
Chapter 2

Principally Quasi-dual-Baer

Modules

In 2010, Tutuncu and Tribak [56] introduced the notion of dual-Baer modules as

a dual notion of Baer modules. Further, in 2013 Amouzegar and Talebi [4] du-

alized the concept of quasi-Baer modules as quasi-dual-Baer modules which is a

generalization of the notion of dual-Baer modules. In this chapter, we introduce

the notion of principally quasi-dual-Baer modules. We discuss various properties of

principally quasi-dual-Baer modules as direct summand, direct sum, etc. We also

study endomorphism rings of principally quasi-dual-Baer modules.

2.1 Principally Quasi-dual-Baer Modules

Definition 2.1.1. Let M be an R-module and S = EndR(M). Then M is said to

be a principally quasi-dual-Baer module (or, in short, PQ-dual-Baer module) if for

every cyclic S-submodule N of M , DS(N) = {ψ ∈ S : Im(ψ) ⊆ N} is a direct
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summand of S.

Further, a ring R is called right (left) PQ-dual-Baer if the R-module RR (RR) is

PQ-dual-Baer.

Example 2.1.2. (i) The Z-modules Q and Zp∞ are PQ-dual-Baer modules.

(ii) Every injective indecomposable module is PQ-dual-Baer module.

(iii) Every dual-Baer and quasi-dual-Baer modules are PQ-dual-Baer module.

In the following lemma, we show that the idempotent element f ∈ S such that

DS(Sm) = Sf is a right semi-central if M is a PQ-dual-Baer module.

Lemma 2.1.3. If M is a PQ-dual-Baer module and S = EndR(M) then for any

m ∈M , there exists a right semi-central element f ∈ Sr(S) such that DS(Sm) = Sf .

Proof. Let M be a PQ-dual-Baer module and m ∈ M . Then there exists f 2 =

f ∈ S such that DS(Sm) = Sf . Since Sm is a fully invariant S-submodule of

M as for every f ∈ S, f(Sm) ⊆ Sm, so Sfφ(Sm) ⊆ Sf(Sm) ⊆ Sm for every

φ ∈ S. Therefore, Sfφ ⊆ DS(Sm) = Sf , which implies that fφ = fφf . Hence

f ∈ Sr(S).

Proposition 2.1.4. The following statements are equivalent for an R-module M :

(i) M is a PQ-dual-Baer module;

(ii) For every cyclic submodule P ≤M , there exists a decomposition M = P1⊕P2

with P1 ≤⊕ P and Hom(M, P ∩ P2) = 0.

Proof. (i) ⇒ (ii) Let P be a cyclic S-submodule of M and S = EndR(M). Then by

hypothesis, there exists e2 = e ∈ S such that DS(P ) = Se. Suppose that P1 = eM
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and P2 = (1 − e)M , then M = P1 ⊕ P2. Also EM(DS(P )) = EM(Se) = eM = P1

and P1 is a direct summand of P . Therefore, P = P1 ⊕ (P ∩ P2). Now take φ ∈ S

be such that φ(M) ⊆ P ∩ P2, then φ ∈ DS(P ). So, there exists ψ ∈ S such that

φ = ψe. Therefore, φ(M) ⊆ P1 so φ = 0 as φ(M) ⊆ P2 and P1 ∩ P2 = 0. Hence,

HomR(M, P ∩ P2) = 0.

(ii) ⇒ (i) Let P = Sm for some m ∈ M . Clearly, P is a cyclic S-submodule

of M , so there exists a decomposition of M such that M = P1 ⊕ P2, P1 ≤⊕ P

and Hom(M, P ∩ P2) = 0. Let P1 = eM for some idempotent e2 = e ∈ S, then

Se = DS(P1) ⊆ DS(P ). Now assume that φ ∈ DS(P ) and π be a projection

map from P to P ∩ P2. Then πφ = 0 which implies that φ(M) ⊆ e(M). Thus,

φ(1 − e) = 0 ⇒ φ = φe ∈ Se which gives DS(P ) ⊆ Se. Therefore, DS(P ) = Se.

Hence, M is a PQ-dual-Baer module.

Corollary 2.1.5. If every cyclic submodule of M is a direct summand of M , then

M is a PQ-dual-Baer module.

Corollary 2.1.6. If R is von Neumann regular, then R is a PQ-dual-Baer R-

module.

