshold limit a(≥ 1)

and maximum capacity b (b > a). That is, after one service if there are at least l (l ≥ a)

customers waiting in the queue then the server serves a batch of size min(l, b), otherwise

remain in the idle state (which includes dormant state and/or vacation state) until the

queue length reaches minimum threshold limit a for starting another busy period. The

service time distribution of the batches are exponentially distributed with rate µ. Newly

arriving customers are not allowed to join the ongoing service even if there is a free capac-

ity. At the end of a busy period when server finds that the queue length is less than a then

it takes kth type of vacation (where k (0 ≤ k ≤ a− 1) is the number of customers waiting

in the queue at vacation initiation epoch) following exponential vacation time distribution

with rate ν. At the end of the vacation if server finds that at least a customers are waiting

in the queue then the server provides service according to the GBS rule, otherwise, it will

remain in dormant state until required number of customers to accumulate in the queue

for providing service, or takes another vacation depending on the vacation policy under

consideration, i.e., either single vacation (SV) or multiple vacation (MV). In this chapter,

SV and MV queues have been studied in an unified way by defining a variable δ as follows.

δ =

1, for MV,

0, for SV.

The traffic intensity of the system is defined by ρ = λ
bµ(< 1). The considered model is

presented schematically in Figure 2.1 for the case of SV, and in Figure 2.2 for the case of

MV.
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Bulk service
K-th type of

vacation
Server is in dormant 

state 

After the service if             

0 ≤ QL (=k) ≤ a-1

After the service

if QL ≥ a

After the vacation

if QL ≥ a

After the vacation

if 0 ≤ QL (=k) ≤ a-1

During the dormant period if QL=a

QL ≡ Queue Length

Figure 2.1: Schematic representation of the considered model for SV

Bulk service
K-th type of

vacation

After the service

if QL ≥ a

After the vacation

if QL ≥ a

QL ≡ Queue Length

After the vacation

if 0 ≤ QL(=k) ≤ a-1

After the service if      

0 ≤ QL(=k) ≤ a-1

Figure 2.2: Schematic representation of the considered model for MV

2.3 Steady state analysis

In this section, author obtains the steady state busy period joint distribution of the queue

and server content, and vacation period joint distribution of queue content and type of

vacation taken by the server. To this end, the following notations are defined, at time t,

for use in sequel.

• Nq(t): be the number in the queue,
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• Ns(t): be the number with the server, when server is busy,

• K(t): be the type of vacation taken by the server, when server is in vacation.

Remark:- It is to be noted here that, Ns(t) = 0 represents that the server is in dormant

state for the case of SV model, and the type of vacation taken by the server denotes that

the queue content (i.e., number present in the queue) at vacation initiation epoch.

Now {
(
Nq(t), Ns(t)

)
∪
(
Nq(t),K(t)

)
} constitute two dimensional continuous time Markov

chain with state space {(n, 0); 0 ≤ n ≤ a− 1}
⋃
{(n, r);n ≥ 0, a ≤ r ≤ b}

⋃
{(n, k); 0 ≤ k ≤

a − 1, n ≥ k}, {(n, r);n ≥ 0, a ≤ r ≤ b}
⋃
{(n, k); 0 ≤ k ≤ a − 1, n ≥ k} for SV and MV,

respectively. Further, define the state probabilities, at time t, as follows.

• Rn(t) ≡ Pr{Nq(t) = n,Ns(t) = 0}, 0 ≤ n ≤ a− 1, (exist only for SV),

• Pn,r(t) ≡ Pr{Nq(t) = n,Ns(t) = r}, n ≥ 0, a ≤ r ≤ b,

• Q[k]
n (t) ≡ Pr{Nq(t) = n,K(t) = k}, n ≥ k, 0 ≤ k ≤a− 1.

In steady state, as t→∞, define,

Rn = lim
t→∞

Rn(t), 0 ≤ n ≤ a− 1 (for SV),

Pn,r = lim
t→∞

Pn,r(t), n ≥ 0, a ≤ r ≤ b,

Q
[k]
n = lim

t→∞
Q[k]
n (t), 0 ≤ k ≤ a− 1, n ≥ k.

More preciously, Rn represents the steady state probability that the server is in dormant

state (which exist only for SV) and queue length is n (0 ≤ n ≤ a− 1); Pn,r represents the

steady state joint probability that the server is busy in serving a batch of r (a ≤ r ≤ b)

customers and queue length is n (≥ 0) and Q
[k]
n represents the steady state joint probability

that the server is in kth type of vacation and queue length is n ≥ k. Now observing the

system at time t and t + dt, the Kolmogorov equations of the model under consideration

are obtained as follows.

dR0(t)

dt
= (1− δ)

(
− λR0(t) + νQ

[0]
0 (t)

)
, (2.1)

dRn(t)

dt
= (1− δ)

(
− λRn(t) + λRn−1(t) + ν

n∑
k=0

Q[k]
n (t)

)
, 1 ≤ n ≤ a− 1, (2.2)
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dP0,a(t)

dt
= −(λ+ µ)P0,a(t) + (1− δ)λRa−1(t) + ν

a−1∑
k=0

Q[k]
a (t) + µ

b∑
r=a

Pa,r(t), (2.3)

dP0,r(t)

dt
= −(λ+ µ)P0,r(t) + ν

a−1∑
k=0

Q[k]
r (t) + µ

b∑
j=a

Pr,j(t), a+ 1 ≤ r ≤ b, (2.4)

dPn,r(t)

dt
= −(λ+ µ)Pn,r(t) + λPn−1,r(t), a ≤ r ≤ b− 1, n ≥ 1, (2.5)

dPn,b(t)

dt
= −(λ+ µ)Pn,b(t) + λPn−1,b(t) + ν

a−1∑
k=0

Q
[k]
n+b(t)

+µ

b∑
r=a

Pn+b,r(t), n ≥ 1, (2.6)

dQ
[k]
k (t)

dt
= −(λ+ ν)Q

[k]
k (t) + µ

b∑
r=a

Pk,r(t) + δ

(
ν

k∑
j=0

Q
[j]
k (t)

)
, 0 ≤ k ≤ a− 1,(2.7)

dQ
[k]
n (t)

dt
= −(λ+ ν)Q[k]

n (t) + λQ
[k]
n−1(t), 0 ≤ k ≤ a− 1, n ≥ k + 1. (2.8)

Now letting t −→∞ in (2.1) to (2.8), the corresponding steady state equations are obtained

as follows.

