Chapter 2

Principally Quasi-dual-Baer
Modules

In 2010, Tutuncu and Tribak [56] introduced the notion of dual-Baer modules as
a dual notion of Baer modules. Further, in 2013 Amouzegar and Talebi [4] du-
alized the concept of quasi-Baer modules as quasi-dual-Baer modules which is a
generalization of the notion of dual-Baer modules. In this chapter, we introduce
the notion of principally quasi-dual-Baer modules. We discuss various properties of
principally quasi-dual-Baer modules as direct summand, direct sum, etc. We also

study endomorphism rings of principally quasi-dual-Baer modules.

2.1 Principally Quasi-dual-Baer Modules

Definition 2.1.1. Let M be an R-module and S = Endgr(M). Then M is said to
be a principally quasi-dual-Baer module (or, in short, PQ-dual-Baer module) if for
every cyclic S-submodule N of M, Dg(N) = {¢p € S : Im(yp) C N} is a direct
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summand of S.
Further, a ring R is called right (left) PQ-dual-Baer if the R-module Rr (rR) is
PQ-dual-Baer.

Example 2.1.2. (i) The Z-modules Q and Z,~ are PQ-dual-Baer modules.
(ii) Every injective indecomposable module is PQ-dual-Baer module.
(iii) Every dual-Baer and quasi-dual-Baer modules are PQ-dual-Baer module.
In the following lemma, we show that the idempotent element f € S such that
Dg(Sm) = Sf is a right semi-central if M is a PQ-dual-Baer module.
Lemma 2.1.3. If M is a PQ-dual-Baer module and S = Endg(M) then for any

m € M, there exists a right semi-central element f € S,(S) such that Dg(Sm) = Sf.

Proof. Let M be a PQ-dual-Baer module and m € M. Then there exists f? =
f € S such that Dg(Sm) = Sf. Since Sm is a fully invariant S-submodule of
M as for every f € S, f(Sm) C Sm, so Sfe(Sm) C Sf(Sm) C Sm for every
¢ € S. Therefore, Sfy C Dg(Sm) = Sf, which implies that fo = fof. Hence
f€S,(9). O

Proposition 2.1.4. The following statements are equivalent for an R-module M :

(i) M is a PQ-dual-Baer module;

(ii) For every cyclic submodule P < M, there exists a decomposition M = Py & Py
with Py <® P and Hom(M, PN P,) = 0.

Proof. (i) = (ii) Let P be a cyclic S-submodule of M and S = Endgr(M). Then by

hypothesis, there exists e = e € S such that Dg(P) = Se. Suppose that P, = eM
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and P, = (1 —e)M, then M = P, & P,. Also Ey(Dg(P)) = Ey(Se) =eM = Py
and P is a direct summand of P. Therefore, P = P, & (P N P,). Now take p € S
be such that o(M) C PN P,, then ¢ € Dg(P). So, there exists ) € S such that
¢ = e. Therefore, (M) C Py so ¢ =0 as (M) C P, and P, N P, = 0. Hence,
Hompg(M, PN Py) = 0.

(11) = (i) Let P = Sm for some m € M. Clearly, P is a cyclic S-submodule
of M, so there exists a decomposition of M such that M = P, ® P, P, <% P
and Hom(M, PN P,) = 0. Let P, = eM for some idempotent e = e € S, then
Se = Dg(P;) € Dg(P). Now assume that ¢ € Dg(P) and 7 be a projection
map from P to PN P,. Then m¢ = 0 which implies that (M) C e(M). Thus,
o(l —e) =0 = ¢ = ge € Se which gives Dg(P) C Se. Therefore, Dg(P) = Se.
Hence, M is a PQ-dual-Baer module. O

Corollary 2.1.5. If every cyclic submodule of M is a direct summand of M, then
M is a PQ-dual-Baer module.

Corollary 2.1.6. If R is von Neumann reqular, then R is a PQ-dual-Baer R-

module.

Proof. Let R be a von Neumann regular ring and I be a principal ideal of R. Then,
from Proposition 1.0.69 [ is a direct summand of R. So every principal ideal is a
direct summand of R. Hence, by Proposition 2.1.4 R is a PQ-dual-Baer R-module.

