Chapter 3

Σ -dual-Rickart modules

Lee et al., in [36] and [37], introduced the concept of Rickart modules and dual-Rickart modules, respectively. It is seen that the direct sum of Rickart modules may not be Rickart. In [34], Lee and Barcenas introduced the concept of Σ -Rickart modules and they called a module M, Σ -Rickart if the direct sum of arbitrary many copies of M is a Rickart module. Motivated by the notion of Σ -Rickart modules, we introduce the notion of Σ -dual-Rickart modules.

3.1 Σ -dual-Rickart Modules

Definition 3.1.1. A module M is called a Σ -dual-Rickart module if every direct sum of copies of M is a dual-Rickart module. Equivalently, a module M is called Σ -dual-Rickart if $M^{(\Lambda)}$ is a dual-Rickart module for every non-empty arbitrary index set Λ . A ring R is called a right (left) Σ -dual-Rickart ring if R_R ($_RR$) is a right Σ -dual-Rickart R-module. Further, a ring R is said to be Σ -dual-Rickart if it is right as well as left Σ -dual-Rickart. It is easy to see that every Σ -dual-Rickart module is a dual-Rickart module. We provide an example, which shows that a dual-Rickart module need not be Σ -dual-Rickart module.

Example 3.1.2. Let $R = \prod_{n=1}^{\infty} \mathbb{F}_n$ where $\mathbb{F}_n = \mathbb{Z}_p$ (p is any prime) for each n. Clearly, R is a self-injective von Neumann regular ring, which is not semisimple. From [37, Proposition 2.27] for a von Neumann regular ring R, which is not semisimple Artinian, every finitely generated free R-module is a dual-Rickart module but not a dual-Baer R-module. So, M = R is a dual-Rickart R-module. Also, the R-module $M^{(R)}$ satisfies the D2-condition and $End_R(M^{(R)})$ is not von Neumann regular. Also, by [37, Theorem 3.8], a module M is dual-Rickart with D2 condition if and only if the endomorphism ring of M is von Neumann regular. Therefore, $M^{(R)}$ is not a dual-Rickart R-module. Hence, M is not a Σ -dual-Rickart module.

Now, we prove when a dual-Rickart module is a Σ -dual-Rickart module.

Proposition 3.1.3. Let M be an R-module such that $M \leq M^{(\Lambda)}$ for every arbitrary index set Λ . Then

- (i) M is a Rickart module if and only if M is a Σ -Rickart module.
- (ii) M is a dual-Rickart module if and only if M is a Σ -dual-Rickart module.

Proof. (i) Let M be a Rickart module and fully invariant in $M^{(\Lambda)}$. So by [39, Proposition 2.34], $M^{(\Lambda)}$ is a Rickart module. Hence, M is a Σ -Rickart module. The converse is clear by the definition of Σ -Rickart module.

(ii) Assume that M is a dual-Rickart module and M is fully invariant in $M^{(\Lambda)}$. Then from [37, Proposition 5.14], $M^{(\Lambda)}$ is a dual-Rickart module. Hence, M is a Σ -dual-Rickart module. The converse is clear by the definition of Σ -Rickart module. **Example 3.1.4.** (i) The \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ is a Σ -dual-Rickart module.

- (ii) Every injective R-module over the hereditary Noetherian ring R is a Σ-dual-Rickart module (Theorem 3.1.18).
- (iii) Over the semisimple Artinian ring R every R-module is Σ -dual-Rickart module (Theorem 3.2.13).

Proposition 3.1.5. Every direct summand of the Σ -dual-Rickart module is a Σ -dual-Rickart.

Proof. Let M be a Σ -dual-Rickart module and $N \leq^{\oplus} M$. Then, for any non-empty index set Λ , $N^{(\Lambda)}$ is also a direct summand of $M^{(\Lambda)}$. Since $M^{(\Lambda)}$ is a dual-Rickart module, so $N^{(\Lambda)}$ is also dual-Rickart. Hence, N is a Σ -dual-Rickart module. \Box

Proposition 3.1.6. The direct sum of copies of a Σ -dual-Rickart module is Σ -dual-Rickart.

