Chapter 4

Finite Y>.-dual-Rickart Modules

In [35], Lee and Barcenas introduced the notion of finite 3-Rickart modules. Mo-
tivated by the notion of finite »-Rickart modules, we introduce the notion of finite
Y-dual-Rickart modules. The class of finite ¥-dual-Rickart modules generalizes the
class of Y-Rickart modules. In this chapter, we study some properties of finite -
dual-Rickart modules and give a comparison between finite ¥-Rickart modules and
finite 3-dual-Rickart modules. In the last section, we study endomorphism rings of

finite Y-dual-Rickart modules.

4.1 Finite Y-dual-Rickart Modules

Definition 4.1.1. An R-module M is said to be a finite ¥-dual-Rickart if the direct
sum of finitely many copies of M is a dual-Rickart module. Equivalently, a module
M is said to be a finite %-dual-Rickart module if M™ = @7, M; (M; = M for
each i) is a dual-Rickart for every n € N. Further, a ring R is called a right (left)
finite ¥-dual-Rickart if Rg (rR) is a finite X-dual-Rickart module.

49
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Example 4.1.2. (i) Every dual-Rickart module with D2-condition is a finite -
dual-Rickart module as from [37, Corollary 5.12] the direct sum of finitely

many copies of a dual-Rickart module with D2-condition is dual-Rickart.

(ii) Every indecomposable Hopfian dual-Rickart module is a finite 3-dual-Rickart
module [37, Remark 5.15].

(iii) Every injective module over a right hereditary ring is a finite X-dual-Rickart
module, as every injective module over a right hereditary ring is a dual-Rickart
module [37, Theorem 2.29] and finite direct sum of injective modules is injec-

tive.

(iv) A ring R is a finite 3-dual-Rickart if R is a von Neumann regular ring.

We have the following diagram for a right R-module M:

Y — Rickart

\
/

Finite > — Rickart Rickart

/
\

endoregular

\
/

Finite > — dual — Rickart dual — Rickart

/
\

Y — dual — Rickart

The reverse of any arrows in the above diagram need not be true. The following

example illustrate it.

Example 4.1.3. (i) Let R = II0° | F,,, where F,, = Zy for each n. It is easy to
see that the ring R is a von Neumann reqular. From [37, Proposition 2.25],

it is clear that for a von Neumann reqular, the direct sum of finite copies



Chapter 4. Finite X-dual... 51

of R is a dual-Rickart R-module. Therefore Rg is a dual-Rickart as well as
finite ¥-dual-Rickart R-module. Since, M = R satisfies D2-condition and
Endgr(M) is not a von Neumann reqular ring. Therefore, from [37, Theorem
3.8] M is not a dual-Rickart R-module. Hence, M can not be a 3-dual-Rickart
R-module.

(ii) Let M = Zyeo (Priifer p-group for a prime p) and R = Z. It is clear from [37,
Theorem 2.29] that every injective R-module is a dual-Rickart module if and
only if R is a hereditary ring. Therefore, M™ is a dual-Rickart R-module for
every non-empty index set A. Thus, M is X-dual-Rickart module as well as

finite ¥.-dual-Rickart module, while M is not an endoregular module (see [40,

Remark 4.28]).

(111) From [35, Example 2.3, the converse of “% — Rickart = FiniteX — Rickart”

and “endoregular = Finite Y — Rickart = Rickart” need not be true.

(iv) On the basis of Corollary 5.12 and Remark 5.13 of [37] theoretically, it seems
that the finite direct sum of copies of a dual-Rickart module without an extra
condition (like D2-condition, indecomposable Hopfian module) need not be a
dual-Rickart module. Therefore, we can say that a dual-Rickart module need

not be a finite X-dual-Rickart module.
The following proposition shows that the finite »-dual-Rickart module is closed
under direct summand.
Proposition 4.1.4. The direct summand of a finite ¥-dual-Rickart module is finite

Y -dual-Rickart.