Proof. Let R be a von Neumann regular ring and I be a principal ideal of R. Then,

from Proposition 1.0.69 I is a direct summand of R. So every principal ideal is a

direct summand of R. Hence, by Proposition 2.1.4 R is a PQ-dual-Baer R-module.

Corollary 2.1.7. For an indecomposable module M , the following are equivalent:

(i) M is a PQ-dual-Baer module;

(ii) For every cyclic submodule P of M , Hom(M, P ) = 0.
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Proof. (i) ⇒ (ii) It follows from Proposition 2.1.4.

(ii) ⇒ (i) Let P be a cyclic S-submodule of M and S = EndR(M). Since M is

an indecomposable module and Hom(M, P ) = 0, so DS(M) = S and DS(P ) = 0.

Therefore, DS(P ) ≤⊕ S. Hence, M is a PQ-dual-Baer module.

It is clear from the definition that the following hierarchy is true in general.

Dual-Baer module ⇒ Quasi-dual-Baer module ⇒ PQ-dual-Baer module.

We provide some examples which show that the converse of the above implications

need not be true.

Example 2.1.8. (i) [55, Example 2.9(iii)] Let J be a simple domain that is not

a division ring (we can take J = An(F), the nth Weyl algebra over a field F

of characteristic zero). Consider the ring R =

J K/J

0 J

, where K is the

classical ring of quotients of J . Take the idempotent E =

1 0̄

0 0

 and the

right R-module M = ER =

J K/J

0 0

. In [55], Tribak et al. proved that the

module M is a quasi-dual-Baer module that is not a dual-Baer module.

(ii) Let P be the set of all primes. Also, let R = Z and M =
∏

p∈P Zp be an

R-module. It is clear that every cyclic submodule of M is a direct summand

of M . Therefore, DS(N) is a direct summand of S for every cyclic submodule

of M . Hence, M is a PQ-dual-Baer R-modules, while from [55, Example 3.2],

M is not a quasi-dual-Baer module.

In the following proposition, we show that when a PQ-dual-Baer module is a quasi-

dual-Baer module.
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Proposition 2.1.9. An R-module M is a quasi-dual-Baer if and only if M is a

PQ-dual-Baer and the endomorphism ring of M has FI-SSSP .

Proof. Let M be a quasi-dual-Baer module and S = EndR(M). Since every quasi-

dual-Baer module is PQ-dual-Baer. So for sufficient condition, it only remains to

prove that the left S-module SS has FI-SSSP. For it, let T = Σi∈ΛSei and each ei ∈

Sr(S). Then, Σi∈ΛSei = Σi∈ΛDS(eiM) = DS(Σi∈ΛeiM) = Se for some e ∈ Sr(S).

Therefore, the left S-module SS has FI-SSSP.

Conversely, assume that N is a fully invariant submodule of M . Since DS(N) =

Σn∈NDS(Sn) and M is a PQ-dual-Baer module, there exists a right semi-central

element ei ∈ Sr(S) such that DS(Sn) = Sei for every i ∈ I, where I is an index

set. By hypothesis SS has FI-SSSP, so DS(N) = Σi∈ISei ≤⊕ Se for some e ∈ Sr(S).

Hence, M is a quasi-dual-Baer module.

Proposition 2.1.10. Let M be a PQ-dual-Baer module and SS has SSP. Then for

every finitely generated submodule N of M , DS(N) is a direct summand of S.

Proof. Let N =
∑n

i=1 Smi be a finitely generated submodule of M , where mi ∈

M for each 1 ≤ i ≤ n and n ∈ N. It is clear that DS(N) = DS(Σ
n
i=1Smi) =

Σn
i=1DS(Smi). Since M is a PQ-dual-Baer module, so from Lemma 2.1.3, there

exists e2i = ei ∈ Sr(S) such that DS(Smi) = Sei for every 1 ⩽ i ⩽ n. Thus,

DS(N) = Σn
i=1Sei. Since SS has SSP, Σn

i=1Sei is a direct summand of S.

Corollary 2.1.11. Let R be a principal ideal domain, M be a finitely generated

R-module and S = EndR(M) has SSP as a left S-module. Then the following are

equivalent:

(i) M is a dual-Baer module;

(ii) M is a quasi-dual-Baer module;
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(iii) M is a PQ-dual-Baer module.

Proof. (i) ⇒ (ii) ⇒ (iii) follows from the definitions of dual-Baer, quasi-dual-Baer

and PQ-dual-Baer modules.

