Chapter 3

> -dual-Rickart modules

Lee et al., in [36] and [37], introduced the concept of Rickart modules and dual-
Rickart modules, respectively. It is seen that the direct sum of Rickart modules
may not be Rickart. In [34], Lee and Barcenas introduced the concept of Y-Rickart
modules and they called a module M, ¥-Rickart if the direct sum of arbitrary many
copies of M is a Rickart module. Motivated by the notion of »-Rickart modules, we

introduce the notion of YX-dual-Rickart modules.

3.1 >Y-dual-Rickart Modules

Definition 3.1.1. A module M is called a Y-dual-Rickart module if every direct
sum of copies of M is a dual-Rickart module. FEquivalently, a module M 1is called
Y-dual-Rickart if M™) is a dual-Rickart module for every non-empty arbitrary index
set A. A ring R is called a right (left) X-dual-Rickart ring if Rg (grR) is a right
Yi-dual-Rickart R-module. Further, a ring R is said to be X-dual-Rickart if it is right

as well as left X-dual-Rickart.
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It is easy to see that every X-dual-Rickart module is a dual-Rickart module. We
provide an example, which shows that a dual-Rickart module need not be Y-dual-

Rickart module.

Example 3.1.2. Let R = II;°\F,, where F,, = Z, (p is any prime) for each n.
Clearly, R is a self-injective von Neumann reqular ring, which is not semisimple.
From [37, Proposition 2.27] for a von Neumann regular ring R, which is not semisim-
ple Artinian, every finitely generated free R-module is a dual-Rickart module but not
a dual-Baer R-module. So, M = R is a dual-Rickart R-module. Also, the R-module
MB) satisfies the D2-condition and Endg(M ™) is not von Neumann regular. Also,
by [37, Theorem 3.8], a module M is dual-Rickart with D2 condition if and only if
the endomorphism ring of M is von Neumann reqular. Therefore, M) is not a

dual-Rickart R-module. Hence, M 1is not a ¥-dual-Rickart module.

Now, we prove when a dual-Rickart module is a Y>-dual-Rickart module.

Proposition 3.1.3. Let M be an R-module such that M < M™) for every arbitrary

index set A. Then

(i) M is a Rickart module if and only if M is a 3-Rickart module.

(i) M is a dual-Rickart module if and only if M is a X-dual-Rickart module.

Proof. (i) Let M be a Rickart module and fully invariant in M®. So by [39,
Proposition 2.34], M) is a Rickart module. Hence, M is a ¥-Rickart module. The
converse is clear by the definition of »-Rickart module.

(ii) Assume that M is a dual-Rickart module and M is fully invariant in M), Then
from [37, Proposition 5.14], M is a dual-Rickart module. Hence, M is a Y-dual-

Rickart module. The converse is clear by the definition of X-Rickart module. O
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Example 3.1.4. (i) The Z-module Zy is a ¥-dual-Rickart module.

(11) Every injective R-module over the hereditary Noetherian ring R is a 3-dual-

Rickart module (Theorem 3.1.18).

(11i) Over the semisimple Artinian ring R every R-module is ¥-dual-Rickart module

(Theorem 3.2.13).

Proposition 3.1.5. Fvery direct summand of the ¥-dual-Rickart module is a Y-

dual-Rickart.

Proof. Let M be a YX-dual-Rickart module and N <% M. Then, for any non-empty
index set A, N is also a direct summand of M. Since M® is a dual-Rickart

module, so N™ is also dual-Rickart. Hence, N is a ¥-dual-Rickart module. O]

Proposition 3.1.6. The direct sum of copies of a %-dual-Rickart module is ¥-dual-

Rickart.

Proof. Let M be a Y-dual-Rickart module. Then, M ™) is a dual-Rickart module,
where A; is a non-empty index set. Therefore, by the definition of ¥-dual-Rickart
module (MW))A2) — prhixA2) §g 4 dual-Rickart module for every index set As.

