
Chapter 4

Finite Σ-dual-Rickart Modules

In [35], Lee and Barcenas introduced the notion of finite Σ-Rickart modules. Mo-

tivated by the notion of finite Σ-Rickart modules, we introduce the notion of finite

Σ-dual-Rickart modules. The class of finite Σ-dual-Rickart modules generalizes the

class of Σ-Rickart modules. In this chapter, we study some properties of finite Σ-

dual-Rickart modules and give a comparison between finite Σ-Rickart modules and

finite Σ-dual-Rickart modules. In the last section, we study endomorphism rings of

finite Σ-dual-Rickart modules.

4.1 Finite Σ-dual-Rickart Modules

Definition 4.1.1. An R-module M is said to be a finite Σ-dual-Rickart if the direct

sum of finitely many copies of M is a dual-Rickart module. Equivalently, a module

M is said to be a finite Σ-dual-Rickart module if M (n) =
⊕n

i=1Mi (Mi = M for

each i) is a dual-Rickart for every n ∈ N. Further, a ring R is called a right (left)

finite Σ-dual-Rickart if RR (RR) is a finite Σ-dual-Rickart module.

49
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Example 4.1.2. (i) Every dual-Rickart module with D2-condition is a finite Σ-

dual-Rickart module as from [37, Corollary 5.12] the direct sum of finitely

many copies of a dual-Rickart module with D2-condition is dual-Rickart.

(ii) Every indecomposable Hopfian dual-Rickart module is a finite Σ-dual-Rickart

module [37, Remark 5.13].

(iii) Every injective module over a right hereditary ring is a finite Σ-dual-Rickart

module, as every injective module over a right hereditary ring is a dual-Rickart

module [37, Theorem 2.29] and finite direct sum of injective modules is injec-

tive.

(iv) A ring R is a finite Σ-dual-Rickart if R is a von Neumann regular ring.

We have the following diagram for a right R-module M :

Σ−Rickart

ss **
Finite Σ−Rickart // Rickart

endoregular

ss

kk

**

44

Finite Σ− dual −Rickart // dual −Rickart

Σ− dual −Rickart

kk 44

The reverse of any arrows in the above diagram need not be true. The following

example illustrate it.

Example 4.1.3. (i) Let R = Π∞
n=1Fn, where Fn = Z2 for each n. It is easy to

see that the ring R is a von Neumann regular. From [37, Proposition 2.25],

it is clear that for a von Neumann regular, the direct sum of finite copies
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of R is a dual-Rickart R-module. Therefore RR is a dual-Rickart as well as

finite Σ-dual-Rickart R-module. Since, M = R(R) satisfies D2-condition and

EndR(M) is not a von Neumann regular ring. Therefore, from [37, Theorem

3.8] M is not a dual-Rickart R-module. Hence, M can not be a Σ-dual-Rickart

R-module.

(ii) Let M = Zp∞ (Prüfer p-group for a prime p) and R = Z. It is clear from [37,

Theorem 2.29] that every injective R-module is a dual-Rickart module if and

only if R is a hereditary ring. Therefore, M (Λ) is a dual-Rickart R-module for

every non-empty index set Λ. Thus, M is Σ-dual-Rickart module as well as

finite Σ-dual-Rickart module, while M is not an endoregular module (see [40,

Remark 4.28]).

(iii) From [35, Example 2.3], the converse of “ Σ−Rickart⇒ FiniteΣ−Rickart”

and “ endoregular ⇒ Finite Σ−Rickart⇒ Rickart” need not be true.

(iv) On the basis of Corollary 5.12 and Remark 5.13 of [37] theoretically, it seems

that the finite direct sum of copies of a dual-Rickart module without an extra

condition (like D2-condition, indecomposable Hopfian module) need not be a

dual-Rickart module. Therefore, we can say that a dual-Rickart module need

not be a finite Σ-dual-Rickart module.

The following proposition shows that the finite Σ-dual-Rickart module is closed

under direct summand.

Proposition 4.1.4. The direct summand of a finite Σ-dual-Rickart module is finite

Σ-dual-Rickart.

