
Chapter 3

Σ-dual-Rickart modules

Lee et al., in [36] and [37], introduced the concept of Rickart modules and dual-

Rickart modules, respectively. It is seen that the direct sum of Rickart modules

may not be Rickart. In [34], Lee and Barcenas introduced the concept of Σ-Rickart

modules and they called a module M , Σ-Rickart if the direct sum of arbitrary many

copies of M is a Rickart module. Motivated by the notion of Σ-Rickart modules, we

introduce the notion of Σ-dual-Rickart modules.

3.1 Σ-dual-Rickart Modules

Definition 3.1.1. A module M is called a Σ-dual-Rickart module if every direct

sum of copies of M is a dual-Rickart module. Equivalently, a module M is called

Σ-dual-Rickart if M (Λ) is a dual-Rickart module for every non-empty arbitrary index

set Λ. A ring R is called a right (left) Σ-dual-Rickart ring if RR (RR) is a right

Σ-dual-Rickart R-module. Further, a ring R is said to be Σ-dual-Rickart if it is right

as well as left Σ-dual-Rickart.
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It is easy to see that every Σ-dual-Rickart module is a dual-Rickart module. We

provide an example, which shows that a dual-Rickart module need not be Σ-dual-

Rickart module.

Example 3.1.2. Let R = Π∞
n=1Fn where Fn = Zp (p is any prime) for each n.

Clearly, R is a self-injective von Neumann regular ring, which is not semisimple.

From [37, Proposition 2.27] for a von Neumann regular ring R, which is not semisim-

ple Artinian, every finitely generated free R-module is a dual-Rickart module but not

a dual-Baer R-module. So, M = R is a dual-Rickart R-module. Also, the R-module

M (R) satisfies the D2-condition and EndR(M
(R)) is not von Neumann regular. Also,

by [37, Theorem 3.8], a module M is dual-Rickart with D2 condition if and only if

the endomorphism ring of M is von Neumann regular. Therefore, M (R) is not a

dual-Rickart R-module. Hence, M is not a Σ-dual-Rickart module.

Now, we prove when a dual-Rickart module is a Σ-dual-Rickart module.

Proposition 3.1.3. Let M be an R-module such that M ⊴M (Λ) for every arbitrary

index set Λ. Then

(i) M is a Rickart module if and only if M is a Σ-Rickart module.

(ii) M is a dual-Rickart module if and only if M is a Σ-dual-Rickart module.

Proof. (i) Let M be a Rickart module and fully invariant in M (Λ). So by [39,

Proposition 2.34], M (Λ) is a Rickart module. Hence, M is a Σ-Rickart module. The

converse is clear by the definition of Σ-Rickart module.

(ii) Assume thatM is a dual-Rickart module andM is fully invariant inM (Λ). Then

from [37, Proposition 5.14], M (Λ) is a dual-Rickart module. Hence, M is a Σ-dual-

Rickart module. The converse is clear by the definition of Σ-Rickart module.
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Example 3.1.4. (i) The Z-module Zp∞ is a Σ-dual-Rickart module.

(ii) Every injective R-module over the hereditary Noetherian ring R is a Σ-dual-

Rickart module (Theorem 3.1.18).

(iii) Over the semisimple Artinian ring R every R-module is Σ-dual-Rickart module

(Theorem 3.2.13).

Proposition 3.1.5. Every direct summand of the Σ-dual-Rickart module is a Σ-

dual-Rickart.

Proof. Let M be a Σ-dual-Rickart module and N ≤⊕ M . Then, for any non-empty

index set Λ, N (Λ) is also a direct summand of M (Λ). Since M (Λ) is a dual-Rickart

module, so N (Λ) is also dual-Rickart. Hence, N is a Σ-dual-Rickart module.

Proposition 3.1.6. The direct sum of copies of a Σ-dual-Rickart module is Σ-dual-

Rickart.

Proof. Let M be a Σ-dual-Rickart module. Then, M (Λ1) is a dual-Rickart module,

where Λ1 is a non-empty index set. Therefore, by the definition of Σ-dual-Rickart

module (M (Λ1))(Λ2) = M (Λ1×Λ2) is a dual-Rickart module for every index set Λ2.

Hence, M (Λ1) is a Σ-dual-Rickart module.