Proof. Let M be a Σ-dual-Rickart module. Then, $M^{(\Lambda_1)}$ is a dual-Rickart module, where Λ_1 is a non-empty index set. Therefore, by the definition of Σ-dual-Rickart module $(M^{(\Lambda_1)})^{(\Lambda_2)} = M^{(\Lambda_1 \times \Lambda_2)}$ is a dual-Rickart module for every index set Λ_2 . Hence, $M^{(\Lambda_1)}$ is a Σ-dual-Rickart module.

Lemma 3.1.7. [37, Theorem 2.19]. Let M_1 and M_2 be R-modules. Then M_1 is M_2 dual-Rickart if and only if for any direct summand $N_1 \leq^{\oplus} M_1$ and any submodule $N_2 \leq M_2$, N_1 is N_2 -dual-Rickart module.

Proposition 3.1.8. If M is a Σ -dual-Rickart module, then for any index sets Λ_1 and $\Lambda_2 M^{(\Lambda_1)}$ is $M^{(\Lambda_2)}$ dual-Rickart module. Proof. Let M be a Σ -dual-Rickart module. Then $M^{(\Lambda_1 \times \Lambda_2)}$ is a dual-Rickart module. It is clear that $M^{(\Lambda_1)}$ is a direct summand of $M^{(\Lambda_1 \times \Lambda_2)}$ and $M^{(\Lambda_2)}$ is a submodule of $M^{(\Lambda_1 \times \Lambda_2)}$. So, by Lemma 3.1.7 $M^{(\Lambda_1)}$ is $M^{(\Lambda_2)}$ -dual-Rickart module.

Proposition 3.1.9. Every *R*-module *M* is a Σ -dual-Rickart module if and only if *R* is a semisimple Artinian ring.

Proof. Let T be the right ideal of R. Clearly, R_R is a right R-module. As every Rmodule is Σ -dual-Rickart, so $R^{(R)}$ is a dual-Rickart module. Now for the right ideal T of R, there exists a free module F_R and an epimorphism π such that $\pi(F_R) = T$. Since $F_R \leq^{\oplus} R^{(R)}$, F_R is dual-Rickart. Therefore, $\pi(F_R) = T \leq^{\oplus} R_R$ and thus by modularity, $T \leq^{\oplus} R_R$. Hence, R is a semisimple Artinian ring.

Conversely, assume that R is a semisimple Artinian ring and M is an R-module. Now from [37, Theorem 2.24], every module over a semisimple Artinian ring is a dual-Rickart module. So, every R-module is dual-Rickart. Therefore, for every index set Λ , $M^{(\Lambda)}$ is also a dual-Rickart module. Hence, M is Σ -dual-Rickart R-module. \Box

In the following proposition, we prove that every cohereditary module over a Noetherian ring is a Σ -dual-Rickart module.

Proposition 3.1.10. Every cohereditary module M over a Noetherian ring R is a Σ -dual-Rickart R-module.

Proof. Let M be a cohereditary module and R be a Noetherian ring. Since the direct sum of cohereditary modules over the Noetherian ring is cohereditary [50, Remark (i)], so $M^{(\Lambda)}$ is a cohereditary module for every arbitrary index set Λ . Thus, for every $\psi \in End_R(M^{(\Lambda)}), M^{(\Lambda)}/Ker(\psi) \cong Im(\psi)$ is an injective module. Therefore, the exact sequence $0 \to Im(\psi) \to M^{(\Lambda)} \to Coker(\psi) \to 0$ splits, which implies that $Im(\psi)$ is a direct summand of $M^{(\Lambda)}$. Hence, M is a Σ -dual-Rickart module. **Corollary 3.1.11.** Let M be an R-module such that M is the generator in the category of right R-modules. If the ring R is semisimple, then M is a Σ -dual-Rickart module.

Proof. Since M is a generator in the category of right R-modules and the ring R is semisimple, so from [57, Corollary 2.5] M is a cohereditary R-module. It is well known that a semisimple ring R is Noetherian. Therefore, from Proposition 3.1.10 M is a Σ -dual-Rickart module.