Hence, M) is a ¥-dual-Rickart module. O

Lemma 3.1.7. [37, Theorem 2.19]. Let M, and My be R-modules. Then M is Ms-
dual-Rickart if and only if for any direct summand Ny <® M; and any submodule

Ny < My, Ny is No-dual-Rickart module.

Proposition 3.1.8. If M is a X-dual-Rickart module, then for any index sets Ay
and Ay M) s MA2) dual-Rickart module.
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Proof. Let M be a ¥-dual-Rickart module. Then M (A1%42) i5 a dual-Rickart module.
It is clear that M A1) is a direct summand of M A1%42) and M A2) ig a submodule of

MWixA2) S by Lemma 3.1.7 M®™1) is M(A2)_dual-Rickart module. O

Proposition 3.1.9. Fvery R-module M is a %-dual-Rickart module if and only if

R is a semisimple Artinian ring.

Proof. Let T be the right ideal of R. Clearly, Ry is a right R-module. As every R-
module is Y-dual-Rickart, so R is a dual-Rickart module. Now for the right ideal
T of R, there exists a free module Fr and an epimorphism 7 such that 7(Fg) = T.
Since Fr <® RU_ Fp is dual-Rickart. Therefore, 7(Fg) = T <% Ry and thus by
modularity, T <% Rp. Hence, R is a semisimple Artinian ring.

Conversely, assume that R is a semisimple Artinian ring and M is an R-module. Now
from [37, Theorem 2.24], every module over a semisimple Artinian ring is a dual-
Rickart module. So, every R-module is dual-Rickart. Therefore, for every index set

A, M™ is also a dual-Rickart module. Hence, M is ¥-dual-Rickart R-module. [

In the following proposition, we prove that every cohereditary module over a Noethe-

rian ring is a 2-dual-Rickart module.

Proposition 3.1.10. Fvery cohereditary module M over a Noetherian ring R is a

Y-dual-Rickart R-module.

Proof. Let M be a cohereditary module and R be a Noetherian ring. Since the direct
sum of cohereditary modules over the Noetherian ring is cohereditary [50, Remark
(i)], so M™ is a cohereditary module for every arbitrary index set A. Thus, for
every ¥ € Endp(M™), MW /Ker(y) = Im(x) is an injective module. Therefore,
the exact sequence 0 — I'm(¢y) — MW — Coker(¢y)) — 0 splits, which implies that

Im(v) is a direct summand of M®). Hence, M is a ¥-dual-Rickart module. ]
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Corollary 3.1.11. Let M be an R-module such that M 1is the generator in the
category of right R-modules. If the ring R is semisimple, then M is a ¥-dual-Rickart

module.

Proof. Since M is a generator in the category of right R-modules and the ring R
is semisimple, so from [57, Corollary 2.5] M is a cohereditary R-module. Tt is well
known that a semisimple ring R is Noetherian. Therefore, from Proposition 3.1.10

M is a YX-dual-Rickart module. O

Let M and U be R-modules. Then M is said to be (finitely) generated by U if and
only if there exists an epimorphism ¢ : UY) — M for some (finite) arbitrary index
set I [5, page 105]. Now, we generalize the concept of M-cogenerated modules as

strongly M-cogenerated modules.

Definition 3.1.12. Let M be a non-empty class of R-modules. We call a module
N strongly cogenerated by M if there is a monomorphism o : N — @, .\ M,
where My € M and A is a non-empty index set. An R-module N is said to be
strongly cogenerated by a module M (or strongly M-cogenerated), if there exists a

monomorphism o : N — M®) for every non-empty arbitrary index set A.
Example 3.1.13. (i) Every finitely M -cogenerated module is strongly M -cogenerated.

(11) Every strongly M -cogenerated module is M -cogenerated module, while the con-
verse need not be true. Since every torsion-free abelian group is cogenerated by
Q /5, Example 8.3], therefore ZX is also cogenerated by Q but it is not strongly

cogenerated by Q. In fact, ZN is not embedded in QWM.