Proof. Let M be a finite ¥-dual-Rickart module and N be a direct summand of M.

Then, M™ is a dual-Rickart module for each n € N. It is easy to see that N™ ig
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a direct summand of M ™. Since the direct summand of a dual-Rickart module is
dual-Rickart, so N™ is a dual-Rickart module. Hence, N is a finite ¥-dual-Rickart

module. O]

Proposition 4.1.5. If M is a finite X-dual-Rickart module, then M™ is a finite

Y-dual-Rickart module for every positive integer n.

Proof. Let M be a finite ¥-dual-Rickart module. Then M ™ is a dual-Rickart mod-
ule. Thus, (M ™)™ = M ™™ is also a dual-Rickart module for any positive integer

m. Hence, M is a finite ¥-dual-Rickart module. O

Lemma 4.1.6. If M is a finite ¥©-dual-Rickart module, then M) is M) dual-

Rickart for every positive integers ny and ns.

Proof. Let 1 : M™) — M2 be any homomorphism. Since M is a finite X-dual-
Rickart module, M) is a dual-Rickart module. So, M(™"2) ig Mf(mn2)_dual-

Rickart. Hence, from [37, Theorem 2.19] M ™) is M("2)_dual-Rickart. O

For a module M, add(M) [61] denotes the class of all right R-modules, which are

isomorphic to a direct summand of M™ for a positive integer n.

Proposition 4.1.7. A module M is a finite 3-dual-Rickart module if and only if

every module N € add(M) is a finite X-dual-Rickart module.

Proof. Let N € add(M). Then, there exists a module K such that N = K <® M ™),
for a positive integer n. So, by Proposition 4.1.4 and Proposition 4.1.5, K and
M) are finite ¥-dual-Rickart modules, respectively. Hence, N is a finite S-dual-
Rickart module. The converse follows from the fact that the module M also lies in

add(M). O
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Proposition 4.1.8. Every cohereditary module is finite ¥-dual-Rickart.

Proof. Let M be a cohereditary module. By [50, Proposition 3.3'], M () is also a
cohereditary module for each positive integer n. So, for every ¢ € Endg(M™),
M®™ /Ker() = Im(1) is injective.

Therefore, the short exact sequence 0 — Im(v)) — M™ — Coker(z)) — 0 splits.
So, Im() is a direct summand of M™. Thus, M is a dual-Rickart module.

Hence, M is a finite ¥-dual-Rickart module. n

The following example illustrates that the converse of Proposition 4.1.8 is not true

in general.

Example 4.1.9. Let R = Il \cpa Ry, where A is an infinite index set and Ry =
F for every A € A, where F is any field. Clearly, R is a von Neumann reqular
ring. Therefore, from [37, Proposition 2.25] right R-module R™ is dual-Rickart for
everyn € N . Hence, Rg is a finite X-dual-Rickart R-module, while Rgr is not a

cohereditary R-module (see Example 3.1, [57]).

Proposition 4.1.10. For an R-module M, the following statements are true:

(i) Every finite 3-dual-Rickart module has SSP.

(i1) Every finite X-dual-Rickart module with D3 condition has SIP.

Proof. (i) Let M be any finite >-dual-Rickart module. Then for every positive
integer n, M™ must be a dual-Rickart module. Since every dual-Rickart module
has SSP [37, Proposition 2.11], so M ™ has SSP. Hence, the module M also has
SSP.

(17) Let M be a finite X-dual-Rickart module with D3-condition. Since from [2,

Lemma 19] a D3-module with SSP has SIP. Hence, the module M has SIP. O
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Corollary 4.1.11. A quasi-projective finite Y-dual-Rickart module has SIP.

Proof. Since every quasi-projective module has D3-condition, so the proof follows

from Proposition 4.1.10(i) O

Note 4.1.12. The converse of both the statements of Proposition 4.1.10 need not be
true. It can be seen in the following example.
The Z-module Z, satisfies the SIP and the SSP, but it is neither Rickart nor dual-

Rickart. So, Z4 can not be a finite ¥-dual-Rickart Z-module.