Lemma 3.1.7. [37, Theorem 2.19]. Let M1 and M2 be R-modules. Then M1 is M2-

dual-Rickart if and only if for any direct summand N1 ≤⊕ M1 and any submodule

N2 ≤M2, N1 is N2-dual-Rickart module.

Proposition 3.1.8. If M is a Σ-dual-Rickart module, then for any index sets Λ1

and Λ2 M
(Λ1) is M (Λ2) dual-Rickart module.
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Proof. LetM be a Σ-dual-Rickart module. ThenM (Λ1×Λ2) is a dual-Rickart module.

It is clear that M (Λ1) is a direct summand of M (Λ1×Λ2) and M (Λ2) is a submodule of

M (Λ1×Λ2). So, by Lemma 3.1.7 M (Λ1) is M (Λ2)-dual-Rickart module.

Proposition 3.1.9. Every R-module M is a Σ-dual-Rickart module if and only if

R is a semisimple Artinian ring.

Proof. Let T be the right ideal of R. Clearly, RR is a right R-module. As every R-

module is Σ-dual-Rickart, so R(R) is a dual-Rickart module. Now for the right ideal

T of R, there exists a free module FR and an epimorphism π such that π(FR) = T .

Since FR ≤⊕ R(R), FR is dual-Rickart. Therefore, π(FR) = T ≤⊕ RR and thus by

modularity, T ≤⊕ RR. Hence, R is a semisimple Artinian ring.

Conversely, assume that R is a semisimple Artinian ring andM is an R-module. Now

from [37, Theorem 2.24], every module over a semisimple Artinian ring is a dual-

Rickart module. So, every R-module is dual-Rickart. Therefore, for every index set

Λ, M (Λ) is also a dual-Rickart module. Hence, M is Σ-dual-Rickart R-module.

In the following proposition, we prove that every cohereditary module over a Noethe-

rian ring is a Σ-dual-Rickart module.

Proposition 3.1.10. Every cohereditary module M over a Noetherian ring R is a

Σ-dual-Rickart R-module.

Proof. LetM be a cohereditary module and R be a Noetherian ring. Since the direct

sum of cohereditary modules over the Noetherian ring is cohereditary [50, Remark

(i)], so M (Λ) is a cohereditary module for every arbitrary index set Λ. Thus, for

every ψ ∈ EndR(M
(Λ)), M (Λ)/Ker(ψ) ∼= Im(ψ) is an injective module. Therefore,

the exact sequence 0 → Im(ψ) →M (Λ) → Coker(ψ) → 0 splits, which implies that

Im(ψ) is a direct summand of M (Λ). Hence, M is a Σ-dual-Rickart module.
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Corollary 3.1.11. Let M be an R-module such that M is the generator in the

category of right R-modules. If the ring R is semisimple, then M is a Σ-dual-Rickart

module.

Proof. Since M is a generator in the category of right R-modules and the ring R

is semisimple, so from [57, Corollary 2.5] M is a cohereditary R-module. It is well

known that a semisimple ring R is Noetherian. Therefore, from Proposition 3.1.10

M is a Σ-dual-Rickart module.

Let M and U be R-modules. Then M is said to be (finitely) generated by U if and

only if there exists an epimorphism φ : U (I) → M for some (finite) arbitrary index

set I [5, page 105]. Now, we generalize the concept of M -cogenerated modules as

strongly M -cogenerated modules.

Definition 3.1.12. Let M be a non-empty class of R-modules. We call a module

N strongly cogenerated by M if there is a monomorphism σ : N →
⊕

λ∈ΛMλ,

where Mλ ∈ M and Λ is a non-empty index set. An R-module N is said to be

strongly cogenerated by a module M (or strongly M-cogenerated), if there exists a

monomorphism σ : N → M (Λ) for every non-empty arbitrary index set Λ.

Example 3.1.13. (i) Every finitelyM-cogenerated module is stronglyM-cogenerated.

(ii) Every strongly M-cogenerated module is M-cogenerated module, while the con-

verse need not be true. Since every torsion-free abelian group is cogenerated by

Q [5, Example 8.3], therefore ZN is also cogenerated by Q but it is not strongly

cogenerated by Q. In fact, ZN is not embedded in Q(N).