Lemma 3.1.14. The direct sum of two strongly M -cogenerated modules is strongly

M -cogenerated.
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Proof. Let M; and M, be two strongly M-cogenerated modules. Then for some
non-empty index sets A; and Ao, the maps v : My — M@ and ¢y : My — M©®2)
are monomorphisms. Therefore, by [60, 9.2], ¥ @ ¥y : My @& My — M®) @ M(A2)

is also a monomorphism. Hence, M; & M, is also strongly M-cogenerated. O

Lemma 3.1.15. Let ¢ : M — N be a monomorphism and L < M. If ¢(L) is a

direct summand of N, then L is a direct summand of M.

Proof. Suppose that N = ¢(L)®K for some K < N. Since v is a monomorphism
from M to N, so M = L+ ¢ '[K], where ¢"![K] is the inverse image of K.
If € LNy K], then there exists y € K, such that ¢(z) = y. Since z € L, so

y € Y(L). Thusy € Y(L)NK = 0, which implies x = 0. Hence, M = Ly~ [K]. O

For an R-module M, Add(M) [61] denotes the class of all R-modules, which are

isomorphic to a direct summand of the direct sum of copies of M.

Proposition 3.1.16. Let M be a X-dual-Rickart module and U € Add(M). Then

the sum of two strongly M -cogenerated submodules of U 1is strongly M -cogenerated.

Proof. Let U; and U be two strongly M-cogenerated submodules of U and U €

Add(M). Consider the short exact sequence:
O—)UlmUQLUl@UggUl—FUQ—)O

where for any a € Uy N U, f(a) = (a,a) and g(ui,us) = uy + ug where u; €
Ui, uy € Us. Since U; and U, are strongly M-cogenerated, so by Lemma 3.1.14,
Uy ® U, is also strongly M-cogenerated. Therefore, there exists a monomorphism
o Uy ® Uy, - MW for some index set A. Since M is a ¥-dual-Rickart module,

M@ is dual-Rickart. Thus, Im(¢f) is a direct summand of M™. Now from
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Lemma 3.1.15, Im(f) <% U; @ Uy because Im(¢f) = p(Im(f)), where ¢ is a
monomorphism. Therefore, (U; @ Us)/Im(f) is strongly M-cogenerated. Since
UynNUs = (U @ Us)/Im(f), so Uy + Us is strongly M-cogenerated. O

In the following proposition, we show that when a module is -dual-Rickart.

Proposition 3.1.17. An R-module M is a ¥-dual-Rickart if and only if every mod-
ule in Add(M) is a ¥-dual-Rickart.

Proof. Let N € Add(M) be arbitrary. Then there exists a submodule L <® M®W
such that N = L for an index set A. From Proposition 3.1.5 and Proposition 3.1.6,
L and MW are ¥-dual-Rickart modules, respectively. Hence, N is also a %-dual-
Rickart module. The converse follows from the definition of the X-dual-Rickart

module. O

In the following theorem, we find conditions under which an injective module is a

Y-dual-Rickart module.

Theorem 3.1.18. Let R be the Noetherian ring. Then the following conditions are

equivalent:

(i) Every injective R-module is a ¥-dual Rickart module;

(i) R is a right hereditary ring.

Proof. (i) = (it) Let M be an injective R-module and N be a submodule of M.
Clearly, M and E(M/N) are both injective modules, so M @& E(M/N) is also an
injective module. By hypothesis M @& E(M/N) is a X-dual-Rickart module. So
M & E(M/N) is a dual-Rickart module. Thus, from Lemma 3.1.7, M is E(M/N)-
dual-Rickart. Now consider a map ¢ : M — E(M/N) such that ¢({) = ( + N for
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every ¢ € M. Then Im(¢)) = M/N is a direct summand of E(M/N). So M/N is
an injective module. Hence, R is a right hereditary ring.

