Chapter 4

Finite Σ -dual-Rickart Modules

In [35], Lee and Barcenas introduced the notion of finite Σ -Rickart modules. Motivated by the notion of finite Σ -Rickart modules, we introduce the notion of finite Σ -dual-Rickart modules. The class of finite Σ -dual-Rickart modules generalizes the class of Σ -Rickart modules. In this chapter, we study some properties of finite Σ dual-Rickart modules and give a comparison between finite Σ -Rickart modules and finite Σ -dual-Rickart modules. In the last section, we study endomorphism rings of finite Σ -dual-Rickart modules.

4.1 Finite Σ -dual-Rickart Modules

Definition 4.1.1. An *R*-module *M* is said to be a finite Σ -dual-Rickart if the direct sum of finitely many copies of *M* is a dual-Rickart module. Equivalently, a module *M* is said to be a finite Σ -dual-Rickart module if $M^{(n)} = \bigoplus_{i=1}^{n} M_i$ ($M_i = M$ for each *i*) is a dual-Rickart for every $n \in \mathbb{N}$. Further, a ring *R* is called a right (left) finite Σ -dual-Rickart if R_R ($_RR$) is a finite Σ -dual-Rickart module.

- **Example 4.1.2.** (i) Every dual-Rickart module with D2-condition is a finite Σ dual-Rickart module as from [37, Corollary 5.12] the direct sum of finitely many copies of a dual-Rickart module with D2-condition is dual-Rickart.
 - (ii) Every indecomposable Hopfian dual-Rickart module is a finite Σ-dual-Rickart module [37, Remark 5.13].
- (iii) Every injective module over a right hereditary ring is a finite Σ-dual-Rickart module, as every injective module over a right hereditary ring is a dual-Rickart module [37, Theorem 2.29] and finite direct sum of injective modules is injective.
- (iv) A ring R is a finite Σ -dual-Rickart if R is a von Neumann regular ring.

We have the following diagram for a right R-module M:

The reverse of any arrows in the above diagram need not be true. The following example illustrate it.

Example 4.1.3. (i) Let $R = \prod_{n=1}^{\infty} F_n$, where $F_n = \mathbb{Z}_2$ for each n. It is easy to see that the ring R is a von Neumann regular. From [37, Proposition 2.25], it is clear that for a von Neumann regular, the direct sum of finite copies

of R is a dual-Rickart R-module. Therefore R_R is a dual-Rickart as well as finite Σ -dual-Rickart R-module. Since, $M = R^{(R)}$ satisfies D2-condition and $End_R(M)$ is not a von Neumann regular ring. Therefore, from [37, Theorem 3.8] M is not a dual-Rickart R-module. Hence, M can not be a Σ -dual-Rickart R-module.

- (ii) Let M = Z_p∞ (Prüfer p-group for a prime p) and R = Z. It is clear from [37, Theorem 2.29] that every injective R-module is a dual-Rickart module if and only if R is a hereditary ring. Therefore, M^(Λ) is a dual-Rickart R-module for every non-empty index set Λ. Thus, M is Σ-dual-Rickart module as well as finite Σ-dual-Rickart module, while M is not an endoregular module (see [40, Remark 4.28]).
- (iii) From [35, Example 2.3], the converse of " Σ -Rickart \Rightarrow Finite Σ -Rickart" and "endoregular \Rightarrow Finite Σ -Rickart \Rightarrow Rickart" need not be true.
- (iv) On the basis of Corollary 5.12 and Remark 5.13 of [37] theoretically, it seems that the finite direct sum of copies of a dual-Rickart module without an extra condition (like D2-condition, indecomposable Hopfian module) need not be a dual-Rickart module. Therefore, we can say that a dual-Rickart module need not be a finite Σ-dual-Rickart module.

The following proposition shows that the finite Σ -dual-Rickart module is closed under direct summand.

Proposition 4.1.4. The direct summand of a finite Σ -dual-Rickart module is finite Σ -dual-Rickart.