Lemma 3.1.14. The direct sum of two strongly M-cogenerated modules is strongly

M-cogenerated.
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Proof. Let M1 and M2 be two strongly M -cogenerated modules. Then for some

non-empty index sets Λ1 and Λ2, the maps ψ1 : M1 → M (Λ1) and ψ2 : M2 → M (Λ2)

are monomorphisms. Therefore, by [60, 9.2], ψ1 ⊕ ψ2 : M1 ⊕M2 → M (Λ1) ⊕M (Λ2)

is also a monomorphism. Hence, M1 ⊕M2 is also strongly M -cogenerated.

Lemma 3.1.15. Let ψ : M → N be a monomorphism and L ≤ M . If ψ(L) is a

direct summand of N , then L is a direct summand of M .

Proof. Suppose that N = ψ(L)⊕K for some K ≤ N . Since ψ is a monomorphism

from M to N , so M = L + ψ−1[K], where ψ−1[K] is the inverse image of K.

If x ∈ L ∩ ψ−1[K], then there exists y ∈ K, such that ψ(x) = y. Since x ∈ L, so

y ∈ ψ(L). Thus y ∈ ψ(L)∩K = 0, which implies x = 0. Hence,M = L⊕ψ−1[K].

For an R-module M , Add(M) [61] denotes the class of all R-modules, which are

isomorphic to a direct summand of the direct sum of copies of M .

Proposition 3.1.16. Let M be a Σ-dual-Rickart module and U ∈ Add(M). Then

the sum of two strongly M-cogenerated submodules of U is strongly M-cogenerated.

Proof. Let U1 and U2 be two strongly M -cogenerated submodules of U and U ∈

Add(M). Consider the short exact sequence:

0 → U1 ∩ U2
f−→ U1 ⊕ U2

g−→ U1 + U2 → 0

where for any a ∈ U1 ∩ U2, f(a) = (a, a) and g(u1, u2) = u1 + u2 where u1 ∈

U1, u2 ∈ U2. Since U1 and U2 are strongly M -cogenerated, so by Lemma 3.1.14,

U1 ⊕ U2 is also strongly M -cogenerated. Therefore, there exists a monomorphism

φ : U1 ⊕ U2 → M (Λ) for some index set Λ. Since M is a Σ-dual-Rickart module,

M (Λ) is dual-Rickart. Thus, Im(φf) is a direct summand of M (Λ). Now from
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Lemma 3.1.15, Im(f) ≤⊕ U1 ⊕ U2 because Im(φf) = φ(Im(f)), where φ is a

monomorphism. Therefore, (U1 ⊕ U2)/Im(f) is strongly M -cogenerated. Since

U1 ∩ U2
∼= (U1 ⊕ U2)/Im(f), so U1 + U2 is strongly M -cogenerated.

In the following proposition, we show that when a module is Σ-dual-Rickart.

Proposition 3.1.17. An R-module M is a Σ-dual-Rickart if and only if every mod-

ule in Add(M) is a Σ-dual-Rickart.

Proof. Let N ∈ Add(M) be arbitrary. Then there exists a submodule L ≤⊕ M (Λ)

such that N ∼= L for an index set Λ. From Proposition 3.1.5 and Proposition 3.1.6,

L and M (Λ) are Σ-dual-Rickart modules, respectively. Hence, N is also a Σ-dual-

Rickart module. The converse follows from the definition of the Σ-dual-Rickart

module.

In the following theorem, we find conditions under which an injective module is a

Σ-dual-Rickart module.

Theorem 3.1.18. Let R be the Noetherian ring. Then the following conditions are

equivalent:

(i) Every injective R-module is a Σ-dual Rickart module;

(ii) R is a right hereditary ring.

Proof. (i) ⇒ (ii) Let M be an injective R-module and N be a submodule of M .

Clearly, M and E(M/N) are both injective modules, so M ⊕ E(M/N) is also an

injective module. By hypothesis M ⊕ E(M/N) is a Σ-dual-Rickart module. So

M ⊕ E(M/N) is a dual-Rickart module. Thus, from Lemma 3.1.7, M is E(M/N)-

dual-Rickart. Now consider a map ψ : M → E(M/N) such that ψ(ζ) = ζ + N for
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every ζ ∈ M . Then Im(ψ) = M/N is a direct summand of E(M/N). So M/N is

an injective module. Hence, R is a right hereditary ring.