(iii) ⇒ (i) It follows from Proposition 2.1.10.

In the following proposition, we show that PQ-dual-Baer modules are closed under

direct summands.

Proposition 2.1.12. Every direct summand of a PQ-dual-Baer module is a PQ-

dual-Baer.

Proof. Let M be a PQ-dual-Baer module with endomorphism ring S, N be a direct

summand of M and n ∈ N . Then, there exists e2 = e ∈ S such that N = eM and

T = EndR(N) ∼= eSe. Since M is a PQ-dual-Baer module, there exists φ ∈ Sr(S)

such that I = DS(Sn) = Sφ. From [4, Lemma 1.3] I ⊴ S, so eIe = eSe ∩ I.

Since φ ∈ Sr(S), φe = φeφ. Thus, eIe = eSφe = eSφeφ = (eSφe)(eφ), which

implies eIe ≤⊕ eSe. Now, we claim that DT (Tn) = eIe. For it, let ψ ∈ I,

eψe(M) = eψ(eM) = eψ(N) ⊆ e(Sn) ⊆ (eSe)n = Tn, which yields eψe ∈ DT (Tn).

Thus, eIe ⊆ DT (Tn). Now assume that 0 ̸= eθe ∈ eSe such that eθe(N) ⊆ Tn

where θ ∈ S. Since N = eM , eθe(M) = eθe(N) ⊆ Tn ⊆ Sn, so eθe ∈ DS(Sn) = I.

But eθe = eeθee = e(eθe)e ∈ eIe. Therefore, DT (Tn) = eIe for all n ∈ N . Hence,

N is a PQ-dual-Baer module.

Proposition 2.1.13. The following statements are equivalent for a ring R:

(i) Every R-module is PQ-dual-Baer;

(ii) Every projective R-module is PQ-dual-Baer;
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(iii) The free module R(R) is PQ-dual-Baer;

(iv) R is a right semisimple Artinian ring.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are easy to verify.

(iii) ⇒ (iv) Let J be a right ideal of R. Then there exists a free R-module K and

an epimorphism π for which π(K) = J . Since R(R) is a PQ-dual-Baer R-module

and K ≤⊕ R(R) implies KR is a PQ-dual-Baer module. Thus, π(KR) = J ≤⊕ KR,

which gives J ≤⊕ RR. Hence, R is a right semisimple Artinian ring.

(iv) ⇒ (i) Let R be a semisimple Artinian ring and M be an R-module. It is clear

from [56, Corollary 2.10] that every R-module is dual-Baer if R is a semisimple ring.

Therefore, M is a dual-Baer R-module. Hence, M is a PQ-dual-Baer R-module.

Now, we characterize PQ-dual-Baer modules over regular rings.

Proposition 2.1.14. For a ring R, the following are equivalent:

(i) Each finitely generated free (projective) right R-module is PQ-dual-Baer;

(ii) The free R-module R(n) is PQ-dual-Baer module, where n ∈ N;

(iii) R is a regular ring.

Proof. (i) ⇒ (ii) ⇒ (iii) It is clear.

(iii) ⇒ (i). It is well known that End(R(n)) ∼= Matn(R) for every n ∈ N, where

Matn(R) is a matrix of order n over R. Since R is a regular ring, so Matn(R) is

also a regular ring. Hence, R(n) is PQ-dual-Baer R-module.

The following proposition provides examples of PQ-dual-Baer modules which are

not dual-Baer.
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Proposition 2.1.15. Let R be a von Neumann regular ring, which is not semisimple

Artinian. Then every finitely generated free R-module is a PQ-dual-Baer module but

not a dual-Baer module.

Proof. From Proposition 2.1.14, every finitely generated free R-module M is a PQ-

dual-Baer module. Since from hypothesis, R is not semisimple, so by [56, Corollary

2.10] the R-module M is not a dual-Baer module.

Example 2.1.16. The ring J = Π∞
i=1Zp (where p is a prime) is von Neumann

regular ring which is not semisimple Artinian. Hence, from Proposition 2.1.15 every

finitely generated free R-module is a PQ-dual-Baer module that is not a dual-Baer

module.

Now, we give an example which shows that the direct sum of PQ-dual-Baer modules

need not be PQ-dual-Baer.