Proof. Let M be a finite Σ-dual-Rickart module and N be a direct summand of M .

Then, M (n) is a dual-Rickart module for each n ∈ N. It is easy to see that N (n) is
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a direct summand of M (n). Since the direct summand of a dual-Rickart module is

dual-Rickart, so N (n) is a dual-Rickart module. Hence, N is a finite Σ-dual-Rickart

module.

Proposition 4.1.5. If M is a finite Σ-dual-Rickart module, then M (n) is a finite

Σ-dual-Rickart module for every positive integer n.

Proof. Let M be a finite Σ-dual-Rickart module. Then M (n) is a dual-Rickart mod-

ule. Thus, (M (n))(m) =M (nm) is also a dual-Rickart module for any positive integer

m. Hence, M (n) is a finite Σ-dual-Rickart module.

Lemma 4.1.6. If M is a finite Σ-dual-Rickart module, then M (n1) is M (n2) dual-

Rickart for every positive integers n1 and n2.

Proof. Let ψ : M (n1) → M (n2) be any homomorphism. Since M is a finite Σ-dual-

Rickart module, M (n1n2) is a dual-Rickart module. So, M (n1n2) is M (n1n2)-dual-

Rickart. Hence, from [37, Theorem 2.19] M (n1) is M (n2)-dual-Rickart.

For a module M , add(M) [61] denotes the class of all right R-modules, which are

isomorphic to a direct summand of M (n) for a positive integer n.

Proposition 4.1.7. A module M is a finite Σ-dual-Rickart module if and only if

every module N ∈ add(M) is a finite Σ-dual-Rickart module.

Proof. Let N ∈ add(M). Then, there exists a module K such that N ∼= K ≤⊕ M (n),

for a positive integer n. So, by Proposition 4.1.4 and Proposition 4.1.5, K and

M (n) are finite Σ-dual-Rickart modules, respectively. Hence, N is a finite Σ-dual-

Rickart module. The converse follows from the fact that the module M also lies in

add(M).
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Proposition 4.1.8. Every cohereditary module is finite Σ-dual-Rickart.

Proof. Let M be a cohereditary module. By [50, Proposition 3.3′], M (n) is also a

cohereditary module for each positive integer n. So, for every ψ ∈ EndR(M
(n)),

M (n)/Ker(ψ) ∼= Im(ψ) is injective.

Therefore, the short exact sequence 0 → Im(ψ) → M (n) → Coker(ψ) → 0 splits.

So, Im(ψ) is a direct summand of M (n). Thus, M (n) is a dual-Rickart module.

Hence, M is a finite Σ-dual-Rickart module.

The following example illustrates that the converse of Proposition 4.1.8 is not true

in general.

Example 4.1.9. Let R = Πλ∈ΛRλ, where Λ is an infinite index set and Rλ =

F for every λ ∈ Λ, where F is any field. Clearly, R is a von Neumann regular

ring. Therefore, from [37, Proposition 2.25] right R-module R(n) is dual-Rickart for

every n ∈ N . Hence, RR is a finite Σ-dual-Rickart R-module, while RR is not a

cohereditary R-module (see Example 3.1, [57]).

Proposition 4.1.10. For an R-module M , the following statements are true:

(i) Every finite Σ-dual-Rickart module has SSP.

(ii) Every finite Σ-dual-Rickart module with D3 condition has SIP.

Proof. (i) Let M be any finite Σ-dual-Rickart module. Then for every positive

integer n, M (n) must be a dual-Rickart module. Since every dual-Rickart module

has SSP [37, Proposition 2.11], so M (n) has SSP. Hence, the module M also has

SSP.

(ii) Let M be a finite Σ-dual-Rickart module with D3-condition. Since from [2,

Lemma 19] a D3-module with SSP has SIP. Hence, the module M has SIP.
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Corollary 4.1.11. A quasi-projective finite Σ-dual-Rickart module has SIP.

Proof. Since every quasi-projective module has D3-condition, so the proof follows

from Proposition 4.1.10(ii)

Note 4.1.12. The converse of both the statements of Proposition 4.1.10 need not be

true. It can be seen in the following example.