(ii) = (i) Let R be a Noetherian ring and M be an injective R-module. Then M@ is
also an injective module. Now suppose that ¢ € Endgr(M™). Since by assumption
R is a hereditary ring, Im(p) = M®™ /Ker(p) is an injective module. Therefore,

Im(yp) is a direct summand of M*. Hence, M is a ¥-dual-Rickart module. O

3.2 Y-Rickart Modules vs. Y-dual-Rickart Mod-

ules

In this section, we find connections between the class of »-Rickart modules and
the class of ¥-dual-Rickart modules. Further, we show that when a Y-dual-Rickart
module is a >-Rickart module and vice-versa.

Now, we provide an example of »-Rickart module which is not a >-dual-Rickart

module and vice-versa.

Example 3.2.1. (i) It is clear from [37, Theorem 2.29] that for the hereditary
ring R, every injective R-module is dual-Rickart. Therefore, Z;/;? s a dual-
Rickart Z-module for every arbitrary index set A. Thus, Zp~ 1s a X-dual-

Rickart Z-module, while Zy~ 1s not a 3-Rickart module. In fact, Zy~ is not a

Rickart module (see [30, Example 2.17]).

(ii) Since from [36, Theorem 2.26], every free (projective) module over a right
hereditary ring is a Rickart module, so Z-module 7 is a X-Rickart module,
while Z 1s not a Z-dual-Rickart module. Hence, it can not be a X-dual-Rickart

module.
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Definition 3.2.2. A module M is called a ¥-C2 module [3] if the direct sum of
arbitrary many copies of M is a C2 module. Analogously, M is said to be a X-
injective (3-quasi-injective) module if the direct sum of arbitrary many copies of M

is an injective (quasi-injective) module (see [1]).

Proposition 3.2.3. If M is a ¥-C2 module, then every %-Rickart module is Y-
dual-Rickart.

Proof. To prove M is a 3-dual-Rickart module, it is enough to show that I'm(1)) is
a direct summand of MW for every ¢ € Endgr(MW). For it, let ¢ € Endgr(M™).
Since M is a ¥-Rickart module, Ker(y) is a direct summand of M™ for every
arbitrary index set A. So, for a submodule N of MW M® = Ker(y) @ N.
Clearly, the restriction map ¥y is one-one. Since by assumption M is a 3-C2
module, so M™ is a C2 module. Therefore, ¢)(N) is a direct summand of M®),
Thus, Im(¢)) = {0} @ ¥ (N) is a direct summand of M®). Hence, M is a ¥-dual-
Rickart module. O

The following example shows that the condition “M is 3-C2” in Proposition 3.2.3

is not superfluous.

Example 3.2.4. The Z-module 7 s a X-Rickart module but not a ¥-dual-Rickart
module and also not a %-C2 module (see Example 3.2.1). In fact, Z-module 7 is

not a dual-Rickart module as well as not a C2-module.
Corollary 3.2.5. If R is a right Noetherian ring, then every injective Y-Rickart

R-module is a YX-dual-Rickart module.

Proof. Let R be a right Noetherian ring and M be an injective R-module. It is well

known that over a right Noetherian ring, the direct sum of arbitrary many copies
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of an injective module is injective. Thus, M® is an injective. Therefore, MY is a

C?2 module. Hence, by Proposition 3.2.3 M is a »-dual-Rickart module. O

Corollary 3.2.6. FEvery Y-quasi-injective, -Rickart module is a Y-dual-Rickart

module.

A module M is said to be 3-C'3-module [3] if the direct sum of arbitrary many copies
of M is a C'3-module.

Corollary 3.2.7. Fvery ¥-C3, Y-Rickart module is a ¥-dual-Rickart module.

Proof. 1t is clear from [3, Corollary 2.7] that a module M is 3-C3 if and only if M

is a 2-C2. Hence, the result follows from Proposition 3.2.3. O]

Definition 3.2.8. A module M is called a ¥-D2 (3-D3) [62] if the direct sum
of arbitrary copies of M is a D2-module (D3-module). Analogously, a module M
is said to be a X-quasi projective if the direct sum of arbitrary copies of M is a

quasi-projective module [1].