In the following Proposition, we characterize von Neumann regular rings in terms

of the finite YX-dual-Rickart modules.

Proposition 4.1.13. The following statements are equivalent for a ring quasi —

projective

(i) Every finitely generated free (projective) R-module is a finite X-dual-Rickart;
(i) The free R-module R® has SSP;

(#ii) R is a von Neumann regular ring.

Proof. (i) = (ii) Clearly, R® is a finitely generated free R-module. Therefore, by
hypothesis R is a finite ¥-dual-Rickart ring. So, from Proposition 4.1.10, R® has
summand sum property.

(17) = (i7i) It is clear from [37, Proposition 2.25].

(4ii) = (i) Let M be a finitely generated free R-module, then M = R™ for some
n € N. From hypothesis, R is a von Neumann regular ring, so for every k € N
Mat,(M) = Mat,(R™) = Endg(R™*®) is von Neumann regular ring. Hence,

M®) is a dual-Rickart module, which implies that M is finite ¥-dual-Rickart. [
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Proposition 4.1.14. A projective and quasi-injective right R-module M over right

hereditary ring R is a finite X-dual-Rickart module.

Proof. Let M be a projective and quasi-injective module. Then for every n € N,
M®™ is projective and continuous. Therefore, M ™ is a projective continuous right
R-module. Since projective continuous modules over the hereditary ring are dual-
Rickart [37, Proposition 2.4], so M™ is a dual-Rickart module as by assumption R

is hereditary. Hence, M is a finite X-dual-Rickart module. ]

In the following Proposition, we characterize finite >-dual-Rickart modules in terms

of the hereditary rings.

Proposition 4.1.15. A ring R is hereditary if and only if every injective R-module

is a finite X -dual-Rickart module.

Proof. Let M be an injective module. Then for every n € N, M™ is an injective
module. Now, let ) € Endr(M™) be arbitrary. Since R is a right hereditary ring,
M®™ /Ker() = Im(¢) is an injective module. Therefore, Im(¢)) <® M™. Thus,
M®™ is a dual-Rickart module. Hence, M is a finite ©-dual-Rickart module.

Conversely, let M be an injective module and N be any submodule of M. Then
M @ E(M/N) is an injective module. By hypothesis, M & E(M/N) is a finite 3-
dual-Rickart module. So, M & E(M/N) is also dual-Rickart module. From Lemma
3.1.7, M is E(M/N)-dual-Rickart. Now define a homomorphism ¢ : M — E(M/N)
such that ¢(m) = m + N. Then Im(¢) = M/N <% E(M/N). Therefore, M/N is

an injective module. Hence, R is a right hereditary ring. [

In the following proposition, with the help of Lemma 4.1.16, we characterize finite

Y-dual-Rickart modules in terms of finitely M-cogenerated modules. Recall from



Chapter 4. Finite X-dual... 56

[5] that an R-module N is finitely M-cogenerated if there exists a monomorphism

p: N — M®™ for every n € N.

Lemma 4.1.16. [5, Proposition 10.8]. The direct sum of two finitely M -cogenerated

modules is finitely M -cogenerated.

Proposition 4.1.17. If M is a finite X-dual-Rickart module, then the sum of two

finitely M -cogenerated submodules of K € add(M) is finitely M -cogenerated.