The Z-module Z4 satisfies the SIP and the SSP, but it is neither Rickart nor dual-

Rickart. So, Z4 can not be a finite Σ-dual-Rickart Z-module.

In the following Proposition, we characterize von Neumann regular rings in terms

of the finite Σ-dual-Rickart modules.

Proposition 4.1.13. The following statements are equivalent for a ring quasi −

projective

(i) Every finitely generated free (projective) R-module is a finite Σ-dual-Rickart;

(ii) The free R-module R(2) has SSP;

(iii) R is a von Neumann regular ring.

Proof. (i) ⇒ (ii) Clearly, R(2) is a finitely generated free R-module. Therefore, by

hypothesis R(2) is a finite Σ-dual-Rickart ring. So, from Proposition 4.1.10, R(2) has

summand sum property.

(ii) ⇒ (iii) It is clear from [37, Proposition 2.25].

(iii) ⇒ (i) Let M be a finitely generated free R-module, then M ∼= R(n) for some

n ∈ N. From hypothesis, R is a von Neumann regular ring, so for every k ∈ N

Matk(M) ∼= Matk(R
(n)) ∼= EndR(R

(n×k)) is von Neumann regular ring. Hence,

M (k) is a dual-Rickart module, which implies that M is finite Σ-dual-Rickart.
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Proposition 4.1.14. A projective and quasi-injective right R-module M over right

hereditary ring R is a finite Σ-dual-Rickart module.

Proof. Let M be a projective and quasi-injective module. Then for every n ∈ N,

M (n) is projective and continuous. Therefore, M (n) is a projective continuous right

R-module. Since projective continuous modules over the hereditary ring are dual-

Rickart [37, Proposition 2.4], so M (n) is a dual-Rickart module as by assumption R

is hereditary. Hence, M is a finite Σ-dual-Rickart module.

In the following Proposition, we characterize finite Σ-dual-Rickart modules in terms

of the hereditary rings.

Proposition 4.1.15. A ring R is hereditary if and only if every injective R-module

is a finite Σ-dual-Rickart module.

Proof. Let M be an injective module. Then for every n ∈ N, M (n) is an injective

module. Now, let ψ ∈ EndR(M
(n)) be arbitrary. Since R is a right hereditary ring,

M (n)/Ker(ψ) ∼= Im(ψ) is an injective module. Therefore, Im(ψ) ≤⊕ M (n). Thus,

M (n) is a dual-Rickart module. Hence, M is a finite Σ-dual-Rickart module.

Conversely, let M be an injective module and N be any submodule of M . Then

M ⊕ E(M/N) is an injective module. By hypothesis, M ⊕ E(M/N) is a finite Σ-

dual-Rickart module. So, M ⊕E(M/N) is also dual-Rickart module. From Lemma

3.1.7, M is E(M/N)-dual-Rickart. Now define a homomorphism ϕ :M → E(M/N)

such that ϕ(m) = m + N . Then Im(ϕ) = M/N ≤⊕ E(M/N). Therefore, M/N is

an injective module. Hence, R is a right hereditary ring.

In the following proposition, with the help of Lemma 4.1.16, we characterize finite

Σ-dual-Rickart modules in terms of finitely M -cogenerated modules. Recall from
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[5] that an R-module N is finitely M -cogenerated if there exists a monomorphism

ρ : N →M (n) for every n ∈ N.

Lemma 4.1.16. [5, Proposition 10.8]. The direct sum of two finitelyM-cogenerated

modules is finitely M-cogenerated.

Proposition 4.1.17. If M is a finite Σ-dual-Rickart module, then the sum of two

finitely M-cogenerated submodules of K ∈ add(M) is finitely M-cogenerated.

Proof. (i) Let K ∈ add(M) and K1, K2 be two finitely M -cogenerated submodules

of K. Consider the exact sequence, 0 → K1∩K2
f−→ K1⊕K2

g−→ K1+K2 → 0, where

for any k ∈ K1∩K2, f(k) = (k, k) and for any (k1, k2) ∈ K1⊕K2, g(k1, k2) = k1+k2.