In the following proposition, we show that when a Y-dual-Rickart module is Y-

Rickart.

Proposition 3.2.9. Fvery X-dual-Rickart module with 3:-D2 condition is - Rickart.

Proof. Let A be any arbitrary index set and ¢ € Endgr(M™W). Since M is a ¥-dual-
Rickart module, this implies MY /Ker(¢) = Im(y) <® M®™. By hypothesis M is
a ¥-D2 module, so M has D2-condition. Therefore, Ker (1)) is a direct summand

of MW Hence, M is a Y-Rickart module. n

The following example shows that the condition “M is ¥-D2” in Proposition 3.2.9

is not superfluous.
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Example 3.2.10. [t is clear from Ezample 3.2.1 that the Z-module Z](,{}g 15 a dual-
Rickart module for every arbitrary index set A. Thus, Zy~ is a X-dual-Rickart
Z-module, although it is not a X-D2 Z-module as it is not a D2-module. While Z e

1s not a X-Rickart module because it is not a Rickart module.

Corollary 3.2.11. For an R-module M, the following statements hold:

(i) Every projective ¥.-dual-Rickart module is a X-Rickart module.
(i1) Every X-quasi projective ¥-dual-Rickart module is a -Rickart module.

(1ii) Every ¥-D3, ¥-dual-Rickart module is a ¥-dual-Rickart.

Proof. 1t is easy to see that every projective and every Y-quasi projective modules
are ¥-D2 modules. Hence, part (i) and (ii) easily follows from Proposition 3.2.9.

For part (idi), let M be a ¥-D3 module. Since by [62, Corollary 9] direct sum of
copies of M is D3 if and only if the direct sum of copies of M is D2, so M is a X-D?2

module. Hence, the proof is clear from Proposition 3.2.9. m
Corollary 3.2.12. Let R be a uniserial ring. Then every quasi-injective, Y-dual-

Rickart module over R is a X-Rickart module.

Proof. The proof follows from Proposition 3.2.9 and from the fact that every quasi-
injective module over a uniserial ring is a ¥-quasi projective module (see [25, The-

orem 5.1]). O

In the following theorem, we characterize the semisimple Artinian ring in terms of

Y -dual-Rickart modules and »-Rickart modules.

Theorem 3.2.13. The following conditions are equivalent for a ring R:
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(i) Every right R-module is a X-Rickart module;
(ii) Every right R-module is a Y-dual-Rickart module;

(iii) R is a right semisimple Artinian ring.

Proof. (i) < (ii1) It is clear from [36, Theorem 2.25] that a ring R is right semisimple
Artinian if and only if every right R-module is Rickart. Therefore, for any arbitrary
index set A, MY is a Rickart module if and only if R is a right semisimple Artinian
ring. Hence, R is a right semisimple Artinian ring if and only if every right R-module
is 2-Rickart.

(17) = (ii1) Let T be a right ideal of R. Clearly, Rp is a right R-module. As every
R-module is ¥-dual-Rickart, so R is a dual-Rickart module. Thus, R is also a
dual-Rickart module. Now for the right ideal T" of R, there exists a free module Fg
and an epimorphism 7 such that 7(Fg) = T. Since Fr <® R Fy is dual-Rickart.
Therefore, m(Fg) = T <% Fg and thus by modularity, T <%¥ Rp. Hence, R is a
right semisimple Artinian ring.

(7ii) = (4i) Now, suppose that R is a right semisimple Artinian ring and M is an R-
module. So from [37, Theorem 2.24], every R-module is dual-Rickart. Therefore, for
every index set A, M® is also a dual-Rickart module. Hence, M is a ¥-dual-Rickart

R-module. O

3.3 Endomorphism Rings of >-dual-Rickart Mod-

ules

In this section, we study the endomorphism ring of a Y-dual-Rickart modules and

characterize the semi-hereditary rings, hereditary rings and von Neumann regular
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rings in terms of it.