Proof. Let M be a finite Σ -dual-Rickart module and N be a direct summand of M. Then, $M^{(n)}$ is a dual-Rickart module for each $n \in \mathbb{N}$. It is easy to see that $N^{(n)}$ is a direct summand of $M^{(n)}$. Since the direct summand of a dual-Rickart module is dual-Rickart, so $N^{(n)}$ is a dual-Rickart module. Hence, N is a finite Σ -dual-Rickart module.

Proposition 4.1.5. If M is a finite Σ -dual-Rickart module, then $M^{(n)}$ is a finite Σ -dual-Rickart module for every positive integer n.

Proof. Let M be a finite Σ -dual-Rickart module. Then $M^{(n)}$ is a dual-Rickart module. Thus, $(M^{(n)})^{(m)} = M^{(nm)}$ is also a dual-Rickart module for any positive integer m. Hence, $M^{(n)}$ is a finite Σ -dual-Rickart module.

Lemma 4.1.6. If M is a finite Σ -dual-Rickart module, then $M^{(n_1)}$ is $M^{(n_2)}$ dual-Rickart for every positive integers n_1 and n_2 .

Proof. Let $\psi : M^{(n_1)} \to M^{(n_2)}$ be any homomorphism. Since M is a finite Σ -dual-Rickart module, $M^{(n_1n_2)}$ is a dual-Rickart module. So, $M^{(n_1n_2)}$ is $M^{(n_1n_2)}$ -dual-Rickart. Hence, from [37, Theorem 2.19] $M^{(n_1)}$ is $M^{(n_2)}$ -dual-Rickart.

For a module M, add(M) [61] denotes the class of all right R-modules, which are isomorphic to a direct summand of $M^{(n)}$ for a positive integer n.

Proposition 4.1.7. A module M is a finite Σ -dual-Rickart module if and only if every module $N \in add(M)$ is a finite Σ -dual-Rickart module.

Proof. Let $N \in add(M)$. Then, there exists a module K such that $N \cong K \leq^{\oplus} M^{(n)}$, for a positive integer n. So, by Proposition 4.1.4 and Proposition 4.1.5, K and $M^{(n)}$ are finite Σ -dual-Rickart modules, respectively. Hence, N is a finite Σ -dual-Rickart module. The converse follows from the fact that the module M also lies in add(M). **Proposition 4.1.8.** Every cohereditary module is finite Σ -dual-Rickart.

Proof. Let M be a cohereditary module. By [50, Proposition 3.3'], $M^{(n)}$ is also a cohereditary module for each positive integer n. So, for every $\psi \in End_R(M^{(n)})$, $M^{(n)}/Ker(\psi) \cong Im(\psi)$ is injective.

Therefore, the short exact sequence $0 \to Im(\psi) \to M^{(n)} \to Coker(\psi) \to 0$ splits. So, $Im(\psi)$ is a direct summand of $M^{(n)}$. Thus, $M^{(n)}$ is a dual-Rickart module. Hence, M is a finite Σ -dual-Rickart module.

The following example illustrates that the converse of Proposition 4.1.8 is not true in general.

Example 4.1.9. Let $R = \prod_{\lambda \in \Lambda} R_{\lambda}$, where Λ is an infinite index set and $R_{\lambda} = \mathbb{F}$ for every $\lambda \in \Lambda$, where \mathbb{F} is any field. Clearly, R is a von Neumann regular ring. Therefore, from [37, Proposition 2.25] right R-module $R^{(n)}$ is dual-Rickart for every $n \in \mathbb{N}$. Hence, R_R is a finite Σ -dual-Rickart R-module, while R_R is not a cohereditary R-module (see Example 3.1, [57]).

Proposition 4.1.10. For an *R*-module *M*, the following statements are true:

- (i) Every finite Σ -dual-Rickart module has SSP.
- (ii) Every finite Σ -dual-Rickart module with D3 condition has SIP.