Example 2.1.17. The Z-modules Zp∞ and Zp, where p is a prime, are PQ-dual-

Baer modules because these are dual-Baer modules [56]. From [37, Example 2.10]

M = Zp∞ ⊕ Zp, the direct sum of Zp∞ and Zp is not a dual-Rickart module.

Therefore, M can not be a PQ-dual-Baer module.

In the following theorem, we discuss when the direct sum of two PQ-dual-Baer

modules is PQ-dual-Baer.

Proposition 2.1.18. IfM1 andM2 are PQ-dual-Baer modules such that Hom(Mi,Mj) =

0 for every i ̸= j, i, j = 1, 2, then M1 ⊕M2 is a PQ-dual-Baer module.

Proof. Let M = M1 ⊕ M2 with S1 = EndR(M1) and S2 = EndR(M2). Since

HomR(Mi, Mj) = 0 for every i ̸= j, S = EndR(M) = S1 ⊕ S2. Therefore, for every

m = (m1, m2) ∈ M , DS(Sm) = DS1(S1m1) ⊕ DS2(S2m2). From hypothesis Mi is
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a PQ-dual-Baer module, so there exists e2i = ei ∈ Si such that DSi
(Simi) = Siei

for each i. Thus, DS(Sm) = S1e1 ⊕ S2e2 ≤⊕ S. Hence, M is a PQ-dual-Baer

module.

Now, we study when the direct sum of arbitrary many copies of a PQ-dual-Baer

module is PQ-dual-Baer.

Theorem 2.1.19. Let M be a PQ-dual-Baer module and S = EndR(M). Then the

direct sum of copies of M is PQ-dual-Baer if SS has SSSP.

Proof. Let M be a PQ-dual-Baer module and M (I) =
⊕

IM be the direct sum of I

copies of M , where I is an arbitrary index set. First, we assume I = N. Let m =

(mi)i∈I ∈M (I) and Eij denote an (I× I) matrix of H = End(M (I)) with 1S (identity

element of S) at (i, j)th position and 0 elsewhere. Clearly, Eij(m) is an element of

M (I) such that mj is at i-th position and 0 elsewhere. So there exists n ∈ N such

that for each l > n, ml = 0, that is Ell(m) = 0, which implies that m = Σn
i=1Eii(m).

Then from the claim of [33, Theorem 3.8], we get H(m) =
⊕

j∈I(Σ
n
i=1Sji(mi)), where

Sji = Hom(Mi, Mj) = S. If we consider Nj = Σn
i=1Sji(mi) for every j ∈ I, then

it is clear that DS(Nj) = DS(Σ
n
i=1Sji(mj)) = Σn

i=1DS(Sji(mj)). Since M is a PQ-

dual-Baer module and SS has SSSP, from Proposition 2.1.10 DS(Nj) = Se for some

e2 = e ∈ S. Let 1H be the identity of H and take e1H = diag[e, e, ..., e...] ∈ H.

Then e1H is an idempotent element of H. Since e1H(
⊕

j∈I(Nj)) =
⊕

j∈I e(Nj) ⊆⊕
j∈I(Nj). Therefore, He1H ⊆ DH(

⊕
j∈INj). Again let ψ = [ψkj] ∈ DH(

⊕
j∈INj),

then ψ(
⊕

j∈INj) ⊆
⊕

j∈INj which implies that ψkj(Nj) ⊆ Nj for all j, k ∈ I. So

ψkj ∈ DS(Nj) = Se for some idempotent e ∈ S becauseM is PQ-dual-Baer module.

Therefore, ψkj = ψkje for all j, k ∈ I. Hence, DH(
⊕

j∈INj) ⊆ He1H. So we get

DH(
⊕

j∈INj) = He1H. Thus, DH(Hm) = He1H. When I is an arbitrary index set,

then the proof is similar to the above case.
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2.2 Endomorphism Rings of Principally Quasi-dual-

Baer Modules

In this section, we study the endomorphism ring of a PQ-dual-Baer module.

The following proposition shows that the endomorphism ring of a PQ-dual-Baer

module is a left principally quasi-Baer ring.

Proposition 2.2.1. The endomorphism ring of a PQ-dual-Baer module is a left

PQ-Baer ring.