Let M and U be R-modules. Then M is said to be (finitely) generated by U if and only if there exists an epimorphism $\varphi : U^{(I)} \to M$ for some (finite) arbitrary index set I [5, page 105]. Now, we generalize the concept of M-cogenerated modules as strongly M-cogenerated modules.

Definition 3.1.12. Let \mathcal{M} be a non-empty class of R-modules. We call a module N strongly cogenerated by \mathcal{M} if there is a monomorphism $\sigma : N \to \bigoplus_{\lambda \in \Lambda} M_{\lambda}$, where $M_{\lambda} \in \mathcal{M}$ and Λ is a non-empty index set. An R-module N is said to be strongly cogenerated by a module M (or strongly M-cogenerated), if there exists a monomorphism $\sigma : N \to M^{(\Lambda)}$ for every non-empty arbitrary index set Λ .

Example 3.1.13. (i) Every finitely M-cogenerated module is strongly M-cogenerated.

(ii) Every strongly M-cogenerated module is M-cogenerated module, while the converse need not be true. Since every torsion-free abelian group is cogenerated by Q [5, Example 8.3], therefore Z^N is also cogenerated by Q but it is not strongly cogenerated by Q. In fact, Z^N is not embedded in Q^(N).

Lemma 3.1.14. The direct sum of two strongly *M*-cogenerated modules is strongly *M*-cogenerated.

Proof. Let M_1 and M_2 be two strongly M-cogenerated modules. Then for some non-empty index sets Λ_1 and Λ_2 , the maps $\psi_1 : M_1 \to M^{(\Lambda_1)}$ and $\psi_2 : M_2 \to M^{(\Lambda_2)}$ are monomorphisms. Therefore, by [60, 9.2], $\psi_1 \oplus \psi_2 : M_1 \oplus M_2 \to M^{(\Lambda_1)} \oplus M^{(\Lambda_2)}$ is also a monomorphism. Hence, $M_1 \oplus M_2$ is also strongly M-cogenerated. \Box

Lemma 3.1.15. Let $\psi : M \to N$ be a monomorphism and $L \leq M$. If $\psi(L)$ is a direct summand of N, then L is a direct summand of M.

Proof. Suppose that $N = \psi(L) \oplus K$ for some $K \leq N$. Since ψ is a monomorphism from M to N, so $M = L + \psi^{-1}[K]$, where $\psi^{-1}[K]$ is the inverse image of K. If $x \in L \cap \psi^{-1}[K]$, then there exists $y \in K$, such that $\psi(x) = y$. Since $x \in L$, so $y \in \psi(L)$. Thus $y \in \psi(L) \cap K = 0$, which implies x = 0. Hence, $M = L \oplus \psi^{-1}[K]$. \Box

For an *R*-module M, Add(M) [61] denotes the class of all *R*-modules, which are isomorphic to a direct summand of the direct sum of copies of M.

Proposition 3.1.16. Let M be a Σ -dual-Rickart module and $U \in Add(M)$. Then the sum of two strongly M-cogenerated submodules of U is strongly M-cogenerated.

Proof. Let U_1 and U_2 be two strongly *M*-cogenerated submodules of *U* and $U \in Add(M)$. Consider the short exact sequence:

$$0 \to U_1 \cap U_2 \xrightarrow{f} U_1 \oplus U_2 \xrightarrow{g} U_1 + U_2 \to 0$$

where for any $a \in U_1 \cap U_2$, f(a) = (a, a) and $g(u_1, u_2) = u_1 + u_2$ where $u_1 \in U_1$, $u_2 \in U_2$. Since U_1 and U_2 are strongly *M*-cogenerated, so by Lemma 3.1.14, $U_1 \oplus U_2$ is also strongly *M*-cogenerated. Therefore, there exists a monomorphism $\varphi : U_1 \oplus U_2 \to M^{(\Lambda)}$ for some index set Λ . Since *M* is a Σ -dual-Rickart module, $M^{(\Lambda)}$ is dual-Rickart. Thus, $Im(\varphi f)$ is a direct summand of $M^{(\Lambda)}$. Now from Lemma 3.1.15, $Im(f) \leq^{\oplus} U_1 \oplus U_2$ because $Im(\varphi f) = \varphi(Im(f))$, where φ is a monomorphism. Therefore, $(U_1 \oplus U_2)/Im(f)$ is strongly *M*-cogenerated. Since $U_1 \cap U_2 \cong (U_1 \oplus U_2)/Im(f)$, so $U_1 + U_2$ is strongly *M*-cogenerated. \Box

In the following proposition, we show that when a module is Σ -dual-Rickart.