Proof. (i) Let M be any finite Σ -dual-Rickart module. Then for every positive integer n, $M^{(n)}$ must be a dual-Rickart module. Since every dual-Rickart module has SSP [37, Proposition 2.11], so $M^{(n)}$ has SSP. Hence, the module M also has SSP.

(*ii*) Let M be a finite Σ -dual-Rickart module with D3-condition. Since from [2, Lemma 19] a D3-module with SSP has SIP. Hence, the module M has SIP.

Corollary 4.1.11. A quasi-projective finite Σ -dual-Rickart module has SIP.

Proof. Since every quasi-projective module has D3-condition, so the proof follows from Proposition 4.1.10(ii)

Note 4.1.12. The converse of both the statements of Proposition 4.1.10 need not be true. It can be seen in the following example.

The \mathbb{Z} -module \mathbb{Z}_4 satisfies the SIP and the SSP, but it is neither Rickart nor dual-Rickart. So, \mathbb{Z}_4 can not be a finite Σ -dual-Rickart \mathbb{Z} -module.

In the following Proposition, we characterize von Neumann regular rings in terms of the finite Σ -dual-Rickart modules.

Proposition 4.1.13. The following statements are equivalent for a ring quasi – projective

- (i) Every finitely generated free (projective) R-module is a finite Σ -dual-Rickart;
- (ii) The free R-module $R^{(2)}$ has SSP;
- (iii) R is a von Neumann regular ring.

Proof. $(i) \Rightarrow (ii)$ Clearly, $R^{(2)}$ is a finitely generated free *R*-module. Therefore, by hypothesis $R^{(2)}$ is a finite Σ -dual-Rickart ring. So, from Proposition 4.1.10, $R^{(2)}$ has summand sum property.

 $(ii) \Rightarrow (iii)$ It is clear from [37, Proposition 2.25].

 $(iii) \Rightarrow (i)$ Let M be a finitely generated free R-module, then $M \cong R^{(n)}$ for some $n \in \mathbb{N}$. From hypothesis, R is a von Neumann regular ring, so for every $k \in \mathbb{N}$ $Mat_k(M) \cong Mat_k(R^{(n)}) \cong End_R(R^{(n \times k)})$ is von Neumann regular ring. Hence, $M^{(k)}$ is a dual-Rickart module, which implies that M is finite Σ -dual-Rickart. \Box **Proposition 4.1.14.** A projective and quasi-injective right R-module M over right hereditary ring R is a finite Σ -dual-Rickart module.

Proof. Let M be a projective and quasi-injective module. Then for every $n \in \mathbb{N}$, $M^{(n)}$ is projective and continuous. Therefore, $M^{(n)}$ is a projective continuous right R-module. Since projective continuous modules over the hereditary ring are dual-Rickart [37, Proposition 2.4], so $M^{(n)}$ is a dual-Rickart module as by assumption Ris hereditary. Hence, M is a finite Σ -dual-Rickart module.

In the following Proposition, we characterize finite Σ -dual-Rickart modules in terms of the hereditary rings.

Proposition 4.1.15. A ring R is hereditary if and only if every injective R-module is a finite Σ -dual-Rickart module.

Proof. Let M be an injective module. Then for every $n \in \mathbb{N}$, $M^{(n)}$ is an injective module. Now, let $\psi \in End_R(M^{(n)})$ be arbitrary. Since R is a right hereditary ring, $M^{(n)}/Ker(\psi) \cong Im(\psi)$ is an injective module. Therefore, $Im(\psi) \leq^{\oplus} M^{(n)}$. Thus, $M^{(n)}$ is a dual-Rickart module. Hence, M is a finite Σ -dual-Rickart module.