[

Corollary 2.1.7. For an indecomposable module M, the following are equivalent:

(i) M is a PQ-dual-Baer module;

(11) For every cyclic submodule P of M, Hom(M, P) = 0.
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Proof. (i) = (ii) It follows from Proposition 2.1.4.

(i1) = (i) Let P be a cyclic S-submodule of M and S = Endgr(M). Since M is
an indecomposable module and Hom(M, P) = 0, so Dg(M) = S and Dg(P) = 0.
Therefore, Dg(P) <% S. Hence, M is a PQ-dual-Baer module. O

It is clear from the definition that the following hierarchy is true in general.
Dual-Baer module = Quasi-dual-Baer module = PQ-dual-Baer module.
We provide some examples which show that the converse of the above implications

need not be true.

Example 2.1.8. (i) [55, Example 2.9(iii)] Let J be a simple domain that is not

a division ring (we can take J = A, (F), the nth Weyl algebra over a field F

J K/J
of characteristic zero). Consider the ring R = , where K 1s the
0o J
10
classical ring of quotients of J. Take the idempotent E = and the
0 0
J K/J
right R-module M = ER = . In [55], Tribak et al. proved that the
0 0

module M is a quasi-dual-Baer module that is not a dual-Baer module.

(ii) Let P be the set of all primes. Also, let R = Z and M = [],pZ, be an
R-module. It is clear that every cyclic submodule of M is a direct summand
of M. Therefore, Dg(N) is a direct summand of S for every cyclic submodule
of M. Hence, M is a PQ-dual-Baer R-modules, while from [55, Example 3.2],

M is not a quasi-dual-Baer module.

In the following proposition, we show that when a PQ-dual-Baer module is a quasi-

dual-Baer module.
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Proposition 2.1.9. An R-module M 1is a quasi-dual-Baer if and only if M is a
PQ-dual-Baer and the endomorphism ring of M has FI-SSSP.

Proof. Let M be a quasi-dual-Baer module and S = Endgr(M). Since every quasi-
dual-Baer module is PQ-dual-Baer. So for sufficient condition, it only remains to
prove that the left S-module ¢S5 has FI-SSSP. For it, let T' = ;7 Se; and each e; €
Sr(S). Then, ¥;cpSe; = YienDs(e; M) = Dg(Ziene;iM) = Se for some e € S,.(S).
Therefore, the left S-module ¢S has FI-SSSP.

Conversely, assume that N is a fully invariant submodule of M. Since Dg(N) =
YnenDs(Sn) and M is a PQ-dual-Baer module, there exists a right semi-central
element e; € S,(S) such that Dg(Sn) = Se; for every ¢ € I, where I is an index
set. By hypothesis ¢S has FI-SSSP, so Dg(N) = X;c;Se; <% Se for some e € S,.(9).

Hence, M is a quasi-dual-Baer module. O

Proposition 2.1.10. Let M be a PQ-dual-Baer module and ¢S has SSP. Then for

every finitely generated submodule N of M, Dg(N) is a direct summand of S.

Proof. Let N = 3", Sm; be a finitely generated submodule of M, where m; €
M for each 1 < i < mn and n € N. It is clear that Dg(N) = Dg(X!,Sm;) =
X 1 Dg(Sm;). Since M is a PQ-dual-Baer module, so from Lemma 2.1.3, there
exists e = ¢; € S,(9) such that Dg(Sm;) = Se; for every 1 < i < n. Thus,

Dg(N) = X7, Se;. Since ¢S has SSP, X" | Se; is a direct summand of S. O

Corollary 2.1.11. Let R be a principal ideal domain, M be a finitely generated
R-module and S = Endg(M) has SSP as a left S-module. Then the following are

equivalent:

(i) M is a dual-Baer module;

(11) M is a quasi-dual-Baer module;
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(iii) M is a PQ-dual-Baer module.

Proof. (i) = (ii) = (di7) follows from the definitions of dual-Baer, quasi-dual-Baer
and PQ-dual-Baer modules.

(1ii) = (i) It follows from Proposition 2.1.10. O

In the following proposition, we show that PQ-dual-Baer modules are closed under

direct summands.