0 = (1− δ)
(
− λR0 + νQ

[0]
0

)
, (2.9)

0 = (1− δ)
(
− λRn + λRn−1 + ν

n∑
k=0

Q[k]
n

)
, 1 ≤ n ≤ a− 1, (2.10)

0 = −(λ+ µ)P0,a + (1− δ)λRa−1 + ν
a−1∑
k=0

Q[k]
a + µ

b∑
r=a

Pa,r, (2.11)

0 = −(λ+ µ)P0,r + ν
a−1∑
k=0

Q[k]
r + µ

b∑
j=a

Pr,j , a+ 1 ≤ r ≤ b, (2.12)

0 = −(λ+ µ)Pn,r + λPn−1,r, a ≤ r ≤ b− 1, n ≥ 1, (2.13)

0 = −(λ+ µ)Pn,b + λPn−1,b + ν

a−1∑
k=0

Q
[k]
n+b + µ

b∑
r=a

Pn+b,r, n ≥ 1, (2.14)

0 = −(λ+ ν)Q
[k]
k + µ

b∑
r=a

Pk,r + δ

(
ν

k∑
j=0

Q
[j]
k

)
, 0 ≤ k ≤ a− 1, (2.15)

0 = −(λ+ ν)Q[k]
n + λQ

[k]
n−1, 0 ≤ k ≤ a− 1, n ≥ k + 1. (2.16)

The normalizing condition is given by

∞∑
n=0

b∑
r=a

Pn,r +
a−1∑
k=0

∞∑
n=k

Q[k]
n + (1− δ)

a−1∑
n=0

Rn = 1. (2.17)
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The primary objective of the author is to solve (2.9) - (2.16) along with (2.17) for obtaining

the required joint probabilities. Towards this end, the bivariate probability generating

function is defined as follows:

R(z) + P (z, y) +Q(z, y), |z| ≤ 1, |y| ≤ 1, where

R(z) =

a−1∑
n=0

Rnz
n, |z| ≤ 1, (2.18)

P (z, y) =
∞∑
n=0

b∑
r=a

Pn,rz
nyr, |z| ≤ 1, |y| ≤ 1, (2.19)

Q(z, y) =

a−1∑
k=0

∞∑
n=k

Q[k]
n z

nyk, |z| ≤ 1, |y| ≤ 1. (2.20)

Substituting y = 1 in (2.19) and (2.20), respectively, the following expressions are obtained.

P (z, 1) =
∞∑
n=0

b∑
r=a

Pn,rz
n =

∞∑
n=0

P ∗nz
n = P ∗(z), |z| ≤ 1, (2.21)

and Q(z, 1) =

a−1∑
k=0

∞∑
n=k

Q[k]
n z

n =

∞∑
n=0

min(n,a−1)∑
k=0

Q[k]
n z

n =

∞∑
n=0

Q∗nz
n = Q∗(z),

|z| ≤ 1, (2.22)

where

P ∗n =
b∑

r=a

Pn,r, n ≥ 0, (2.23)

and

Q∗n =

min(n,a−1)∑
k=0

Q[k]
n , n ≥ 0. (2.24)

Lemma 2.1. For the case of SV the following result is obtained

λRn = ν
n∑
r=0

Q∗r , 0 ≤ n ≤ a− 1. (2.25)

Proof. From equation (2.9) and (2.10), recursively the desired result (2.25) is obtained.

In order to obtain steady state joint probabilities, multiplying (2.11)-(2.16) by proper

power of z and y and summing over the range of n, r and k, and using (2.21), (2.22) and
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Lemma 2.1 (for SV), the following expressions are obtained.

P (z, y) =

zb
b−1∑
r=a

(
νQ∗r + µP ∗r

)
yr + (1− δ)

(
zbν

a−1∑
r=0

Q∗ry
a
)

+ybν
(
Q∗(z)−

b−1∑
n=0

Q∗nz
n
)

+µyb
(
P ∗(z)−

b−1∑
n=0

P ∗nz
n
)

zb(λ+ µ− λz)
, |z| ≤ 1, |y| ≤ 1, (2.26)

Q(z, y) =

a−1∑
k=0

(
µP ∗k + δνQ∗k

)
zkyk

(λ+ ν − λz)
, |z| ≤ 1, |y| ≤ 1. (2.27)

Lemma 2.2. For the case of SV the probabilities Q
[k]
n (0 ≤ k ≤ a − 1) and P ∗k (0 ≤ k ≤

a− 1) are connected by the following relation

Q[k]
n =

µP ∗k
λαn−k+1

, 0 ≤ k ≤ a− 1 and n ≥ k. (2.28)

Proof. From (2.27), after simplification, the following expression is obtained,

Q(z, y) =
µ

λα

a−1∑
k=0

P ∗k z
kyk

∞∑
n=0

zn

αn
, where α = 1 +

ν

λ
. (2.29)

Now equating (2.20) and (2.29) and then collecting the coefficients of yk (0 ≤ k ≤ a− 1)

the following expression is obtained,

∞∑
n=k

Q[k]
n z

n =
∞∑
n=k

µP ∗k
λαn−k+1

zn, 0 ≤ k ≤ a− 1. (2.30)

Finally, collecting the coefficients of zn from both the sides of (2.30), desired result (2.28)

is obtained.