Conversely, let M be an injective module and N be any submodule of M. Then $M \oplus E(M/N)$ is an injective module. By hypothesis, $M \oplus E(M/N)$ is a finite Σ -dual-Rickart module. So, $M \oplus E(M/N)$ is also dual-Rickart module. From Lemma 3.1.7, M is E(M/N)-dual-Rickart. Now define a homomorphism $\phi : M \to E(M/N)$ such that $\phi(m) = m + N$. Then $Im(\phi) = M/N \leq^{\oplus} E(M/N)$. Therefore, M/N is an injective module. Hence, R is a right hereditary ring.

In the following proposition, with the help of Lemma 4.1.16, we characterize finite Σ -dual-Rickart modules in terms of finitely *M*-cogenerated modules. Recall from

[5] that an *R*-module *N* is finitely *M*-cogenerated if there exists a monomorphism $\rho: N \to M^{(n)}$ for every $n \in \mathbb{N}$.

Lemma 4.1.16. [5, Proposition 10.8]. The direct sum of two finitely M-cogenerated modules is finitely M-cogenerated.

Proposition 4.1.17. If M is a finite Σ -dual-Rickart module, then the sum of two finitely M-cogenerated submodules of $K \in add(M)$ is finitely M-cogenerated.

Proof. (i) Let $K \in add(M)$ and K_1 , K_2 be two finitely M-cogenerated submodules of K. Consider the exact sequence, $0 \to K_1 \cap K_2 \xrightarrow{f} K_1 \oplus K_2 \xrightarrow{g} K_1 + K_2 \to 0$, where for any $k \in K_1 \cap K_2$, f(k) = (k, k) and for any $(k_1, k_2) \in K_1 \oplus K_2$, $g(k_1, k_2) = k_1 + k_2$. Since K_1 and K_2 are finitely M-cogenerated, from Lemma 4.1.16 $K_1 \oplus K_2$ is finitely M-cogenerated. So, there exists a monomorphism $h : K_1 \oplus K_2 \to M^{(n)}$ for some positive integer n. Since M is a finite Σ -dual-Rickart and $K \in add(M)$, so by Lemma 4.1.6 K is $M^{(n)}$ dual-Rickart. Therefore, Im(hf) is a direct summand of $M^{(n)}$. It is clear that Im(hf) = h(Imf). Therefore, from Lemma 3.1.15, Im(f) is a direct summand of $K_1 \oplus K_2$. Thus, $(K_1 \oplus K_2)/Im(f)$ is finitely M-cogenerated. \Box Since $K_1 + K_2 \cong (K_1 \oplus K_2)/Im(f)$, hence $K_1 + K_2$ is finitely M-cogenerated. \Box

4.2 Finite Σ -dual-Rickart Modules vs. Finite Σ -Rickart Modules

The notion of finite Σ -dual-Rickart modules is dual of the notion of finite Σ -Rickart modules. In this section, we study when a finite Σ -Rickart module implies a finite Σ -dual-Rickart module and vice-versa. Also, we discuss when these notions are equivalent to each other.

The following example illustrates that the class of finite Σ -Rickart modules and the class of finite Σ -dual-Rickart modules are independent of each other.

Example 4.2.1. As every injective right R-module over a right hereditary ring R is a dual-Rickart module [37, Theorem 2.29]. Therefore, $\mathbb{Z}_{p^{\infty}}^{(\mathscr{I})}$ is a dual-Rickart \mathbb{Z} module for any finite index set \mathscr{I} . So, $\mathbb{Z}_{p^{\infty}}$ is a finite Σ -dual-Rickart \mathbb{Z} -module while it is not a Rickart \mathbb{Z} -module [36]. Therefore, $\mathbb{Z}_{p^{\infty}}$ is not a finite Σ -Rickart module. Further, \mathbb{Z} considered as \mathbb{Z} -module is a finite Σ -Rickart module (see [35]), but \mathbb{Z} considered as \mathbb{Z} -module is not a finite Σ -dual-Rickart as \mathbb{Z} is not a dual-Rickart module (see [37]).