Proof. (i) Let K € add(M) and K, K5 be two finitely M-cogenerated submodules
of K. Consider the exact sequence, 0 — K1 NK, i> KoKy, L Ki+ Ky — 0, where
for any k € K1NKs, f(k) = (k, k) and for any (ki, k2) € K1 ® Ky, g(k1, ko) = k1 + k.
Since K7 and K5 are finitely M-cogenerated, from Lemma 4.1.16 K; & K, is finitely
M-cogenerated. So, there exists a monomorphism h : K; @ Ky — M®™ for some
positive integer n. Since M is a finite X-dual-Rickart and K € add(M), so by
Lemma 4.1.6 K is M™ dual-Rickart. Therefore, Im(hf) is a direct summand of
M®™_ Tt is clear that Im(hf) = h(Imf). Therefore, from Lemma 3.1.15, Im(f) is
a direct summand of K; & K,. Thus, (K; & Ky)/Im(f) is finitely M-cogenerated.
Since K + Ky = (K ® Ky)/Im(f), hence K; + K is finitely M-cogenerated. [

4.2 Finite Y-dual-Rickart Modules vs. Finite ).-

Rickart Modules

The notion of finite ¥-dual-Rickart modules is dual of the notion of finite >-Rickart
modules. In this section, we study when a finite X-Rickart module implies a finite
Y-dual-Rickart module and vice-versa. Also, we discuss when these notions are

equivalent to each other.
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The following example illustrates that the class of finite ¥-Rickart modules and the

class of finite ¥-dual-Rickart modules are independent of each other.

Example 4.2.1. As every injective right R-module over a right hereditary ring R
is a dual-Rickart module [37, Theorem 2.29]. Therefore, Z](,i) s a dual-Rickart Z-
module for any finite index set .. So, Ly~ 1s a finite X-dual-Rickart Z-module while
it is not a Rickart Z-module [36]. Therefore, Zy~ is not a finite 3-Rickart module.
Further, 7 considered as Z-module is a finite X-Rickart module (see [35]), but Z
considered as Z-module is not a finite X-dual-Rickart as 7 is not a dual-Rickart

module (see [37]).

Proposition 4.2.2. Let M = M; ® M,, where M, and My are submodules of M.

Then the following statements hold:

(i) If M is a C4-module and M, is My-Rickart then M, is Msy-dual-Rickart.

(11) If M is a D4-module and M; is Ms-dual-Rickart then M is Ms-Rickart.

Proof. (i) Let M; be Ms-Rickart module and ¢ : M; — M; be any homomorphism.
Then Ker(¢) <% M. Since M has C4-condition, Im(¢)) <% M,. Hence, M; is
Ms-dual-Rickart module.

(7i) Let My be My-dual-Rickart module and ¢ : M; — M, be any homomorphism.
Then I'm(1)) <¥ M. Since M has D4-condition, so Ker(y) <% M;. Hence, M; is
Ms-Rickart module. ]

Corollary 4.2.3. Let M = My & My for submodules My and My of M. Then the

following statements hold:

(i) If M is a C2 (or C3) module and My is My-Rickart module then My is Ms-

dual-Rickart module.
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(i) If M is a D2 (or D3) module and M, is Ms-dual-Rickart module then M is
Ms-Rickart module.

Proof. The proof is clear because every C2 and C'3 modules are C'4 module. O

The following examples show that the C'4-condition and D4-condition in Proposition

4.2.2 are not superfluous.

Example 4.2.4. (i) Let M = Z&Z. It is clear that Z is a Z-Rickart module. Since
Z is not a C2 module, by [20, Proposition 2.15] M is not a C4 module. Further, 7
is not a X-dual-Rickart module as it is not a dual-Rickart module [37].

(17) Let M = Zyoo & Ly be a Z-module. It is easy to see that Zye is a Lye-dual-
Rickart module while Zye is not a Zy-Rickart module [36]. Also, Zye is not a D2

module. Therefore, from [21, Proposition 2.11] M is not a D4 module.

Proposition 4.2.5. For an R-module M, the following statements hold:

(i) Every dual-Rickart module with D2-condition is a Rickart module.

(ii) Every Rickart module with C2-condition is a dual-Rickart module.