Since K1 and K2 are finitely M -cogenerated, from Lemma 4.1.16 K1⊕K2 is finitely

M -cogenerated. So, there exists a monomorphism h : K1 ⊕ K2 → M (n) for some

positive integer n. Since M is a finite Σ-dual-Rickart and K ∈ add(M), so by

Lemma 4.1.6 K is M (n) dual-Rickart. Therefore, Im(hf) is a direct summand of

M (n). It is clear that Im(hf) = h(Imf). Therefore, from Lemma 3.1.15, Im(f) is

a direct summand of K1 ⊕K2. Thus, (K1 ⊕K2)/Im(f) is finitely M -cogenerated.

Since K1 +K2
∼= (K1 ⊕K2)/Im(f), hence K1 +K2 is finitely M -cogenerated.

4.2 Finite Σ-dual-Rickart Modules vs. Finite Σ-

Rickart Modules

The notion of finite Σ-dual-Rickart modules is dual of the notion of finite Σ-Rickart

modules. In this section, we study when a finite Σ-Rickart module implies a finite

Σ-dual-Rickart module and vice-versa. Also, we discuss when these notions are

equivalent to each other.



Chapter 4. Finite Σ-dual... 57

The following example illustrates that the class of finite Σ-Rickart modules and the

class of finite Σ-dual-Rickart modules are independent of each other.

Example 4.2.1. As every injective right R-module over a right hereditary ring R

is a dual-Rickart module [37, Theorem 2.29]. Therefore, Z(I )
p∞ is a dual-Rickart Z-

module for any finite index set I . So, Zp∞ is a finite Σ-dual-Rickart Z-module while

it is not a Rickart Z-module [36]. Therefore, Zp∞ is not a finite Σ-Rickart module.

Further, Z considered as Z-module is a finite Σ-Rickart module (see [35]), but Z

considered as Z-module is not a finite Σ-dual-Rickart as Z is not a dual-Rickart

module (see [37]).

Proposition 4.2.2. Let M = M1 ⊕M2, where M1 and M2 are submodules of M .

Then the following statements hold:

(i) If M is a C4-module and M1 is M2-Rickart then M1 is M2-dual-Rickart.

(ii) If M is a D4-module and M1 is M2-dual-Rickart then M1 is M2-Rickart.

Proof. (i) Let M1 be M2-Rickart module and ψ :M1 →M2 be any homomorphism.

Then Ker(ψ) ≤⊕ M1. Since M has C4-condition, Im(ψ) ≤⊕ M2. Hence, M1 is

M2-dual-Rickart module.

(ii) Let M1 be M2-dual-Rickart module and ψ : M1 → M2 be any homomorphism.

Then Im(ψ) ≤⊕ M2. Since M has D4-condition, so Ker(ψ) ≤⊕ M1. Hence, M1 is

M2-Rickart module.

Corollary 4.2.3. Let M = M1 ⊕M2 for submodules M1 and M2 of M . Then the

following statements hold:

(i) If M is a C2 (or C3) module and M1 is M2-Rickart module then M1 is M2-

dual-Rickart module.
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(ii) If M is a D2 (or D3) module and M1 is M2-dual-Rickart module then M1 is

M2-Rickart module.

Proof. The proof is clear because every C2 and C3 modules are C4 module.

The following examples show that the C4-condition and D4-condition in Proposition

4.2.2 are not superfluous.

Example 4.2.4. (i) Let M = Z⊕Z. It is clear that Z is a Z-Rickart module. Since

Z is not a C2 module, by [20, Proposition 2.15] M is not a C4 module. Further, Z

is not a Σ-dual-Rickart module as it is not a dual-Rickart module [37].

(ii) Let M = Zp∞ ⊕ Zp∞ be a Z-module. It is easy to see that Zp∞ is a Zp∞-dual-

Rickart module while Zp∞ is not a Zp∞-Rickart module [36]. Also, Zp∞ is not a D2

module. Therefore, from [21, Proposition 2.11] M is not a D4 module.

Proposition 4.2.5. For an R-module M , the following statements hold:

(i) Every dual-Rickart module with D2-condition is a Rickart module.

(ii) Every Rickart module with C2-condition is a dual-Rickart module.