(ii) ⇒ (i) Let R be a Noetherian ring andM be an injective R-module. ThenM (Λ) is

also an injective module. Now suppose that φ ∈ EndR(M
(Λ)). Since by assumption

R is a hereditary ring, Im(φ) ∼= M (Λ)/Ker(φ) is an injective module. Therefore,

Im(φ) is a direct summand of MΛ. Hence, M is a Σ-dual-Rickart module.

3.2 Σ-Rickart Modules vs. Σ-dual-Rickart Mod-

ules

In this section, we find connections between the class of Σ-Rickart modules and

the class of Σ-dual-Rickart modules. Further, we show that when a Σ-dual-Rickart

module is a Σ-Rickart module and vice-versa.

Now, we provide an example of Σ-Rickart module which is not a Σ-dual-Rickart

module and vice-versa.

Example 3.2.1. (i) It is clear from [37, Theorem 2.29] that for the hereditary

ring R, every injective R-module is dual-Rickart. Therefore, Z(Λ)
p∞ is a dual-

Rickart Z-module for every arbitrary index set Λ. Thus, Zp∞ is a Σ-dual-

Rickart Z-module, while Zp∞ is not a Σ-Rickart module. In fact, Zp∞ is not a

Rickart module (see [36, Example 2.17]).

(ii) Since from [36, Theorem 2.26], every free (projective) module over a right

hereditary ring is a Rickart module, so Z-module Z is a Σ-Rickart module,

while Z is not a Z-dual-Rickart module. Hence, it can not be a Σ-dual-Rickart

module.
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Definition 3.2.2. A module M is called a Σ-C2 module [3] if the direct sum of

arbitrary many copies of M is a C2 module. Analogously, M is said to be a Σ-

injective (Σ-quasi-injective) module if the direct sum of arbitrary many copies of M

is an injective (quasi-injective) module (see [1]).

Proposition 3.2.3. If M is a Σ-C2 module, then every Σ-Rickart module is Σ-

dual-Rickart.

Proof. To prove M is a Σ-dual-Rickart module, it is enough to show that Im(ψ) is

a direct summand of M (Λ) for every ψ ∈ EndR(M
(Λ)). For it, let ψ ∈ EndR(M

(Λ)).

Since M is a Σ-Rickart module, Ker(ψ) is a direct summand of M (Λ) for every

arbitrary index set Λ. So, for a submodule N of M (Λ), M (Λ) = Ker(ψ) ⊕ N .

Clearly, the restriction map ψN is one-one. Since by assumption M is a Σ-C2

module, so M (Λ) is a C2 module. Therefore, ψ(N) is a direct summand of M (Λ).

Thus, Im(ψ) = {0} ⊕ ψ(N) is a direct summand of M (Λ). Hence, M is a Σ-dual-

Rickart module.

The following example shows that the condition “M is Σ-C2” in Proposition 3.2.3

is not superfluous.

Example 3.2.4. The Z-module Z is a Σ-Rickart module but not a Σ-dual-Rickart

module and also not a Σ-C2 module (see Example 3.2.1). In fact, Z-module Z is

not a dual-Rickart module as well as not a C2-module.

Corollary 3.2.5. If R is a right Noetherian ring, then every injective Σ-Rickart

R-module is a Σ-dual-Rickart module.

Proof. Let R be a right Noetherian ring and M be an injective R-module. It is well

known that over a right Noetherian ring, the direct sum of arbitrary many copies
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of an injective module is injective. Thus, M (Λ) is an injective. Therefore, M (Λ) is a

C2 module. Hence, by Proposition 3.2.3 M is a Σ-dual-Rickart module.

Corollary 3.2.6. Every Σ-quasi-injective, Σ-Rickart module is a Σ-dual-Rickart

module.

A moduleM is said to be Σ-C3-module [3] if the direct sum of arbitrary many copies

of M is a C3-module.

Corollary 3.2.7. Every Σ-C3, Σ-Rickart module is a Σ-dual-Rickart module.

Proof. It is clear from [3, Corollary 2.7] that a module M is Σ-C3 if and only if M

is a Σ-C2. Hence, the result follows from Proposition 3.2.3.