Proposition 3.1.17. An *R*-module *M* is a Σ -dual-Rickart if and only if every module in Add(*M*) is a Σ -dual-Rickart.

Proof. Let $N \in Add(M)$ be arbitrary. Then there exists a submodule $L \leq^{\oplus} M^{(\Lambda)}$ such that $N \cong L$ for an index set Λ . From Proposition 3.1.5 and Proposition 3.1.6, L and $M^{(\Lambda)}$ are Σ -dual-Rickart modules, respectively. Hence, N is also a Σ -dual-Rickart module. The converse follows from the definition of the Σ -dual-Rickart module.

In the following theorem, we find conditions under which an injective module is a Σ -dual-Rickart module.

Theorem 3.1.18. Let R be the Noetherian ring. Then the following conditions are equivalent:

- (i) Every injective R-module is a Σ -dual Rickart module;
- (ii) R is a right hereditary ring.

Proof. $(i) \Rightarrow (ii)$ Let M be an injective R-module and N be a submodule of M. Clearly, M and E(M/N) are both injective modules, so $M \oplus E(M/N)$ is also an injective module. By hypothesis $M \oplus E(M/N)$ is a Σ -dual-Rickart module. So $M \oplus E(M/N)$ is a dual-Rickart module. Thus, from Lemma 3.1.7, M is E(M/N)dual-Rickart. Now consider a map $\psi : M \to E(M/N)$ such that $\psi(\zeta) = \zeta + N$ for every $\zeta \in M$. Then $Im(\psi) = M/N$ is a direct summand of E(M/N). So M/N is an injective module. Hence, R is a right hereditary ring.

 $(ii) \Rightarrow (i)$ Let R be a Noetherian ring and M be an injective R-module. Then $M^{(\Lambda)}$ is also an injective module. Now suppose that $\varphi \in End_R(M^{(\Lambda)})$. Since by assumption R is a hereditary ring, $Im(\varphi) \cong M^{(\Lambda)}/Ker(\varphi)$ is an injective module. Therefore, $Im(\varphi)$ is a direct summand of M^{Λ} . Hence, M is a Σ -dual-Rickart module. \Box

3.2 Σ -Rickart Modules vs. Σ -dual-Rickart Modules ules

In this section, we find connections between the class of Σ -Rickart modules and the class of Σ -dual-Rickart modules. Further, we show that when a Σ -dual-Rickart module is a Σ -Rickart module and vice-versa.

Now, we provide an example of Σ -Rickart module which is not a Σ -dual-Rickart module and vice-versa.

- **Example 3.2.1.** (i) It is clear from [37, Theorem 2.29] that for the hereditary ring R, every injective R-module is dual-Rickart. Therefore, $\mathbb{Z}_{p^{\infty}}^{(\Lambda)}$ is a dual-Rickart Z-module for every arbitrary index set Λ . Thus, $\mathbb{Z}_{p^{\infty}}$ is a Σ -dual-Rickart Z-module, while $\mathbb{Z}_{p^{\infty}}$ is not a Σ -Rickart module. In fact, $\mathbb{Z}_{p^{\infty}}$ is not a Rickart module (see [36, Example 2.17]).
 - (ii) Since from [36, Theorem 2.26], every free (projective) module over a right hereditary ring is a Rickart module, so Z-module Z is a Σ-Rickart module, while Z is not a Z-dual-Rickart module. Hence, it can not be a Σ-dual-Rickart module.

Definition 3.2.2. A module M is called a Σ -C2 module [3] if the direct sum of arbitrary many copies of M is a C2 module. Analogously, M is said to be a Σ injective (Σ -quasi-injective) module if the direct sum of arbitrary many copies of Mis an injective (quasi-injective) module (see [1]).