Proof. (i) LetM is a dual-Rickart module and ψ ∈ EndR(M) be an endomorphism.

Since , M/Ker(ψ) ∼= Im(ψ) ≤⊕ M . Thus, by D2-condition, Ker(ψ) ≤⊕ M . Hence,

M is a Rickart module.

(ii) LetM be a Rickart module and φ ∈ EndR(M) be an endomorphism. Then there

exists submoduleK ≤M such thatM = Ker(φ)⊕K. Since the restriction map φ|K

is a monomorphism, so by C2-condition φ(K) ≤⊕ M . Thus, Im(φ) = {0} ⊕ φ(K)

is a direct summand of M . Hence, M is a dual-Rickart module.

Proposition 4.2.6. Every quasi-injective finite Σ-Rickart module is a finite Σ-dual-

Rickart module.
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Proof. Let M be a quasi-injective finite Σ-Rickart module. Then, M (n) is a Rickart

module for every positive integer n. SinceM is a quasi-injective R-module, therefore

M (n) is also a quasi-injective module. Thus, M (n) is a Rickart module with C2-

condition. Hence, by Proposition 4.2.5(ii) M is a finite Σ-dual-Rickart module.

The following example shows that the quasi-injectivity in proposition 4.2.6 is not

superfluous.

Example 4.2.7. The Z-module M = Q⊕Z is not quasi-injective, but M is a finite

Σ-Rickart module (see [35, Example 2.3]), while M is not a finite Σ-dual-Rickart

Z-module. In fact, M is not a dual-Rickart module [36].

Proposition 4.2.8. Every projective finite Σ-dual-Rickart module is a finite Σ-

Rickart.

Proof. Let M be a projective finite Σ-dual-Rickart module. Then, M (n) is a dual-

Rickart module for every positive integer n. SinceM is a projective R-module,M (n)

is also a projective module. Thus, M (n) is a Rickart module with D2-condition.

Hence, M is a finite Σ-Rickart module.

Corollary 4.2.9. If R is a semisimple ring, then every finite Σ-dual-Rickart R-

module is finite Σ-Rickart.

Projectivity in Proposition 4.2.8 is not superfluous. We provide an example that

illustrates it.

Example 4.2.10. It is easy to see that Zp∞ is a finite Σ-dual-Rickart Z-module while

Zp∞ is not a projective Z-module. Also, Zp∞ is not a finite Σ-Rickart Z-module as

Zp∞ is not a Rickart module [36].
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In the following proposition, we discuss the conditions under which a module is finite

Σ-Rickart as well as finite Σ-dual-a Rickart.

Proposition 4.2.11. The following statements hold for an R-module M :

(i) If R is a right V -ring, then every finitely cogenerated R-module is finite Σ-

dual-Rickart and finite Σ-Rickart module.

(ii) Every finitely cogenerated right R-module over a right SSI-ring is finite Σ-

Rickart and finite Σ-dual-Rickart module.

(iii) If M is an endoregular module, then M is a finite Σ-Rickart and finite Σ-dual-

Rickart module.

Proof. (i) Let ψ ∈ EndR(M
(n)) be arbitrary, where n is a positive integer. As

M is a finitely cogenerated right R-module, M (n) is also finitely cogenerated. Since

every finitely cogenerated module over a right V -ring is endoregular [40, Proposition

2.14], so M (n) is an endoregular module. Therefore, Im(ψ) and Ker(ψ) are direct

summand of M (n). Hence, M is a finite Σ-Rickart module as well as a finite Σ-dual-

Rickart module.

(ii) It follows from part (i) and from the fact that every SSI-ring is right Noetherian

and right V -ring.

(iii) Since M is an endoregular module, so M (n) is also an endoregular module [40,

Corollary 3.15]. Hence,M is a finite Σ-Rickart and finite Σ-dual-Rickart module.

Theorem 4.2.12. The following conditions are equivalent for a ring R:

(i) R is semisimple Artinian ring;

(ii) Every R-module is finite Σ-Rickart module;
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(iii) Every R-module is finite Σ-dual-Rickart module.