Definition 3.2.8. A module M is called a Σ-D2 (Σ-D3) [62] if the direct sum

of arbitrary copies of M is a D2-module (D3-module). Analogously, a module M

is said to be a Σ-quasi projective if the direct sum of arbitrary copies of M is a

quasi-projective module [1].

In the following proposition, we show that when a Σ-dual-Rickart module is Σ-

Rickart.

Proposition 3.2.9. Every Σ-dual-Rickart module with Σ-D2 condition is Σ-Rickart.

Proof. Let Λ be any arbitrary index set and ψ ∈ EndR(M
(Λ)). Since M is a Σ-dual-

Rickart module, this implies M (Λ)/Ker(ψ) ∼= Im(ψ) ≤⊕ M (Λ). By hypothesis M is

a Σ-D2 module, so M (Λ) has D2-condition. Therefore, Ker(ψ) is a direct summand

of M (Λ). Hence, M is a Σ-Rickart module.

The following example shows that the condition “M is Σ-D2” in Proposition 3.2.9

is not superfluous.
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Example 3.2.10. It is clear from Example 3.2.1 that the Z-module Z(Λ)
p∞ is a dual-

Rickart module for every arbitrary index set Λ. Thus, Zp∞ is a Σ-dual-Rickart

Z-module, although it is not a Σ-D2 Z-module as it is not a D2-module. While Zp∞

is not a Σ-Rickart module because it is not a Rickart module.

Corollary 3.2.11. For an R-module M , the following statements hold:

(i) Every projective Σ-dual-Rickart module is a Σ-Rickart module.

(ii) Every Σ-quasi projective Σ-dual-Rickart module is a Σ-Rickart module.

(iii) Every Σ-D3, Σ-dual-Rickart module is a Σ-dual-Rickart.

Proof. It is easy to see that every projective and every Σ-quasi projective modules

are Σ-D2 modules. Hence, part (i) and (ii) easily follows from Proposition 3.2.9.

For part (iii), let M be a Σ-D3 module. Since by [62, Corollary 9] direct sum of

copies ofM is D3 if and only if the direct sum of copies ofM is D2, soM is a Σ-D2

module. Hence, the proof is clear from Proposition 3.2.9.

Corollary 3.2.12. Let R be a uniserial ring. Then every quasi-injective, Σ-dual-

Rickart module over R is a Σ-Rickart module.

Proof. The proof follows from Proposition 3.2.9 and from the fact that every quasi-

injective module over a uniserial ring is a Σ-quasi projective module (see [25, The-

orem 5.1]).

In the following theorem, we characterize the semisimple Artinian ring in terms of

Σ-dual-Rickart modules and Σ-Rickart modules.

Theorem 3.2.13. The following conditions are equivalent for a ring R:
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(i) Every right R-module is a Σ-Rickart module;

(ii) Every right R-module is a Σ-dual-Rickart module;

(iii) R is a right semisimple Artinian ring.

Proof. (i) ⇔ (iii) It is clear from [36, Theorem 2.25] that a ring R is right semisimple

Artinian if and only if every right R-module is Rickart. Therefore, for any arbitrary

index set Λ, M (Λ) is a Rickart module if and only if R is a right semisimple Artinian

ring. Hence, R is a right semisimple Artinian ring if and only if every right R-module

is Σ-Rickart.

(ii) ⇒ (iii) Let T be a right ideal of R. Clearly, RR is a right R-module. As every

R-module is Σ-dual-Rickart, so R(R) is a dual-Rickart module. Thus, R is also a

dual-Rickart module. Now for the right ideal T of R, there exists a free module FR

and an epimorphism π such that π(FR) = T . Since FR ≤⊕ R(R), FR is dual-Rickart.

Therefore, π(FR) = T ≤⊕ FR and thus by modularity, T ≤⊕ RR. Hence, R is a

right semisimple Artinian ring.

(iii) ⇒ (ii) Now, suppose that R is a right semisimple Artinian ring andM is an R-

module. So from [37, Theorem 2.24], every R-module is dual-Rickart. Therefore, for

every index set Λ,M (Λ) is also a dual-Rickart module. Hence,M is a Σ-dual-Rickart

R-module.

3.3 Endomorphism Rings of Σ-dual-Rickart Mod-

ules

In this section, we study the endomorphism ring of a Σ-dual-Rickart modules and

characterize the semi-hereditary rings, hereditary rings and von Neumann regular
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rings in terms of it.