Proposition 3.2.3. If M is a Σ -C2 module, then every Σ -Rickart module is Σ -dual-Rickart.

Proof. To prove M is a Σ -dual-Rickart module, it is enough to show that $Im(\psi)$ is a direct summand of $M^{(\Lambda)}$ for every $\psi \in End_R(M^{(\Lambda)})$. For it, let $\psi \in End_R(M^{(\Lambda)})$. Since M is a Σ -Rickart module, $Ker(\psi)$ is a direct summand of $M^{(\Lambda)}$ for every arbitrary index set Λ . So, for a submodule N of $M^{(\Lambda)}$, $M^{(\Lambda)} = Ker(\psi) \oplus N$. Clearly, the restriction map ψ_N is one-one. Since by assumption M is a Σ -C2 module, so $M^{(\Lambda)}$ is a C2 module. Therefore, $\psi(N)$ is a direct summand of $M^{(\Lambda)}$. Thus, $Im(\psi) = \{0\} \oplus \psi(N)$ is a direct summand of $M^{(\Lambda)}$. Hence, M is a Σ -dual-Rickart module.

The following example shows that the condition "M is Σ -C2" in Proposition 3.2.3 is not superfluous.

Example 3.2.4. The \mathbb{Z} -module \mathbb{Z} is a Σ -Rickart module but not a Σ -dual-Rickart module and also not a Σ -C2 module (see Example 3.2.1). In fact, \mathbb{Z} -module \mathbb{Z} is not a dual-Rickart module as well as not a C2-module.

Corollary 3.2.5. If R is a right Noetherian ring, then every injective Σ -Rickart R-module is a Σ -dual-Rickart module.

Proof. Let R be a right Noetherian ring and M be an injective R-module. It is well known that over a right Noetherian ring, the direct sum of arbitrary many copies

of an injective module is injective. Thus, $M^{(\Lambda)}$ is an injective. Therefore, $M^{(\Lambda)}$ is a C2 module. Hence, by Proposition 3.2.3 M is a Σ -dual-Rickart module.

Corollary 3.2.6. Every Σ -quasi-injective, Σ -Rickart module is a Σ -dual-Rickart module.

A module M is said to be Σ -C3-module [3] if the direct sum of arbitrary many copies of M is a C3-module.

Corollary 3.2.7. Every Σ -C3, Σ -Rickart module is a Σ -dual-Rickart module.

Proof. It is clear from [3, Corollary 2.7] that a module M is Σ -C3 if and only if M is a Σ -C2. Hence, the result follows from Proposition 3.2.3.

Definition 3.2.8. A module M is called a Σ -D2 (Σ -D3) [62] if the direct sum of arbitrary copies of M is a D2-module (D3-module). Analogously, a module Mis said to be a Σ -quasi projective if the direct sum of arbitrary copies of M is a quasi-projective module [1].

In the following proposition, we show that when a Σ -dual-Rickart module is Σ -Rickart.

Proposition 3.2.9. Every Σ -dual-Rickart module with Σ -D2 condition is Σ -Rickart.

Proof. Let Λ be any arbitrary index set and $\psi \in End_R(M^{(\Lambda)})$. Since M is a Σ -dual-Rickart module, this implies $M^{(\Lambda)}/Ker(\psi) \cong Im(\psi) \leq^{\oplus} M^{(\Lambda)}$. By hypothesis M is a Σ -D2 module, so $M^{(\Lambda)}$ has D2-condition. Therefore, $Ker(\psi)$ is a direct summand of $M^{(\Lambda)}$. Hence, M is a Σ -Rickart module.

The following example shows that the condition "M is Σ -D2" in Proposition 3.2.9 is not superfluous.

Example 3.2.10. It is clear from Example 3.2.1 that the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}^{(\Lambda)}$ is a dual-Rickart module for every arbitrary index set Λ . Thus, $Z_{p^{\infty}}$ is a Σ -dual-Rickart \mathbb{Z} -module, although it is not a Σ -D2 \mathbb{Z} -module as it is not a D2-module. While $Z_{p^{\infty}}$ is not a Σ -Rickart module because it is not a Rickart module.