Proposition 2.1.12. FEvery direct summand of a PQ-dual-Baer module is a PQ-

dual-Baer.

Proof. Let M be a PQ-dual-Baer module with endomorphism ring .S, N be a direct
summand of M and n € N. Then, there exists > = e € S such that N = eM and
T = Endg(N) = eSe. Since M is a PQ-dual-Baer module, there exists ¢ € S,.(5)
such that I = Dg(Sn) = S¢. From [4, Lemma 1.3] I < S, so ele = eSeN I.
Since ¢ € S,(9), pe = pep. Thus, ele = eSpe = eSpep = (eSype)(eyp), which
implies ele <% eSe. Now, we claim that Dp(Tn) = ele. For it, let ¢ € I,
ee(M) = e(eM) = erp(N) C e(Sn) C (eSe)n = Tn, which yields ee € Drp(Tn).
Thus, ele C Dp(Tn). Now assume that 0 # efle € eSe such that efe(N) C T'n
where 0 € S. Since N = eM, efe(M) = efe(N) C Tn C Sn, so efe € Dg(Sn) = 1.
But efe = eeflee = e(ebe)e € ele. Therefore, Dp(Tn) = ele for all n € N. Hence,

N is a PQ-dual-Baer module. O]

Proposition 2.1.13. The following statements are equivalent for a ring R:

(i) Every R-module is PQ-dual-Baer;

(ii) Every projective R-module is PQ-dual-Baer;
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(iii) The free module R is PQ-dual-Baer;

(iv) R is a right semisimple Artinian ring.

Proof. The implications (i) = (ii) = (iii) are easy to verify.

(17i) = (iv) Let J be a right ideal of R. Then there exists a free R-module K and
an epimorphism 7 for which 7(K) = J. Since R® is a PQ-dual-Baer R-module
and K <® RW implies Ky is a PQ-dual-Baer module. Thus, 7(Kg) = J <% K,
which gives J <% Rp. Hence, R is a right semisimple Artinian ring.

(1v) = (i) Let R be a semisimple Artinian ring and M be an R-module. It is clear
from [56, Corollary 2.10] that every R-module is dual-Baer if R is a semisimple ring.
Therefore, M is a dual-Baer R-module. Hence, M is a PQ-dual-Baer R-module. [

Now, we characterize PQ-dual-Baer modules over regular rings.

Proposition 2.1.14. For a ring R, the following are equivalent:

(i) Each finitely generated free (projective) right R-module is PQ-dual-Baer;
(ii) The free R-module R™ is PQ-dual-Baer module, where n € N;
(ii1) R is a reqular ring.
Proof. (i) = (ii) = (¢ii) It is clear.
(4ii) = (7). It is well known that End(R™) = Mat,(R) for every n € N, where

Mat,(R) is a matrix of order n over R. Since R is a regular ring, so Mat,(R) is

also a regular ring. Hence, R"™ is PQ-dual-Baer R-module. O

The following proposition provides examples of PQ-dual-Baer modules which are

not dual-Baer.
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Proposition 2.1.15. Let R be a von Neumann reqular ring, which is not semisimple
Artinian. Then every finitely generated free R-module is a PQ-dual-Baer module but

not a dual-Baer module.

Proof. From Proposition 2.1.14, every finitely generated free R-module M is a PQ-
dual-Baer module. Since from hypothesis, R is not semisimple, so by [56, Corollary

2.10] the R-module M is not a dual-Baer module. O

Example 2.1.16. The ring J = II2,7Z, (where p is a prime) is von Neumann
reqular ring which is not semisimple Artinian. Hence, from Proposition 2.1.15 every
finitely generated free R-module is a PQ-dual-Baer module that is not a dual-Baer

module.

Now, we give an example which shows that the direct sum of PQ-dual-Baer modules

need not be PQ-dual-Baer.

Example 2.1.17. The Z-modules Zy~ and Z,, where p is a prime, are PQ-dual-
Baer modules because these are dual-Baer modules [56]. From [37, Example 2.10]
M = Zy~ ® Zyp, the direct sum of Zp~ and Z, is not a dual-Rickart module.
Therefore, M can not be a PQ-dual-Baer module.