Proposition 4.2.2. Let $M = M_1 \oplus M_2$, where M_1 and M_2 are submodules of M. Then the following statements hold:

- (i) If M is a C4-module and M_1 is M_2 -Rickart then M_1 is M_2 -dual-Rickart.
- (ii) If M is a D4-module and M_1 is M_2 -dual-Rickart then M_1 is M_2 -Rickart.

Proof. (i) Let M_1 be M_2 -Rickart module and $\psi : M_1 \to M_2$ be any homomorphism. Then $Ker(\psi) \leq^{\oplus} M_1$. Since M has C4-condition, $Im(\psi) \leq^{\oplus} M_2$. Hence, M_1 is M_2 -dual-Rickart module.

(*ii*) Let M_1 be M_2 -dual-Rickart module and $\psi : M_1 \to M_2$ be any homomorphism. Then $Im(\psi) \leq^{\oplus} M_2$. Since M has D4-condition, so $Ker(\psi) \leq^{\oplus} M_1$. Hence, M_1 is M_2 -Rickart module.

Corollary 4.2.3. Let $M = M_1 \oplus M_2$ for submodules M_1 and M_2 of M. Then the following statements hold:

 (i) If M is a C2 (or C3) module and M₁ is M₂-Rickart module then M₁ is M₂dual-Rickart module. (ii) If M is a D2 (or D3) module and M₁ is M₂-dual-Rickart module then M₁ is
M₂-Rickart module.

Proof. The proof is clear because every C2 and C3 modules are C4 module.

The following examples show that the C4-condition and D4-condition in Proposition 4.2.2 are not superfluous.

Example 4.2.4. (i) Let $M = \mathbb{Z} \oplus \mathbb{Z}$. It is clear that \mathbb{Z} is a \mathbb{Z} -Rickart module. Since \mathbb{Z} is not a C2 module, by [20, Proposition 2.15] M is not a C4 module. Further, \mathbb{Z} is not a Σ -dual-Rickart module as it is not a dual-Rickart module [37]. (ii) Let $M = \mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ be a \mathbb{Z} -module. It is easy to see that $\mathbb{Z}_{p^{\infty}}$ is a $\mathbb{Z}_{p^{\infty}}$ -dual-Rickart module while $\mathbb{Z}_{p^{\infty}}$ is not a $\mathbb{Z}_{p^{\infty}}$ -Rickart module [36]. Also, $\mathbb{Z}_{p^{\infty}}$ is not a D2 module. Therefore, from [21, Proposition 2.11] M is not a D4 module.

Proposition 4.2.5. For an *R*-module *M*, the following statements hold:

- (i) Every dual-Rickart module with D2-condition is a Rickart module.
- (ii) Every Rickart module with C2-condition is a dual-Rickart module.

Proof. (i) Let M is a dual-Rickart module and $\psi \in End_R(M)$ be an endomorphism. Since, $M/Ker(\psi) \cong Im(\psi) \leq^{\oplus} M$. Thus, by D2-condition, $Ker(\psi) \leq^{\oplus} M$. Hence, M is a Rickart module.

(*ii*) Let M be a Rickart module and $\varphi \in End_R(M)$ be an endomorphism. Then there exists submodule $K \leq M$ such that $M = Ker(\varphi) \oplus K$. Since the restriction map $\varphi|_K$ is a monomorphism, so by C2-condition $\varphi(K) \leq^{\oplus} M$. Thus, $Im(\varphi) = \{0\} \oplus \varphi(K)$ is a direct summand of M. Hence, M is a dual-Rickart module.

Proposition 4.2.6. Every quasi-injective finite Σ -Rickart module is a finite Σ -dual-Rickart module. *Proof.* Let M be a quasi-injective finite Σ -Rickart module. Then, $M^{(n)}$ is a Rickart module for every positive integer n. Since M is a quasi-injective R-module, therefore $M^{(n)}$ is also a quasi-injective module. Thus, $M^{(n)}$ is a Rickart module with C2condition. Hence, by Proposition 4.2.5(ii) M is a finite Σ -dual-Rickart module. \Box

The following example shows that the quasi-injectivity in proposition 4.2.6 is not superfluous.