Proof. (i) Let M is a dual-Rickart module and ¢y € Endg(M) be an endomorphism.
Since , M/ Ker(¢) = Im(y) <® M. Thus, by D2-condition, Ker(¢)) <% M. Hence,
M is a Rickart module.

(#7) Let M be a Rickart module and ¢ € Endg(M) be an endomorphism. Then there
exists submodule K < M such that M = Ker(¢)@® K. Since the restriction map ¢,
is a monomorphism, so by C2-condition ¢(K) <% M. Thus, Im(¢) = {0} ® ¢(K)

is a direct summand of M. Hence, M is a dual-Rickart module. O

Proposition 4.2.6. Fvery quasi-injective finite - Rickart module is a finite X-dual-

Rickart module.
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Proof. Let M be a quasi-injective finite £-Rickart module. Then, M™ is a Rickart
module for every positive integer n. Since M is a quasi-injective R-module, therefore
M®™ is also a quasi-injective module. Thus, M™ is a Rickart module with C2-

condition. Hence, by Proposition 4.2.5(ii) M is a finite ¥-dual-Rickart module. [

The following example shows that the quasi-injectivity in proposition 4.2.6 is not

superfluous.

Example 4.2.7. The Z-module M = Q & 7Z is not quasi-injective, but M is a finite
Y-Rickart module (see [35, Example 2.3]), while M is not a finite ¥-dual-Rickart
Z-module. In fact, M is not a dual-Rickart module [30].

Proposition 4.2.8. Fvery projective finite Y-dual-Rickart module is a finite Y-

Rickart.

Proof. Let M be a projective finite ¥-dual-Rickart module. Then, M is a dual-
Rickart module for every positive integer n. Since M is a projective R-module, M ™
is also a projective module. Thus, M is a Rickart module with D2-condition.

Hence, M is a finite >-Rickart module. O]

Corollary 4.2.9. If R is a semisimple ring, then every finite ¥-dual-Rickart R-

module is finite - Rickart.

Projectivity in Proposition 4.2.8 is not superfluous. We provide an example that

llustrates it.

Example 4.2.10. It is easy to see that Zye 1s a finite X-dual-Rickart Z-module while
Ly 1s mot a projective Z-module. Also, Zy~ is not a finite ¥-Rickart Z-module as

Ly is not a Rickart module [36].
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In the following proposition, we discuss the conditions under which a module is finite

Y-Rickart as well as finite X-dual-a Rickart.

Proposition 4.2.11. The following statements hold for an R-module M :

(i) If R is a right V-ring, then every finitely cogenerated R-module is finite -

dual-Rickart and finite - Rickart module.

(ii) Every finitely cogenerated right R-module over a right SSI-ring is finite 3-

Rickart and finite 3-dual-Rickart module.

(#i) If M is an endoregular module, then M is a finite ¥-Rickart and finite X-dual-

Rickart module.

Proof. (i) Let ¢ € Endr(M™) be arbitrary, where n is a positive integer. As
M is a finitely cogenerated right R-module, M (™ is also finitely cogenerated. Since
every finitely cogenerated module over a right V-ring is endoregular [40, Proposition
2.14], so M™ is an endoregular module. Therefore, Im(z)) and Ker(v) are direct
summand of M ™. Hence, M is a finite 2-Rickart module as well as a finite X-dual-
Rickart module.

(i7) It follows from part (i) and from the fact that every SSI-ring is right Noetherian
and right V-ring.

(4ii) Since M is an endoregular module, so M ™ is also an endoregular module [40,

Corollary 3.15]. Hence, M is a finite ¥-Rickart and finite ¥-dual-Rickart module. [

Theorem 4.2.12. The following conditions are equivalent for a ring R:

(i) R is semisimple Artinian ring;

(i1) Every R-module is finite X-Rickart module;
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(111) Every R-module is finite X-dual-Rickart module.

Proof. (i) < (ii) From [36, Theorem 2.25|, the ring R is semisimple Artinian if and
only if every R-module is Rickart. So, for any n € N, M™ is Rickart R-module if
and only if R is semisimple Artinian ring. Hence, the result follows.