In the following theorem, we discuss when the direct sum of two PQ-dual-Baer

modules is PQ-dual-Baer.

Proposition 2.1.18. If M, and M, are PQ-dual-Baer modules such that Hom(M;, M;) =
0 for every i # j, 4,5 = 1,2, then My & M is a PQ-dual-Baer module.

Proof. Let M = M; & My with S; = Endg(M;) and Sy = Endgr(Ms). Since
Hompg(M;, M;) =0 for every i # j, S = Endr(M) = S; @ Sz. Therefore, for every
m = (mq, mg) € M, Dg(Sm) = Dg,(S1m1) ® Dg,(Sams). From hypothesis M; is



Chapter 2. Principally quasi-dual... 29

a PQ-dual-Baer module, so there exists e? = e; € S; such that Dg (S;m;) = Sie;
for each i. Thus, Dg(Sm) = Sie; @ Sses <% S. Hence, M is a PQ-dual-Baer

module. O

Now, we study when the direct sum of arbitrary many copies of a PQ-dual-Baer

module is PQ-dual-Baer.

Theorem 2.1.19. Let M be a PQ-dual-Baer module and S = Endr(M). Then the
direct sum of copies of M is PQ-dual-Baer if S has SSSP.

Proof. Let M be a PQ-dual-Baer module and M = @; M be the direct sum of I
copies of M, where I is an arbitrary index set. First, we assume I = N. Let m =
(mi)icr € MY and E;; denote an (I x I) matrix of H = End(M W) with 1g (identity
element of S) at (¢, j)th position and 0 elsewhere. Clearly, £;;(m) is an element of
M® such that m; is at i-th position and 0 elsewhere. So there exists n € N such
that for each [ > n, m; = 0, that is Ej(m) = 0, which implies that m = X' , E;;(m).
Then from the claim of [33, Theorem 3.8, we get H(m) = €D, (X7;Sji(m;)), where
Sji = Hom(M,;, M;) = S. If we consider N; = X7 ,S;;(m;) for every j € I, then
it is clear that Dg(N;) = Dg(X7_15;i(m;)) = X1 Dg(S;i(m;)). Since M is a PQ-
dual-Baer module and ¢S has SSSP, from Proposition 2.1.10 Dg(N;) = Se for some
e? = e € S. Let 1y be the identity of H and take ely = diag[e,e,...,e...] € H.
Then elgy is an idempotent element of H. Since elu(D;;(NV;)) = D, e(N;) C
@D,c1(N;). Therefore, Helg C Du(@;; N;). Again let ¢ = [¢y;] € Du(@;cr N),
then Y(D,ex Nj) € @D, N; which implies that ¢y;(N;) C Nj for all j,k € 1. So
Yr; € Dg(N;) = Se for some idempotent e € S because M is PQ-dual-Baer module.
Therefore, 1y; = ;e for all j,k € I. Hence, Du(D; N;) € Helm. So we get
DH(@].GI N;) = Hely. Thus, Du(Hm) = Hely. When I is an arbitrary index set,

then the proof is similar to the above case. O
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2.2 Endomorphism Rings of Principally Quasi-dual-

Baer Modules

In this section, we study the endomorphism ring of a PQ-dual-Baer module.
The following proposition shows that the endomorphism ring of a PQ-dual-Baer

module is a left principally quasi-Baer ring.

Proposition 2.2.1. The endomorphism ring of a PQ-dual-Baer module is a left
PQ-Baer ring.