Example 4.2.7. The \mathbb{Z} -module $M = \mathbb{Q} \oplus \mathbb{Z}$ is not quasi-injective, but M is a finite Σ -Rickart module (see [35, Example 2.3]), while M is not a finite Σ -dual-Rickart \mathbb{Z} -module. In fact, M is not a dual-Rickart module [36].

Proposition 4.2.8. Every projective finite Σ -dual-Rickart module is a finite Σ -Rickart.

Proof. Let M be a projective finite Σ -dual-Rickart module. Then, $M^{(n)}$ is a dual-Rickart module for every positive integer n. Since M is a projective R-module, $M^{(n)}$ is also a projective module. Thus, $M^{(n)}$ is a Rickart module with D2-condition. Hence, M is a finite Σ -Rickart module.

Corollary 4.2.9. If R is a semisimple ring, then every finite Σ -dual-Rickart R-module is finite Σ -Rickart.

Projectivity in Proposition 4.2.8 is not superfluous. We provide an example that illustrates it.

Example 4.2.10. It is easy to see that $\mathbb{Z}_{p^{\infty}}$ is a finite Σ -dual-Rickart \mathbb{Z} -module while $\mathbb{Z}_{p^{\infty}}$ is not a projective \mathbb{Z} -module. Also, $\mathbb{Z}_{p^{\infty}}$ is not a finite Σ -Rickart \mathbb{Z} -module as $\mathbb{Z}_{p^{\infty}}$ is not a Rickart module [36].

In the following proposition, we discuss the conditions under which a module is finite Σ -Rickart as well as finite Σ -dual-a Rickart.

Proposition 4.2.11. The following statements hold for an *R*-module *M*:

- (i) If R is a right V-ring, then every finitely cogenerated R-module is finite Σdual-Rickart and finite Σ-Rickart module.
- (ii) Every finitely cogenerated right R-module over a right SSI-ring is finite Σ -Rickart and finite Σ -dual-Rickart module.
- (iii) If M is an endoregular module, then M is a finite Σ -Rickart and finite Σ -dual-Rickart module.

Proof. (i) Let $\psi \in End_R(M^{(n)})$ be arbitrary, where *n* is a positive integer. As *M* is a finitely cogenerated right *R*-module, $M^{(n)}$ is also finitely cogenerated. Since every finitely cogenerated module over a right *V*-ring is endoregular [40, Proposition 2.14], so $M^{(n)}$ is an endoregular module. Therefore, $Im(\psi)$ and $Ker(\psi)$ are direct summand of $M^{(n)}$. Hence, *M* is a finite Σ -Rickart module as well as a finite Σ -dual-Rickart module.

(*ii*) It follows from part (i) and from the fact that every SSI-ring is right Noetherian and right V-ring.

(*iii*) Since M is an endoregular module, so $M^{(n)}$ is also an endoregular module [40, Corollary 3.15]. Hence, M is a finite Σ -Rickart and finite Σ -dual-Rickart module. \Box

Theorem 4.2.12. The following conditions are equivalent for a ring R:

- (i) R is semisimple Artinian ring;
- (ii) Every R-module is finite Σ -Rickart module;

(iii) Every R-module is finite Σ -dual-Rickart module.

Proof. $(i) \Leftrightarrow (ii)$ From [36, Theorem 2.25], the ring R is semisimple Artinian if and only if every R-module is Rickart. So, for any $n \in \mathbb{N}$, $M^{(n)}$ is Rickart R-module if and only if R is semisimple Artinian ring. Hence, the result follows. $(i) \Leftrightarrow (iii)$ It is clear from[37, Theorem 2.24], the ring R is semisimple Artinian if and only if every R-module is dual-Rickart. So, for any $n \in \mathbb{N}$, $M^{(n)}$ is dual-Rickart R-module if and only if R is semisimple Artinian ring.