Proof. (i) ⇔ (ii) From [36, Theorem 2.25], the ring R is semisimple Artinian if and

only if every R-module is Rickart. So, for any n ∈ N, M (n) is Rickart R-module if

and only if R is semisimple Artinian ring. Hence, the result follows.

(i) ⇔ (iii) It is clear from[37, Theorem 2.24], the ring R is semisimple Artinian if

and only if every R-module is dual-Rickart. So, for any n ∈ N, M (n) is dual-Rickart

R-module if and only if R is semisimple Artinian ring.

4.3 Endomorphism Rings of Finite Σ-dual-Rickart

Modules

In this section, we study some properties of the endomorphism ring of a finite Σ-

dual-Rickart modules. We characterize von Neumann regular rings, coherent rings

and hereditary rings with the help of finite Σ-dual-Rickart modules.

Theorem 4.3.1. (i) The endomorphism ring of every finite Σ-dual-Rickart pro-

jective R-module is von Neumann regular.

(ii) The endomorphism ring of finite Σ-dual-Rickart free R-module is von Neu-

mann regular.

Proof. (i) Let M be a finite Σ-dual-Rickart module. Then for every finite index

set I , M (I ) is a dual-Rickart module. Now, let ϕ ∈ End(M (I )) be arbitrary. So,

M (I )/Ker(φ) ∼= Im(φ) ≤⊕ M (I ). Since M is a projective module, M (I ) is a pro-

jective module. So, M (I ) satisfies D2 condition. Thus, Ker(φ) is a direct summand

of M (I ). Therefore, from [47, Theorem 4] EndR(M
(I )) = MatI (EndR(M)) is a
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von Neumann regular ring. Hence, EndR(M) is a von Neumann regular ring.

(ii) The proof follows from part (i).

Corollary 4.3.2. Let M be an R-module and S = EndR(M). If M is a finite

Σ-dual-Rickart and projective module, then M is intrinsically injective.

Proof. Let M be a finite Σ-dual-Rickart projective module. Then by Theorem 4.3.1

S is a von Neumann regular ring. Hence, from [59, 6.11(3)], M is an intrinsically

injective module.

Proposition 4.3.3. The endomorphism ring of a finite Σ-dual-Rickart module is

left semi-hereditary. Conversely, if S = EndR(M) is a left semi-hereditary ring with

C2-condition as a left S-module, then M is a finite Σ-dual-Rickart module.

Proof. Let M be a finite Σ-dual-Rickart module. Then for every positive integer n,

M (n) is a dual-Rickart module. It is clear that EndR(M
(n)) = Matn(EndR(M)) =

Matn(S). So by [37, Proposition 3.1], Matn(S) is a left Rickart ring. Therefore,

from [52, Proposition], S is a left semi-hereditary ring.

For the converse part, let S be a left semi-hereditary ring with C2 condition. Then

S is a left Rickart ring with C2-condition. So from [36, Corollary 3.18], S is a

von Neumann regular ring. Therefore, Matn(S) = EndR(M
(n)) is a von Neumann

regular ring for each positive integer n. Thus, M (n) is a dual-Rickart. Hence, M is

a finite Σ-dual-Rickart module.

Corollary 4.3.4. Let M be a finite Σ-dual-Rickart R-module and S = EndR(M).

If SM is an FP-injective module, then M is an intrinsically injective module.

Proof. Let M be a finite Σ-dual-Rickart module. Then by Proposition 4.3.3, S is a

left semi-hereditary ring. Since by hypothesis SM is FP-injective module, from [59,

6.11(2)] M is an intrinsically injective module.
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Proposition 4.3.5. The endomorphism ring of a finitely generated finite Σ-dual-

Rickart module is a left hereditary.

Proof. The proof follows from [37, Remark 3.3].

Proposition 4.3.6. The endomorphism ring of a finite Σ-dual-Rickart module is a

left coherent ring.

Proof. Let M be a finite Σ-dual-Rickart module and S = EndR(M). Then, from

Proposition 4.3.3 S is a left semi-hereditary ring. Since from [32, Proposition 4.47]

every semi-hereditary ring is left coherent ring, so S is left coherent.