Proof. Let M be a PQ-dual-Baer module, m € M and T be a principal ideal of
S. Then there exists f2 = f € S such that Dg(Tm) = Sf. For every g € T,
Im(g) C YgepgrmyIm(g) = SgespIm(g) = Em(Sf) = fM. So for every g € T,
(1 — f)gM = 0, which implies that (1 — f)g = 0. Therefore, (1 — f) € {5(T). Now
to show that S is a PQ-Baer ring, it is enough to prove that is(T)) = S(1 — f).
Let h € lg(T) then h(Dg(Tm)) = 0 = (Sf)h = 0 = fh = 0. Therefore, h =
(1—f)he S(1—f). Thus, Is(T) € S(1 — f). Now, assume that h € S(1 — f) then
for every m € M, hT(m) = h(1 — f)T(m) C h(1 — f)(f M) because for every h € T,
Im(h) € fM. So, hI'(m) = 0 for every m € M = hT =0 = h € lg(T). Thus,
ls(T) = S(1— f). Hence, S is a left PQ-Baer ring. O

The converse of the above proposition need not be true. In fact, a Z-module Z is
not a PQ-dual-Baer, while EndzZ = 7 is a PQ-Baer ring.
In the next proposition, we find the condition under which the endomorphism ring

of a PQ-dual-Baer module is a PQ-dual-Baer ring.

Proposition 2.2.2. Let M be a finitely generated PQ-dual-Baer module and the

endomorphism ring S of M has SSP. Then S is the PQ-dual-Baer ring.
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Proof. Let M be a PQ-dual-Baer module with S = Endg(M) and f € S. Assume
that M is generated by my, mo, ..., m,, where each m; € M and n € N. It is clear that,
for every b € Dg(Sy), ¥(S¢) C S¢ and ¥(Sp)M C SeM. Thus, ¥(Sp)(m;) C
Se(m;) for all 1 < i < n. Therefore, v € Dg(S(p(m;))) for each i. Since M is a
PQ-dual-Baer module, so there exists e; € S,(S) such that Dg(S(¢(m;))) = Se; for
each 1 < i < n. Hence, ¢ € 37| Se;, so Dg(S¢) C X' ,Se;. Now, let f € ¥ | Se;
and m € M be arbitrary. Then for r, € R, f(Sp(m)) = f(E,Se(mr;)) =
f(Er,(Sp(m;)r; where 1 < i < n. Clearly X7, (S¢(m;)r; is a finitely generated
submodule of M. It is clear that f(X,(Sp(m;)r;) C X7 (Sp(m;)r; for each i.
Thus, f(S¢) C S that implies f € Dg(Sp). Therefore, 2" | Se; = Dg(S¢). Since

55 has summand sum property, Dg(S¢) <% S. Hence, S is a PQ-dual-Baer ring. [

Proposition 2.2.3. If the endomorphism ring of every direct sum of copies of a
PQ-dual-Baer M is left PQ-dual-Baer, then S = Endgr(M) is a quasi-dual-Baer

Ting.

Proof. Let M be a PQ-dual-Baer module and 7" < S. Consider I = |T| and H =
End(MW). Clearly CFMg C H C Maty(S). Set 1 = diag[y, s, ..., s, ...]iex € H.
We claim that Dg(Hvy) = H N Mati(Xy,erDs(Sv;)). Let ¢ = [¢i;] € Du(Hy)
be arbitrary. Then ¢(Hi) C Ht. Denote by Ej; a unit matrix in H with 1g at
(¢,7)-th position and 0 elsewhere. Then E;oE;;(HEEy) C HEgEy, that
implies ¢;;(SYy) C Sy for all i,j,k € I. Thus, p;; € Xy,erDs(SYy) for every
i,j € I. Therefore, ¢ € HN Maty(Xy,erDs(Svy)). For the reverse inclusion, let
0 = [0;;] € HN Matr(Ey,erDs(Svy)) be arbitrary. Then 6;; € £y, crDs(Svy) for
every i,j € I. Thus, 6,;(Svy) C Sy, for all i, j,k € I. Therefore, §(Hy) C Hz.
Hence, 6 € Dy (Hz), which proves our claim. Now assume that P = X, crDs(Svy).
So from our claim H N Maty(P) = Dg(Hv). Since from assumption H is PQ-dual-
F =

Baer ring, there exists F? = [Fi;] € H such that Dg(Hy) = HF. Note
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that E; FE; = F; Fy; is a right semi-central idempotent of E;HE;;. Thus, PE;; =
i € I. Since HF = H + Maty(P), SF;; C P. Hence, P = SE; with F}; is a right

semi-central idempotent of S. Therefore, S is a quasi-dual-Baer ring. O