4.3 Endomorphism Rings of Finite ∑-dual-Rickart Modules

In this section, we study some properties of the endomorphism ring of a finite Σ dual-Rickart modules. We characterize von Neumann regular rings, coherent rings and hereditary rings with the help of finite Σ -dual-Rickart modules.

- **Theorem 4.3.1.** (i) The endomorphism ring of every finite Σ -dual-Rickart projective R-module is von Neumann regular.
- (ii) The endomorphism ring of finite Σ -dual-Rickart free R-module is von Neumann regular.

Proof. (i) Let M be a finite Σ -dual-Rickart module. Then for every finite index set \mathscr{I} , $M^{(\mathscr{I})}$ is a dual-Rickart module. Now, let $\phi \in End(M^{(\mathscr{I})})$ be arbitrary. So, $M^{(\mathscr{I})}/Ker(\varphi) \cong Im(\varphi) \leq^{\oplus} M^{(\mathscr{I})}$. Since M is a projective module, $M^{(\mathscr{I})}$ is a projective module. So, $M^{(\mathscr{I})}$ satisfies D2 condition. Thus, $Ker(\varphi)$ is a direct summand of $M^{(\mathscr{I})}$. Therefore, from [47, Theorem 4] $End_R(M^{(\mathscr{I})}) = Mat_{\mathscr{I}}(End_R(M))$ is a von Neumann regular ring. Hence, $End_R(M)$ is a von Neumann regular ring. (*ii*) The proof follows from part (*i*).

Corollary 4.3.2. Let M be an R-module and $S = End_R(M)$. If M is a finite Σ -dual-Rickart and projective module, then M is intrinsically injective.

Proof. Let M be a finite Σ -dual-Rickart projective module. Then by Theorem 4.3.1 S is a von Neumann regular ring. Hence, from [59, 6.11(3)], M is an intrinsically injective module.

Proposition 4.3.3. The endomorphism ring of a finite Σ -dual-Rickart module is left semi-hereditary. Conversely, if $S = End_R(M)$ is a left semi-hereditary ring with C2-condition as a left S-module, then M is a finite Σ -dual-Rickart module.

Proof. Let M be a finite Σ -dual-Rickart module. Then for every positive integer n, $M^{(n)}$ is a dual-Rickart module. It is clear that $End_R(M^{(n)}) = Mat_n(End_R(M)) = Mat_n(S)$. So by [37, Proposition 3.1], $Mat_n(S)$ is a left Rickart ring. Therefore, from [52, Proposition], S is a left semi-hereditary ring.

For the converse part, let S be a left semi-hereditary ring with C2 condition. Then S is a left Rickart ring with C2-condition. So from [36, Corollary 3.18], S is a von Neumann regular ring. Therefore, $Mat_n(S) = End_R(M^{(n)})$ is a von Neumann regular ring for each positive integer n. Thus, $M^{(n)}$ is a dual-Rickart. Hence, M is a finite Σ -dual-Rickart module.

Corollary 4.3.4. Let M be a finite Σ -dual-Rickart R-module and $S = End_R(M)$. If $_SM$ is an FP-injective module, then M is an intrinsically injective module.

Proof. Let M be a finite Σ -dual-Rickart module. Then by Proposition 4.3.3, S is a left semi-hereditary ring. Since by hypothesis ${}_{S}M$ is FP-injective module, from [59, 6.11(2)] M is an intrinsically injective module.

Proposition 4.3.5. The endomorphism ring of a finitely generated finite Σ -dual-Rickart module is a left hereditary.

Proof. The proof follows from [37, Remark 3.3].

Proposition 4.3.6. The endomorphism ring of a finite Σ -dual-Rickart module is a left coherent ring.

Proof. Let M be a finite Σ -dual-Rickart module and $S = End_R(M)$. Then, from Proposition 4.3.3 S is a left semi-hereditary ring. Since from [32, Proposition 4.47] every semi-hereditary ring is left coherent ring, so S is left coherent.