Corollary 3.2.11. For an *R*-module *M*, the following statements hold:

- (i) Every projective Σ -dual-Rickart module is a Σ -Rickart module.
- (ii) Every Σ -quasi projective Σ -dual-Rickart module is a Σ -Rickart module.
- (iii) Every Σ -D3, Σ -dual-Rickart module is a Σ -dual-Rickart.

Proof. It is easy to see that every projective and every Σ -quasi projective modules are Σ -D2 modules. Hence, part (i) and (ii) easily follows from Proposition 3.2.9. For part (iii), let M be a Σ -D3 module. Since by [62, Corollary 9] direct sum of copies of M is D3 if and only if the direct sum of copies of M is D2, so M is a Σ -D2 module. Hence, the proof is clear from Proposition 3.2.9.

Corollary 3.2.12. Let R be a uniserial ring. Then every quasi-injective, Σ -dual-Rickart module over R is a Σ -Rickart module.

Proof. The proof follows from Proposition 3.2.9 and from the fact that every quasiinjective module over a uniserial ring is a Σ -quasi projective module (see [25, Theorem 5.1]).

In the following theorem, we characterize the semisimple Artinian ring in terms of Σ -dual-Rickart modules and Σ -Rickart modules.

Theorem 3.2.13. The following conditions are equivalent for a ring R:

- (i) Every right R-module is a Σ -Rickart module;
- (ii) Every right R-module is a Σ -dual-Rickart module;
- (iii) R is a right semisimple Artinian ring.

Proof. $(i) \Leftrightarrow (iii)$ It is clear from [36, Theorem 2.25] that a ring R is right semisimple Artinian if and only if every right R-module is Rickart. Therefore, for any arbitrary index set Λ , $M^{(\Lambda)}$ is a Rickart module if and only if R is a right semisimple Artinian ring. Hence, R is a right semisimple Artinian ring if and only if every right R-module is Σ -Rickart.

 $(ii) \Rightarrow (iii)$ Let T be a right ideal of R. Clearly, R_R is a right R-module. As every R-module is Σ -dual-Rickart, so $R^{(R)}$ is a dual-Rickart module. Thus, R is also a dual-Rickart module. Now for the right ideal T of R, there exists a free module F_R and an epimorphism π such that $\pi(F_R) = T$. Since $F_R \leq^{\oplus} R^{(R)}$, F_R is dual-Rickart. Therefore, $\pi(F_R) = T \leq^{\oplus} F_R$ and thus by modularity, $T \leq^{\oplus} R_R$. Hence, R is a right semisimple Artinian ring.

 $(iii) \Rightarrow (ii)$ Now, suppose that R is a right semisimple Artinian ring and M is an Rmodule. So from [37, Theorem 2.24], every R-module is dual-Rickart. Therefore, for
every index set Λ , $M^{(\Lambda)}$ is also a dual-Rickart module. Hence, M is a Σ -dual-Rickart R-module.

3.3 Endomorphism Rings of Σ-dual-Rickart Modules

In this section, we study the endomorphism ring of a Σ -dual-Rickart modules and characterize the semi-hereditary rings, hereditary rings and von Neumann regular rings in terms of it.

Lemma 3.3.1. [46, Corollary], Let R be a ring that contains an infinite direct product $\Pi_{i \in I} R_i$, where R_i is a ring with identity e_i for $i \in I$. Then R is not a (right) hereditary ring.

The following example shows that the endomorphism ring of a Σ -dual-Rickart module need not be a hereditary ring.

Example 3.3.2. From [37, Theorem 2.29], it is clear that for a right hereditary ring R, E(M) is a dual-Rickart R-module for any right R-module M. Therefore, $\mathbb{Q}^{(\Lambda)}$ is a dual-Rickart \mathbb{Z} -module for every arbitrary index set Λ . Hence, $\mathbb{Q}^{(\Lambda)}$ is also a Σ -dual-Rickart module, while $End_{\mathbb{Z}}(\mathbb{Q}^{(\Lambda)})$ is not a hereditary ring. In fact, $End_{\mathbb{Z}}(\mathbb{Q}^{(\Lambda)}) \cong CFM_{\Lambda}(\mathbb{Q})$ contains $\Pi_{\lambda \in \Lambda} R_{\lambda}$ where $R_{\lambda} = \mathbb{Q}$ for each $\lambda \in \Lambda$. Therefore, by Lemma 3.3.1, $End_{\mathbb{Z}}(\mathbb{Q}^{(\Lambda)})$ is not a right hereditary ring.