(i) < (iii) It is clear from[37, Theorem 2.24], the ring R is semisimple Artinian if
and only if every R-module is dual-Rickart. So, for any n € N, M is dual-Rickart

R-module if and only if R is semisimple Artinian ring. ]

4.3 Endomorphism Rings of Finite Y>-dual-Rickart

Modules

In this section, we study some properties of the endomorphism ring of a finite X-
dual-Rickart modules. We characterize von Neumann regular rings, coherent rings

and hereditary rings with the help of finite ¥-dual-Rickart modules.

Theorem 4.3.1. (i) The endomorphism ring of every finite ¥.-dual-Rickart pro-

jective R-module s von Neumann reqular.

(11) The endomorphism ring of finite X-dual-Rickart free R-module is von Neu-

mann reqular.

Proof. (i) Let M be a finite ¥-dual-Rickart module. Then for every finite index
set .7, M) is a dual-Rickart module. Now, let ¢ € End(M)) be arbitrary. So,
M) Ker(p) = Im(p) <® M), Since M is a projective module, M) is a pro-
jective module. So, M) satisfies D2 condition. Thus, Ker(y) is a direct summand

of M/). Therefore, from [47, Theorem 4] Endp(M")) = Mat ,(Endg(M)) is a
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von Neumann regular ring. Hence, Endg(M) is a von Neumann regular ring.

(77) The proof follows from part (7). O

Corollary 4.3.2. Let M be an R-module and S = Endgr(M). If M is a finite

Y-dual-Rickart and projective module, then M is intrinsically injective.

Proof. Let M be a finite ¥-dual-Rickart projective module. Then by Theorem 4.3.1
S is a von Neumann regular ring. Hence, from [59, 6.11(3)], M is an intrinsically

injective module. O

Proposition 4.3.3. The endomorphism ring of a finite ¥-dual-Rickart module is
left semi-hereditary. Conversely, if S = Endg(M) is a left semi-hereditary ring with

C2-condition as a left S-module, then M 1is a finite ¥-dual-Rickart module.

Proof. Let M be a finite >-dual-Rickart module. Then for every positive integer n,
M®™ is a dual-Rickart module. It is clear that Endgr(M™) = Mat,(Endg(M)) =
Mat,(S). So by [37, Proposition 3.1], Mat,(S) is a left Rickart ring. Therefore,
from [52, Proposition], S is a left semi-hereditary ring.

For the converse part, let S be a left semi-hereditary ring with C'2 condition. Then
S is a left Rickart ring with C2-condition. So from [36, Corollary 3.18], S is a
von Neumann regular ring. Therefore, Mat,,(S) = Endgr(M™) is a von Neumann
regular ring for each positive integer n. Thus, M is a dual-Rickart. Hence, M is

a finite YX-dual-Rickart module. O]

Corollary 4.3.4. Let M be a finite ¥.-dual-Rickart R-module and S = Endgr(M).

If sM is an FP-injective module, then M is an intrinsically injective module.

Proof. Let M be a finite ¥-dual-Rickart module. Then by Proposition 4.3.3, S is a
left semi-hereditary ring. Since by hypothesis s M is FP-injective module, from [59,

6.11(2)] M is an intrinsically injective module. O
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Proposition 4.3.5. The endomorphism ring of a finitely generated finite ¥-dual-

Rickart module is a left hereditary.

Proof. The proof follows from [37, Remark 3.3]. O

Proposition 4.3.6. The endomorphism ring of a finite 3-dual-Rickart module is a

left coherent ring.

Proof. Let M be a finite ¥-dual-Rickart module and S = Endgr(M). Then, from
Proposition 4.3.3 S is a left semi-hereditary ring. Since from [32, Proposition 4.47]

every semi-hereditary ring is left coherent ring, so S is left coherent. m