Lemma 2.3. For the case of MV the probabilities Q
[k]
n (0 ≤ k ≤ a− 1) and P ∗k (0 ≤ k ≤

a− 1) are connected by the following relation

Q[k]
n =

(
µP ∗k + ν

k∑
j=0

αj−kQ
[j]
j

)
λαn−k+1

, 0 ≤ k ≤ a− 1, n ≥ k. (2.31)
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Proof. From the equation (2.15) and (2.16), and using (2.23), after certain manipulation

desired result (2.31) is obtained.

Hence, from Lemma 2.2 (or Lemma 2.3) the joint probabilities Q
[k]
n (0 ≤ k ≤ a− 1, n ≥ k)

are known if P ∗n (0 ≤ n ≤ a− 1) are known.

Now substituting y = 1 in (2.27) the following expression is obtained.

Q∗(z) =

a−1∑
k=0

(
µP ∗k + δνQ∗k

)
zk

(λ+ ν − λz)
, |z| ≤ 1. (2.32)

Substituting y = 1 in (2.26) and using (2.24), (2.32), Lemma 2.2 (or Lemma 2.3) after

simplification, one can get,

P ∗(z) =
H(z)

L(z)
, |z| ≤ 1, (2.33)

where

H(z) =



(λ+ ν − λz)µ
(
zb

b−1∑
r=a

P ∗r + ν
b−1∑
n=0

min(n,a−1)∑
k=0

P ∗k
λαn−k+1 (zb − zn)−

b−1∑
n=0

P ∗nz
n

)
+µν

a−1∑
k=0

P ∗k z
k, for SV,

(λ+ ν − λz)
[
b−1∑
j=a

(
νzb

a−1∑
k=0

αk−jQ
[k]
k + µzbP ∗j

)
−
b−1∑
n=0

(
µP ∗nz

n + ν
min(n,a−1)∑

k=0

αk−nQ
[k]
k z

n

)]
+ν

a−1∑
k=0

(
µP ∗k z

k + ν
k∑
j=0

αj−kQ
[j]
j z

k

)
, for MV,

and L(z) = (λ+ ν − λz)(zb(λ+ µ− λz)− µ).

It is to be noted here that the only unknown terms in Q∗(z) and P ∗(z), as appeared in

(2.32) and (2.33), respectively, are P ∗n (0 ≤ n ≤ b− 1). Therefore, one can conclude here

that once P ∗n (0 ≤ n ≤ b − 1) is known completely one can derive the steady state joint

probabilities Pn,r (n ≥ 0, a ≤ r ≤ b), Q
[k]
n (0 ≤ k ≤ a− 1, n ≥ k) from (2.26), Lemma 2.2

(or Lemma 2.3). Hence forth, next section is dedicated for derivation of P ∗n (0 ≤ n ≤ b−1).
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2.3.1 Determination of unknown terms P ∗n (0 ≤ n ≤ b− 1) as appeared in

P ∗(z)

To determine the unknowns P ∗n (0 ≤ n ≤ b− 1) the knowledge of the zeros of L(z) inside

and on the unit circle {z ε C : |z| = 1} is required. In L(z) the first factor, i.e., (λ+ν−λz)
is a linear polynomial having zero α (= 1 + ν

λ > 1), Therefore, it does not play any role

in getting unknowns P ∗n (0 ≤ n ≤ b − 1). To know the nature of the zeros of the second

factor of L(z), i.e., zb(λ+ µ− λz)− µ, consider f(z) = (λ+ µ)zb and g(z) = −λzb+1 − µ
and assume that C be a closed contour defined by |z| = 1 + δ, where δ is small positive

real number. It can be easily verified that |f(z)|>|g(z)| on C if and only if λ
bµ<1.

Henceforth, Rouche’s theorem states that, f(z) + g(z)
(
=zb(λ+µ− λz)−µ

)
has exactly b

zeros inside and on the unit circle. Assume these zeros as z1, z2, ..., zb−1, zb = 1. Note that

zb = 1 is the only zero of unit modulus of f(z) + g(z). Therefore, f(z) + g(z) has only one

zero say z0, out side the unit circle. Hence, L(z) has b zeros inside and on the unit circle

and they are z1, z2, ..., zb−1, zb = 1, and has two zeros out side the unit circle, and they are

z0 and α. Due to analyticity of P ∗(z) in |z| ≤ 1 the zeros zi (1 ≤ i ≤ b) of L(z) must be

the zeros of the numerator H(z). Hence,

H(zi) = 0, i = 1, 2, ..., b. (2.34)

Remark: Note that i=b gives the trivial equation, therefore, ultimately from (2.34) (b−1)

equations in b unknowns P ∗n (0 ≤ n ≤ b− 1) are obtained.

Now the next objective is to solve equation (2.34) for obtaining the unknowns P ∗n (0 ≤
n ≤ b−1). It should be noted here that the zeros of L(z), lying inside the unit circle, may

be all distinct or some of them are repeated. Therefore, depending on the nature of the

zeros following two cases are discussed.

Case 1: when all the zeros of L(z) in |z| < 1 are distinct

Assume that all the zeros of L(z) lying inside the unit circle are distinct, i.e., zi 6= zj

for all i 6= j and 1 ≤ i, j ≤ b− 1. Hence, from (2.34) one can derive (b − 1) linearly

independent homogeneous equations in b unknowns P ∗n (0 ≤ n ≤ b−1), which may results

in P ∗n = ξnP
∗
0 , 0 ≤ n ≤ b− 1, where each ξn is known constants. (It is to be noted here

that ξ0=1).