Proposition 3.3.3. If M is a Σ -dual-Rickart R-module, then the endomorphism ring $S = End_R(M)$ is a left semi-hereditary.

Proof. Let M be a Σ -dual-Rickart module. Then $M^{(n)}$ is a dual-Rickart module for every $n \in \mathbb{N}$. From [37, Proposition 3.1], $End_R(M^{(n)}) \cong Mat_n(S)$ is a left Rickart ring for all $n \in \mathbb{N}$. Hence, S is a left semi-hereditary from [52, Proposition].

Lemma 3.3.4. [60, 47.7(2)]. Let M be a right R-module with $S = End_R(M)$. Then $_SM$ is FP-injective S-module if and only if for every homomorphism $\phi: M^{(n_1)} \to M^{(n_2)}$ with $n_1, n_2 \in \mathbb{N}$, $Coker(\phi)$ is a M-cogenerated module.

Lemma 3.3.5. If M is a right Σ -dual-Rickart module and $S = End_R(M)$, then $_SM$ is an FP-injective S-module.

Proof. Let M be a Σ -dual-Rickart module and $\phi : M^{(n_1)} \to M^{(n_2)}$ be any homomorphism. Then $Im(\phi) \leq^{\oplus} M^{(n_2)}$ which implies that $Coker(\phi) = M^{(n_2)}/Im(\phi) \cong$ $N \leq^{\oplus} M^{(n_2)}$ for some $N \leq M^{(n_2)}$. Therefore, $Coker(\phi)$ is M-cogenerated. Hence, from Lemma 3.3.4 $_SM$ is FP-injective S-module.

Proposition 3.3.6. If M is a finitely generated Σ -dual-Rickart module with endomorphism ring $S = End_R(M)$, then S is a left hereditary ring and $_SM$ is a FP-injective S-module.

Proof. Since M is a finitely generated module, $End_R(M^{(\Lambda)}) \cong End_S(S^{(\Lambda)})$ for any non-empty arbitrary index set Λ . By hypothesis, M is a Σ -dual-Rickart module, so $M^{(\Lambda)}$ is a dual-Rickart. From [37, Proposition 3.1], $End_R(M^{(\Lambda)})$ is a left Rickart ring. Thus, $End_S(S^{(\Lambda)}) = CFM_{\Lambda}(S)$ is a left Rickart ring. Hence, S is a left hereditary ring from [39, Proposition 3.20].

The following Proposition illustrates when the endomorphism ring of a Σ -dual-Rickart module is a von Neumann regular.

Proposition 3.3.7. Let M be a projective Σ -dual-Rickart module. Then $S = End_R(M)$ is a von Neumann regular ring.

Proof. Let M be a Σ -dual-Rickart module and $f \in End(M^{(\Lambda)})$ be an endomorphism. Then $M^{(\Lambda)}$ is a dual-Rickart module (where Λ is an index set). Therefore, $M/Ker(f) \cong Im(f) \leq^{\oplus} M^{(\Lambda)}$. Since M is a projective module, $Ker(f) \leq^{\oplus} M^{(\Lambda)}$. Hence, $End(M^{(\Lambda)}) \cong CFM_{\Lambda}(S)$ is a von Neumann regular, which implies that S is a von Neumann regular ring.

Recall from [40] that a module M is endoregular if the endomorphism ring $S = End_R(M)$ is a von Neumann regular ring.

Corollary 3.3.8. Every projective Σ -dual-Rickart module is an endoregular module.

Proposition 3.3.9. If M is an R-module such that $M^{(\Lambda)}$ is an endoregular module for every arbitrary index set Λ , then M is a Σ -dual-Rickart module.

Proof. The Proof is clear.