Lemma 3.3.1. [46, Corollary], Let R be a ring that contains an infinite direct

product Πi∈IRi, where Ri is a ring with identity ei for i ∈ I. Then R is not a (right)

hereditary ring.

The following example shows that the endomorphism ring of a Σ-dual-Rickart mod-

ule need not be a hereditary ring.

Example 3.3.2. From [37, Theorem 2.29], it is clear that for a right hereditary ring

R, E(M) is a dual-Rickart R-module for any right R-moduleM . Therefore, Q(Λ) is a

dual-Rickart Z-module for every arbitrary index set Λ. Hence, Q(Λ) is also a Σ-dual-

Rickart module, while EndZ(Q(Λ)) is not a hereditary ring. In fact, EndZ(Q(Λ)) ∼=

CFMΛ(Q) contains Πλ∈ΛRλ where Rλ = Q for each λ ∈ Λ. Therefore, by Lemma

3.3.1, EndZ(Q(Λ)) is not a right hereditary ring.

Proposition 3.3.3. If M is a Σ-dual-Rickart R-module, then the endomorphism

ring S = EndR(M) is a left semi-hereditary.

Proof. Let M be a Σ-dual-Rickart module. Then M (n) is a dual-Rickart module for

every n ∈ N. From [37, Proposition 3.1], EndR(M
(n)) ∼= Matn(S) is a left Rickart

ring for all n ∈ N. Hence, S is a left semi-hereditary from [52, Proposition].

Lemma 3.3.4. [60, 47.7(2)]. LetM be a right R-module with S = EndR(M). Then

SM is FP-injective S-module if and only if for every homomorphism

ϕ :M (n1) →M (n2) with n1, n2 ∈ N, Coker(ϕ) is a M-cogenerated module.

Lemma 3.3.5. If M is a right Σ-dual-Rickart module and S = EndR(M), then SM

is an FP-injective S-module.
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Proof. Let M be a Σ-dual-Rickart module and ϕ : M (n1) → M (n2) be any homo-

morphism. Then Im(ϕ) ≤⊕ M (n2) which implies that Coker(ϕ) = M (n2)/Im(ϕ) ∼=

N ≤⊕ M (n2) for some N ≤ M (n2). Therefore, Coker(ϕ) is M -cogenerated. Hence,

from Lemma 3.3.4 SM is FP-injective S-module.

Proposition 3.3.6. If M is a finitely generated Σ-dual-Rickart module with en-

domorphism ring S = EndR(M), then S is a left hereditary ring and SM is a

FP-injective S-module.

Proof. Since M is a finitely generated module, EndR(M
(Λ)) ∼= EndS(S

(Λ)) for any

non-empty arbitrary index set Λ. By hypothesis, M is a Σ-dual-Rickart module, so

M (Λ) is a dual-Rickart. From [37, Proposition 3.1], EndR(M
(Λ)) is a left Rickart ring.

Thus, EndS(S
(Λ)) = CFMΛ(S) is a left Rickart ring. Hence, S is a left hereditary

ring from [39, Proposition 3.20].

The following Proposition illustrates when the endomorphism ring of a Σ-dual-

Rickart module is a von Neumann regular.

Proposition 3.3.7. Let M be a projective Σ-dual-Rickart module. Then S =

EndR(M) is a von Neumann regular ring.

Proof. Let M be a Σ-dual-Rickart module and f ∈ End(M (Λ)) be an endomor-

phism. Then M (Λ) is a dual-Rickart module (where Λ is an index set). Therefore,

M/Ker(f) ∼= Im(f) ≤⊕ M (Λ). Since M is a projective module, Ker(f) ≤⊕ M (Λ).

Hence, End(M (Λ)) ∼= CFMΛ(S) is a von Neumann regular, which implies that S is

a von Neumann regular ring.

Recall from [40] that a module M is endoregular if the endomorphism ring S =

EndR(M) is a von Neumann regular ring.
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Corollary 3.3.8. Every projective Σ-dual-Rickart module is an endoregular module.

Proposition 3.3.9. If M is an R-module such that M (Λ) is an endoregular module

for every arbitrary index set Λ, then M is a Σ-dual-Rickart module.

Proof. The Proof is clear.