Case 2: when some of the zeros of L(z) in |z|<1 are repeated

Assume that some of the zeros of L(z) lying inside the unit circle are repeated, and these

repeated zeros are denoted by x1, x2, ..., xl with multiplicity r1, r2, ..., rl, respectively, so

that m =
l∑

i=1
ri. The remaining distinct zeros lying inside the unit circle are denoted by
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xm+1, xm+2, ..., xb−1. Using the property of analyticity of P ∗(z) in |z| < 1, the following

system of equations are obtained.

H i−1(xj) = 0, j = 1, 2, ..., l, i = 1, 2, ..., rj , (2.35)

H(xi) = 0, i = m+ 1,m+ 2, ..., b− 1, (2.36)

where Hn(x) is the nth derivative of H(z) at z = x, (n ≥ 1) and H0(x) = H(x). Hence,

from (2.35) and (2.36) one can derive (b− 1) linearly independent homogeneous equations

in b unknowns P ∗n(0 ≤ n ≤ b− 1). Solving them P ∗n = ξnP
∗
0 (0 ≤ n ≤ b− 1) are obtained,

where each ξn is known constants.

Hence, it concludes that all P ∗n (0 ≤ n ≤ b− 1) will be known once P ∗0 is known, which is

derived in the following section.

2.3.1.1 Derivation of P ∗0

Since H(z) is polynomial of degree (b+ 1) and zi (1 ≤ i ≤ b) are b zeros of H(z), assume

that all (b+ 1) zeros of H(z) are α1, zi(1 ≤ i ≤ b).
Result 1: The zeros z0 of L(z) and α1 of H(z) are given by,

z0 = β −
b∑
i=1

zi, β = 1 +
µ

λ
, (2.37)

α1 =
σ

ω
−

b∑
i=1

zi, (2.38)

where

σ =


(λ+ ν)µ

b−1∑
r=a

ξr + (λ+ ν)ν
b−1∑
n=0

min(n,a−1)∑
k=0

µξk
λαn−k+1 + µν

a−1∑
k=0

ξk
αb−k

+ λµξb−1, for SV,

αν
b−1∑
j=a

a−1∑
k=0

αk−jS
[k]
k + αµ

b−1∑
j=a

ξj + µξb−1 + ν
a−1∑
k=0

αk−b+1S
[k]
k , for MV,

(2.39)

ω =


λµ

b−1∑
r=a

ξr + νµ
b−1∑
n=0

min(n,a−1)∑
k=0

ξk
αn−k+1 , for SV,

ν
b−1∑
j=a

a−1∑
k=0

αk−jS
[k]
k + µ

b−1∑
j=a

ξj , for MV,

(2.40)

and S
[0]
0 = µ

λ , S
[k]
k = µ

λξk + ν
λ

k−1∑
j=0

αj−kS
[j]
j , 1 ≤ k ≤ a− 1.
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Proof. Since L(z) and H(z) are polynomials in z of degree (b+2) and (b+1), respectively,

hence,

sum of all the zeros of L(z) = α+
b∑
i=1

zi + z0 = −coefficient of zb+1 of L(z)

coefficient of zb+2 of L(z)
. (2.41)

sum of all the zeros of H(z) =

b∑
i=1

zi + α1 = − coefficient of zb in H(z)

coefficient of zb+1 in H(z)
. (2.42)

which finally led to the derived results (2.37), (2.38) after some algebraic manipulation.

Lemma 2.4. Sum of the zeros of L(z), which lies inside and on the unit circle {z ε C :

|z| = 1}, can never be zero, i.e.,
b∑
i=1

zi 6= 0.

Proof. From (2.37), z0 = β if
b∑
i=1

zi = 0 which means f(z) + g(z) vanishes at z = β which

is not possible.

Hence from (2.37) and Lemma (2.4), it is found that z0 6= β.

Lemma 2.5. The value of P ∗0 is given by

P ∗0 =


(α−1)(z0−1)λ2α1

(α1−1)αz0λ2+µα1λ(z0−1)
a−1∑
k=0

ξk+α1(α−1)(z0−1)νµ
a−1∑
n=0

n∑
r=0

r∑
k=0

ξk
αr−k+1

, for SV,

(α−1)(z0−1)λα1

λ(α1−1)αz0+µα1(z0−1)
a−1∑
k=0

ξk+α1(z0−1)ν
a−1∑
k=0

k∑
j=0

αj−kS
[j]
j

, for MV.
(2.43)

Proof. As H(z) and L(z) are the polynomials of degree (b+1) and (b+2), respectively, due

to analyticity of (2.33) in |z| ≤ 1, corresponding to each zero zi (1 ≤ i ≤ b) of L(z), both

H(z) and L(z) must have common factors of the form z − zi (1 ≤ i ≤ b). On canceling

these common factors from H(z) and L(z), and using Case 1 (or Case 2), P ∗(z) can be

rewritten as,

P ∗(z) =
ηP ∗0 (z − α1)

(z − α)(z − z0)
, |z| ≤ 1, (2.44)

where η is any constant. Using P ∗(0)=P ∗0 > 0 in (2.44) after some algebraic manipulation

one can obtain

η = −αz0

α1
. (2.45)
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Using (2.45) in (2.44) one can get

P ∗(z) = − αz0P
∗
0 (z − α1)

α1(z − α)(z − z0)
, |z| ≤ 1. (2.46)

Using (2.46), (2.32), Lemma 2.1 (for SV), Lemma 2.2 (or Lemma 2.3) and the relation

P ∗n = ξnP
∗
0 (0 ≤ n ≤ b− 1) in the normalizing condition P ∗(1) +Q∗(1) + (1− δ)R(1)=1,

after some algebraic manipulation desired result (2.43) is obtained.