Lemma 3.3.1. [46, Corollary/, Let R be a ring that contains an infinite direct
product IL;c; R;, where R; is a ring with identity e; fori € I. Then R is not a (right)

hereditary ring.

The following example shows that the endomorphism ring of a ¥-dual-Rickart mod-

ule need not be a hereditary ring.

Example 3.3.2. From [37, Theorem 2.29], it is clear that for a right hereditary ring
R, E(M) is a dual-Rickart R-module for any right R-module M. Therefore, Q™) is a
dual-Rickart Z-module for every arbitrary index set A. Hence, Q™ is also a ¥-dual-
Rickart module, while Endz(QW) is not a hereditary ring. In fact, Endz(QW) =
CFMx(Q) contains xep Ry where Ry = Q for each A € A. Therefore, by Lemma

3.3.1, Endz(QW) is not a right hereditary ring.

Proposition 3.3.3. If M is a ¥-dual-Rickart R-module, then the endomorphism

ring S = Endr(M) is a left semi-hereditary.

Proof. Let M be a ¥-dual-Rickart module. Then M is a dual-Rickart module for
every n € N. From [37, Proposition 3.1], Endr(M™) = Mat,(S) is a left Rickart

ring for all n € N. Hence, S is a left semi-hereditary from [52, Proposition]. H

Lemma 3.3.4. [60, 47.7(2)]. Let M be a right R-module with S = Endgr(M). Then
sM is FP-injective S-module if and only if for every homomorphism

¢ M) — MT2) with ny,ny € N, Coker(¢) is a M-cogenerated module.

Lemma 3.3.5. If M is a right X-dual-Rickart module and S = Endgr(M), then s M

is an FP-injective S-module.



Chapter 3. X -dual-Rickart Modules 46

Proof. Let M be a ¥-dual-Rickart module and ¢ : M™) — M®2) be any homo-
morphism. Then I'm(¢) <® M) which implies that Coker(¢) = M) /Im(¢) =
N <® M®) for some N < M™). Therefore, Coker(¢) is M-cogenerated. Hence,

from Lemma 3.3.4 ¢M is FP-injective S-module. O

Proposition 3.3.6. If M is a finitely generated YX-dual-Rickart module with en-
domorphism ring S = Endr(M), then S is a left hereditary ring and sM is a

FP-injective S-module.

Proof. Since M is a finitely generated module, Endr(M®W) = Endg(S™Y) for any
non-empty arbitrary index set A. By hypothesis, M is a ¥-dual-Rickart module, so
M®W is a dual-Rickart. From [37, Proposition 3.1], Endr(M™W) is a left Rickart ring.
Thus, Endg(S™) = CFM,(S) is a left Rickart ring. Hence, S is a left hereditary

ring from [39, Proposition 3.20]. O

The following Proposition illustrates when the endomorphism ring of a Y-dual-

Rickart module is a von Neumann regular.

Proposition 3.3.7. Let M be a projective Y-dual-Rickart module. Then S =

Endr(M) is a von Neumann reqular ring.

Proof. Let M be a Y-dual-Rickart module and f € End(M™) be an endomor-
phism. Then M® is a dual-Rickart module (where A is an index set). Therefore,
M/Ker(f) = Im(f) <® MW, Since M is a projective module, Ker(f) <® MW,
Hence, End(M®™)) = CFM,(S) is a von Neumann regular, which implies that S is

a von Neumann regular ring. O

Recall from [40] that a module M is endoregular if the endomorphism ring S =

Endgr(M) is a von Neumann regular ring.
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Corollary 3.3.8. FEvery projective ¥-dual-Rickart module is an endoregular module.

Proposition 3.3.9. If M is an R-module such that M™ is an endoreqular module

for every arbitrary index set A, then M is a Y-dual-Rickart module.

Proof. The Proof is clear. O]