2.3.2 Determination of the steady state joint probabilities

In this section, the closed form expression for all the required joint probabilities (except

Pn,b, n ≥ 0 which is obtained in Section 2.3.3) have been obtained in terms of P ∗0 . As

P ∗0 is already known from Lemma 2.5, these joint probabilities can be obtained in known

terms in Theorem 2.6 and Theorem 2.7.

Theorem 2.6. For the case of single vacation (SV) the steady state joint probabilities Rn

(0 ≤ n ≤ a− 1), Q
[k]
n (0 ≤ k ≤ a− 1, n ≥ k) and Pn,r (n ≥ 0, a ≤ r ≤ b− 1) are given by,

Q[k]
n =

µξkP
∗
0

λαn−k+1
, 0 ≤ k ≤ a− 1 and n ≥ k, (2.47)

Rn =
νµ

λ2

n∑
r=0

r∑
k=0

P ∗0 ξk
αr−k+1

, 0 ≤ n ≤ a− 1, (2.48)

Pn,a =

ν
a∑
r=0

min(r,a−1)∑
k=0

µξkP
∗
0

λαr−k+1 + µξaP
∗
0

λβn+1
, n ≥ 0 (2.49)

Pn,r =

a−1∑
k=0

µξkP
∗
0

λαr−k+1 + µξrP
∗
0

λβn+1
, a+ 1 ≤ r ≤ b− 1, where β = 1 +

µ

λ
, n ≥ 0. (2.50)

Proof. Using the relation P ∗n = ξnP
∗
0 (0 ≤ n ≤ b − 1) in Lemma 2.2 equation (2.47) is

obtained. Using (2.24) in Lemma 2.1 one have,

Rn =
ν

λ

n∑
r=0

r∑
k=0

Q[k]
r , 0 ≤ n ≤ a− 1. (2.51)
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Using (2.47) in (2.51) desired result (2.48) is obtained.

Using (2.19) in (2.26) comparing the coefficient of yr (a ≤ r ≤ b− 1) one can get

∞∑
n=0

Pn,az
n =

ν
a∑
j=0

Q∗j + µP ∗a

λβn+1

∞∑
n=0

zn, (2.52)

∞∑
n=0

Pn,rz
n =

νQ∗r + µP ∗r
λβn+1

∞∑
n=0

zn, a+ 1 ≤ r ≤ b− 1. (2.53)

Now collecting the coefficients of zn from both the side of (2.52) and (2.53) one can obtain

Pn,a =

ν
a∑
j=0

Q∗j + µP ∗a

λβn+1
, n ≥ 0, (2.54)

and

Pn,r =
νQ∗r + µP ∗r
λβn+1

, n ≥ 0, a+ 1 ≤ r ≤ b− 1. (2.55)

Using (2.24) and (2.47) and the relation P ∗n = ξnP
∗
0 (0 ≤ n ≤ b− 1) in (2.54) and (2.55),

respectively, (2.49) and (2.50) are obtained, respectively.

Theorem 2.7. For the case of multiple vacation (MV) the steady state joint probabilities

Q
[k]
n (0 ≤ k ≤ a− 1, n ≥ k) and Pn,r (n ≥ 0, a ≤ r ≤ b− 1) are given by,

Q[k]
n =

P ∗0

(
µξk + ν

k∑
j=0

αj−kS
[j]
j

)
λαn−k+1

, n ≥ k, 0 ≤ k ≤ a− 1, (2.56)

Pn,r =

(
ν
a−1∑
k=0

αk−rS
[k]
k + µξr

)
P ∗0

λβn+1
, n ≥ 0, a ≤ r ≤ b− 1. (2.57)

Proof. Using the relation P ∗n = ξnP
∗
0 (0 ≤ n ≤ b − 1) in Lemma 2.3 after some algebraic

manipulation desired result (2.56) is obtained.

Using (2.19) in (2.26) collecting the coefficients of yr (a ≤ r ≤ b−1) the following expression

is obtained,

∞∑
n=0

Pn,rz
n =

νQ∗r + µP ∗r
λβn+1

∞∑
n=0

zn, a ≤ r ≤ b− 1. (2.58)

Collecting the coefficients of zn from both the side of (2.58) and using (2.24), Lemma 2.3

and the relation P ∗n = ξnP
∗
0 (0 ≤ n ≤ b− 1) after some simplification desired result (2.57)

is obtained.
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2.3.3 Determination of unknown probabilities Pn,b (n ≥ 0)

In previous section Pn,r (n ≥ 0, a ≤ r ≤ b − 1) and Q
[k]
n (0 ≤ k ≤ a − 1, n ≥ k) have

been successively obtained. Now the main task is to obtain the remaining steady state

joint probabilities Pn,b (n ≥ 0). To get these probabilities, substituting (2.19) in (2.26)

and comparing the coefficients of yb the following expression is obtained,

∞∑
n=0

Pn,bz
n =

ν
(
Q∗(z)−

b−1∑
n=0

Q∗nz
n
)

+ µ
(
P ∗(z)−

b−1∑
n=0

P ∗nz
n
)

zb(λ+ µ− λz)
, |z| ≤ 1. (2.59)

Using equations (2.46), (2.32) and Lemma 2.2 (or Lemma 2.3) in (2.59) then using the

analyticity of (2.59) in |z| ≤ 1, after some algebraic manipulation, the following expression

is obtained,

∞∑
n=0

Pn,bz
n =

ε̃M(z)

−λ2α1N(z)
, |z| ≤ 1, (2.60)

where M(z) = z − γ,

γ = α+ z0 − (1− δ)
ν
a−1∑
k=0

µξk
λαb−k−1 +µξb−2

ν
a−1∑
k=0

µξk
λαb−k

+µξb−1

− δ
ν
a−1∑
k=0

αk−b+2S
[k]
k +µξb−2

ν
a−1∑
k=0

αk−b+1S
[k]
k +µξb−1

,

N(z) = (z − α)(z − β)(z − z0), and ε̃ = −λα1(νQ∗b−1 + µP ∗b−1).

Now two cases arise which are discussed below.

Case (I): When z0 6= α 6= β for this case,

M(z)

N(z)
=

A

(z − α)
+

B

(z − β)
+

C

(z − z0)
, (2.61)

where A, B and C are constants. Using the residue theorem the value of A, B and C are

given by,

A =
[M(z)
N ′(z)

]
z=α

, B =
[M(z)
N ′(z)

]
z=β

, C =
[M(z)
N ′(z)

]
z=z0

.

Now using (2.61) and the value of ε̃ in (2.60) collecting the coefficients of zn the following

expression is obtained

Pn,b =
−
(
νQ∗b−1 + µP ∗b−1

)
λ

(
A

αn+1
+

B

βn+1
+

C

zn+1
0

)
, n ≥ 0. (2.62)

Using (2.24) Lemma 2.2 (or Lemma 2.3) and the relation P ∗n = ξnP
∗
0 (0 ≤ n ≤ b − 1) in

(2.62) Pn,b (n ≥ 0) is obtained.
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Case (II): Define a variable x such that,

x =

β if α = z0,

z0 if α = β.

Hence, M(z)
N(z) can be written as,

M(z)

N(z)
=

A

(z − x)
+

2∑
i=1

Ai
(z − α)i

. (2.63)

A =

[
M(z)
N ′(z)

]
z=x

, A1 =

[
M(z) ddz

(
d2

dz2
(z−α)2

d2

dz2
N(z)

)
+

(
d2

dz2
(z−α)2

d2

dz2
N(z)

)(
d
dzM(z)

)]
z=α

, A2 =[
M(z)

d2

dz2
(z−α)2

d2

dz2
N(z)

]
z=α

.

Using (2.63) and the value of ε̃ in (2.60) collecting the coefficients of zn the following

expression is obtained,

Pn,b = −
(
νQ∗b−1 + µP ∗b−1

)
λ

{
A

xn+1
+

A1

αn+1
− A2(n+ 1)

αn+2

}
, n ≥ 0. (2.64)

Using (2.24) Lemma 2.2 (or Lemma 2.3) and the relation P ∗n = ξnP
∗
0 (0 ≤ n ≤ b − 1) in

(2.64) Pn,b (n ≥ 0) is obtained.

2.4 Marginal Probabilities

In this section, the important marginal probabilities have been presented which can be

derived from the steady state join probabilities obtained in previous section.

1. Probability of the queue length when server is busy is given by P ∗n=
b∑

r=a
Pn,r, n ≥ 0.

2. Probability of the queue length when server is in vacation is given byQ∗n =
min(n,a−1)∑

k=0

Q
[k]
n ,

n ≥ 0.

3. Queue length distribution is given by

P queuen =

(1− δ)Rn + P ∗n +Q∗n, 0 ≤ n ≤ a− 1,

P ∗n +Q∗n, n ≥ a.
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4. Probability that server is in dormant state is given by P dor=
a−1∑
n=0

Rn.

5. Probability that there are r (a ≤ r ≤ b) customers with the server is given by

P serr =
∞∑
n=0

Pn,r.

6. Probability that the server is in kth (0 ≤ k ≤ a − 1) type of vacation is given by

Q
[k]
vac=

∞∑
n=k

Q
[k]
n .

7. Probability that the server is busy is given by Pbusy=
b∑

r=a

∞∑
n=0

Pn,r.

8. Probability that the server is in vacation is given by Qvac=
a−1∑
k=0

∞∑
n=k

Q
[k]
n .

9. Probability that the server is idle is given by Pidle=(1− δ)P dor +Qvac.

2.5 Performance measure

Since all the steady state probabilities are known, in this section some important perfor-

mance measures of the model under consideration are presented.

1. The expected number of customers in the queue is given by Lq= (1− δ)
a−1∑
n=0

nRn +

∞∑
n=0

b∑
r=a

nPn,r +
a−1∑
k=0

∞∑
n=k

nQ
[k]
n =(1− δ)

a−1∑
n=0

nP queuen +
∞∑

n=a−δa
nP queuen .

2. The expected number of customers in the system is given by Ls=(1− δ)
a−1∑
n=0

nRn +

∞∑
n=0

b∑
r=a

(n+ r)Pn,r +
a−1∑
k=0

∞∑
n=k

nQ
[k]
n .

3. The expected waiting time of a customer in the queue is given by Wq=
Lq
λ .

4. The expected waiting time of a customer in the system is given by Ws=
Ls
λ .

5. Expected number of customers with the server when server is busy is given by

Lser=
b∑

r=a
(rP serr /Pbusy).

6. Expected type of vacation taken by server when server is in vacation is given by

Lvac =
a−1∑
k=0

(kQ
[k]
vac/Qvac).
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2.6 Numerical results

In this section, some numerical observations are presented in order to validate the ana-

lytical results by means of graphs and tables. First, one real life example associated with

sugarcane-juice production are presented, by which the reader may easily connect the in-

sight of the possible application of the considered model.

Example: A practical situation for the proposed model may be observed in the sugarcane

juice production of the sugar mill industries wherein the attention is focused on the sug-

arcane juice machine. The machine operator produces the sugarcane juice by machining

operations like cane cutting, cleaning, peeling, and then producing juice. Suppose that

the machine (server), in a sugar mill, which extracts the juice, can take a minimum of

three packets and a maximum of six packets of sugarcane for producing juice (service).

After extraction of the juice if the server finds at least r (≥ 3) packets in the queue then

it takes minimum (r, 6) packets for the service, as per the GBS rule, otherwise, it takes

either 0th type or 1th type or 2th type of vacation. In the case of 0th type of vacation,

the server removes waste, checks all the machinery parts, and purifies the extracted juice

assembled in the containers. In the case of 1th or 2th type of vacation, either it checks the

machinery parts (viz., greasing, fuel) or purifies the extracted juice which has collected in

the containers. Such a model may be analyzed as a bulk service queue with SV and MV.

For this example, assume that sugarcane packets are arriving in the system with rate 5.5

following Poisson process and the server provides service with rate 2.5, and the server takes

0th or 1th or 2th type of vacation with rate 1.3. The service and vacation time follow an

exponential distribution. For this particular example, it is observed that on an average,

4.616 {5.017} packets are in sugarcane machine (i.e., with the server) when the server is

busy for SV {MV}, and when the server is on vacation, then an average type of vacation is

0.84th for SV and 1.01th for MV. It is also observed that the average 4.295 {4.928} packets

are waiting in the queue for service, and the average waiting time in queue is 0.781 {0.896}
for SV {MV}. Assume that every service is costing the same amount, then the manager

would like to provide the server six packets each time for producing sugarcane juice. The

information on joint probabilities helps the manager to observe the expected number of

packets with the server during the busy period. The information on the expected type

of vacation may help the manager to arrange the minimum number of packets for service

during the vacation period. As a result, it may modulate queue length and waiting time

of packets for service, by which sugarcane can also be saved from drying.

Table 2.1 presents the steady state joint probabilities Rn (0 ≤ n ≤ a− 1), Pn,r (n ≥ 0, a ≤
r ≤ b), Q

[k]
n (0 ≤ k ≤ a − 1, n ≥ k) for M/M (5,10)/1 queue with SV. The other input
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parameters are taken as λ=120, µ=15 and ν=5. The description of Table 2.1 is given as

follows:

• The first column presents the number of customer present in the queue (excluding

the number in service).

• The second column presents the probability that the system is in state (n, 0), i.e.,

the system size is n (0 ≤ n ≤ a− 1).

• 3rd to 8th column present the probability that the system is in state (n, r), i.e., the

system size is n+ r (n ≥ 0, a ≤ r ≤ b).

• The 9th column presents the probability of the queue length when server is busy.

• 10th to 14th column present the server is in state (n, k), i.e., system size is n (≥ k)

when server is in kth type of vacation.

• 15th column presents the probability of the queue length when server is in vacation.

• The last column presents the queue length distribution.

• The last row presents performance measures defined in section 2.5 and the second

last row presents few more marginal probabilities defined in section 2.4.

Table 2.2 and Table 2.3 present steady state joint probabilities Pn,r (n ≥ 0, a ≤ r ≤ b) and

Q
[k]
n (0 ≤ k ≤ a− 1, n ≥ k) for M/M (10,19)/1 queue with MV. The other input parameters

for Table 2.2 and Table 2.3 are taken as λ=135, µ=9, ν=4. Table 2.2 and Table 2.3 are

self explanatory as similar notation has been used as used in Table 2.1.

For the richer understanding of queueing models graphical representation is very much

needed. Figure 2.3 to Figure 2.12 show the effect of the key parameters, i.e., λ, µ and

ν, on some important performance measures for SV (MV). These graphs are presented

here to understand sensitivity of the system performance for considered model. For this

purpose, M/M (10,25)/1 queue is considered.

In Figure 2.3 to Figure 2.6 the effect of µ on performance measures Lq, Ls, Wq, Ws, L
ser

and Lvac are displayed for SV and MV, keeping the value of λ and ν fixed at 240 and 15,

respectively. It is observed from the figures that as µ increases from 12 to 30 the values

of Lq, Ls, Wq, Ws, L
ser and Lvac decrease. This behavior of the considered performance

measures is quite obvious as for fixed λ=240 and ν=15, the value of ρ varies from 0.8 to
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0.32. As traffic intensity decreases it will obviously decrease the value of the performance

measures Lq, Ls, Wq, Ws, L
ser and Lvac.

The effect of ν on the performance measures Lq, Ls, Wq, and Ws are presented in Figure

2.7 and Figure 2.8 for SV and MV, respectively. In these figures the value of the parameter

ν varies from 4 to 22 and the values of the other parameters, i.e., λ and µ, are kept fixed at

240 and 12, respectively. It is observed from Figure 2.7 and Figure 2.8 that as ν increases

from 4 to 22, the value of Lq, Ls, Wq, and Ws decreases significantly. This type of behavior

is observed because when ν increases it eventually decreases the mean vacation time of the

server. As a result server became available to the system more frequently for providing

service, which eventually decreases the mean queue (system) length and mean waiting

time of a customer in the queue (system).

Figure 2.9 to Figure 2.12 present the effect of λ on the performance measures Lq, Ls, Wq,

Ws, L
ser and Lvac. In these figures λ varies from 11 to 20 and the values of µ and ν are

kept fixed at µ=1.1 and ν=15. As λ varies from 11 to 20 the values of ρ varies from 0.4

to 0.727. Due to increase in ρ the expected queue (system) length and expected waiting

time in queue (system) will obviously increase . As Lq(Ls) is increasing it will eventually

increase Lser and Lvac. Hence, one can conclude here that the behavior of the graphs as

presented in Figure 2.9 to Figure 2.12 are on its expected direction.

Figure 2.13 to Figure 2.15 present a comparison between SV and MV model. In these

figures the effect of vacation rate, i.e., ν is shown on some important probabilities, viz.,

Qvac, Pbusy and Pidle, respectively. For this purpose M/M (15,31)/1 is considered queue with

SV and MV. The values of the parameters λ and µ are kept fixed at λ=150 and µ=6, and

ν varies from 4 to 22. It is observed from the figures that as ν increases, Pbusy increases,

however, Pidle and Qvac decreases significantly for both the cases SV and MV. Increase

in ν, decrease the mean vacation time taken by the server, which eventually increase the

chance of the fraction of the time that server is busy, i.e., Pbusy, and decrease the chance

of the fraction of the time that the server is in vacation or idle state, i.e., Qvac or Pidle, and

this behavior is well reflected in Figure 2.13 to Figure 2.15. It is also observed in Figure

2.13 to Figure 2.15 that Qvac and Pidle is less for SV, in comparison to MV, and Pbusy is

more for SV, in comparison to MV, which is quite expected.
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Figure 2.3: Effect of µ on performance
measure

Figure 2.4: Effect of µ on Lser and
Lvac

Figure 2.5: Effect of µ on perfor-
mance measure

Figure 2.6: Effect of µ on Lser and
Lvac

Figure 2.7: Effect of ν on performance
measure

Figure 2.8: Effect of ν on performance
measure
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Figure 2.9: Effect of λ on perfor-
mance measure

Figure 2.10: Effect of λ on Lser and
Lvac

Figure 2.11: Effect of λ on perfor-
mance measure

Figure 2.12: Effect of λ on Lser and
Lvac

Figure 2.13: Effect of ν on Qvac Figure 2.14: Effect of ν on Pbusy
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Figure 2.15: Effect of ν on Pidle

2.6.1 Cost model

The objective of this section is to optimize the minimum threshold of the GBS rule (a, b)

for the queueing model under study. Keeping this in mind, a cost function is formulated

for the long run system. Define the following notations for the considered cost model.

Cst≡ Startup cost per customer per unit time.

Chol≡ Holding cost per customer per unit time.

Co≡ Operating cost per customer per unit time.

Thus, in the long run, the total system cost (TSC) is given by:

TSC=λCst+CholLq+CoL
ser.

The minimum threshold limit a is optimized by keeping b fixed at 10, i.e., b=10 and

for different service rates µ. The values of total system cost (TSC) for different values of

a and µ are presented in Table 2.4 for SV and MV. The other input parameters are taken

as, λ = 1.5, ν = 1.3, Cst = 0.15, Chol = 0.90, Co = 0.333.

In Table 2.4 the first column represents the value of a. The 2nd, 3rd, and 4th columns

represent the value of TSC for the MV and for µ=0.3, 0.25, 0.22, respectively. Similarly,

5th, 6th and 7th columns of Table 2.4 represent the value of TSC for different values of

µ, i.e., µ=0.3, 0.25, 0.22 and for SV. In Table 2.4 the minimum TSC, corresponding to

each µ, and for MV (SV) are mentioned by bold letter in each column, which results in

obtaining the corresponding optimum value of a, for example, in 4th column the minimum

TSC is 13.28201 and the corresponding value of a is 6. Hence, one can conclude from

this observation that for b=10, MV, and µ=0.22, the minimum value of TSC is 13.28201,

and the optimum value of a is 6. Similar observation can be made for each column. The
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Table 2.4: TSC for the fixed value of b=10 for the different values of a and µ

a µ=0.3
(MV)

µ=0.25
(MV)

µ=0.22
(MV)

µ=0.30
(SV)

µ=0.25
(SV)

µ=0.22
(SV)

1 7.68418 10.57045 14.08282 7.71110 10.60578 14.12252
2 7.56123 10.39092 13.87081 7.58379 10.44922 13.94946
3 7.52192 10.24694 13.66072 7.49760 10.29843 13.75895
4 7.58406 10.16446 13.47838 7.47903 10.17719 13.56967
5 7.75175 10.16059 13.34564 7.54493 10.10624 13.40109
6 8.02187 10.24661 13.28201 7.70159 10.10019 13.27019
7 8.38945 10.43184 13.30788 7.94733 10.16727 13.19031
8 8.85219 10.72852 13.44979 8.27571 10.31065 13.17123
9 9.41617 11.15925 13.74932 8.67817 10.53008 13.22002

graphical representation of Table 2.4 is presented in Figure 2.16 (for MV) and Figure 2.17

(for SV) and the corresponding minimum value of TSC for each µ (=0.3, 0.25, 0.22) are

indicated by arrow sign in the figures.
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Figure 2.16: Effect of a on TSC for
MV
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Figure 2.17: Effect of a on TSC for
SV

2.7 Conclusion

In this chapter, an M/M (a,b)/1 queue with single and multiple vacation has been analyzed

and steady state joint distribution of the queue content and server content (when server

is busy) and the joint distribution of the queue content and the type of vacation taken

by the server (when server is in vacation) are obtained by using bivariate probability

generating function (PGF) method. Various performance measures, such as, the average

number in the queue (system), the average waiting time in queue (system) are presented.

A cost model is also presented in which the minimum threshold limit for GBS rule is



Chapter 2. M/M (a,b)/1 queue with SV (MV) 44

numerically optimized, which eventually minimizes the total system cost of the model for

a particular example. The proposed analysis may be helpful to analyze infinite buffer batch

size dependent bulk service vacation queueing models with general arrival and/or service

and general vacation time distribution and are left for the future study. Such models may

be very useful for controlling the congestion in the real life phenomenon.
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