Proof. Let M be a PQ-dual-Baer module, m ∈ M and T be a principal ideal of

S. Then there exists f 2 = f ∈ S such that DS(Tm) = Sf . For every g ∈ T ,

Im(g) ⊆ Σg∈DS(Tm)Im(g) = Σg∈SfIm(g) = EM(Sf) = fM . So for every g ∈ T ,

(1− f)gM = 0, which implies that (1− f)g = 0. Therefore, (1− f) ∈ lS(T ). Now

to show that S is a PQ-Baer ring, it is enough to prove that lS(T ) = S(1 − f).

Let h ∈ lS(T ) then h(DS(Tm)) = 0 ⇒ (Sf)h = 0 ⇒ fh = 0. Therefore, h =

(1− f)h ∈ S(1− f). Thus, lS(T ) ⊆ S(1− f). Now, assume that h ∈ S(1− f) then

for every m ∈M , hT (m) = h(1− f)T (m) ⊆ h(1− f)(fM) because for every h ∈ T ,

Im(h) ∈ fM . So, hT (m) = 0 for every m ∈ M ⇒ hT = 0 ⇒ h ∈ lS(T ). Thus,

lS(T ) = S(1− f). Hence, S is a left PQ-Baer ring.

The converse of the above proposition need not be true. In fact, a Z-module Z is

not a PQ-dual-Baer, while EndZZ ∼= Z is a PQ-Baer ring.

In the next proposition, we find the condition under which the endomorphism ring

of a PQ-dual-Baer module is a PQ-dual-Baer ring.

Proposition 2.2.2. Let M be a finitely generated PQ-dual-Baer module and the

endomorphism ring S of M has SSP. Then S is the PQ-dual-Baer ring.
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Proof. Let M be a PQ-dual-Baer module with S = EndR(M) and f ∈ S. Assume

thatM is generated bym1, m2, ..., mn where eachmi ∈M and n ∈ N. It is clear that,

for every ψ ∈ DS(Sφ), ψ(Sφ) ⊆ Sφ and ψ(Sφ)M ⊆ SφM . Thus, ψ(Sφ)(mi) ⊆

Sφ(mi) for all 1 ⩽ i ⩽ n. Therefore, ψ ∈ DS(S(φ(mi))) for each i. Since M is a

PQ-dual-Baer module, so there exists ei ∈ Sr(S) such that DS(S(φ(mi))) = Sei for

each 1 ⩽ i ⩽ n. Hence, ψ ∈ Σn
i=1Sei, so DS(Sφ) ⊆ Σn

i=1Sei. Now, let f ∈ Σn
i=1Sei

and m ∈ M be arbitrary. Then for ri ∈ R, f(Sφ(m)) = f(Σn
i=1Sφ(miri)) =

f(Σn
i=1(Sφ(mi)ri where 1 ⩽ i ⩽ n. Clearly Σn

i=1(Sφ(mi)ri is a finitely generated

submodule of M . It is clear that f(Σn
i=1(Sφ(mi)ri) ⊆ Σn

i=1(Sφ(mi)ri for each i.

Thus, f(Sφ) ⊆ Sφ that implies f ∈ DS(Sφ). Therefore, Σ
n
i=1Sei = DS(Sφ). Since

SS has summand sum property, DS(Sφ) ≤⊕ S. Hence, S is a PQ-dual-Baer ring.

Proposition 2.2.3. If the endomorphism ring of every direct sum of copies of a

PQ-dual-Baer M is left PQ-dual-Baer, then S = EndR(M) is a quasi-dual-Baer

ring.

Proof. Let M be a PQ-dual-Baer module and T ⊴ S. Consider I = |T | and H =

End(M (I)). Clearly CFMS ⊆ H ⊆ MatI(S). Set ψ = diag[ψ1, ψ2, ..., ψi, ...]i∈I ∈ H.

We claim that DH(Hψ) = H ∩ MatI(Σψi∈TDS(Sψi)). Let φ = [φij] ∈ DH(Hψ)

be arbitrary. Then φ(Hψ) ⊆ Hψ. Denote by Eii a unit matrix in H with 1S at

(i, i)-th position and 0 elsewhere. Then EiiφEjj(HEkkψEkk) ⊆ HEkkψEkk that

implies φij(Sψk) ⊆ Sψk for all i, j, k ∈ I. Thus, φij ∈ Σψk∈TDS(Sψk) for every

i, j ∈ I. Therefore, φ ∈ H ∩MatI(Σψk∈TDS(Sψk)). For the reverse inclusion, let

θ = [θij] ∈ H ∩MatI(Σψk∈TDS(Sψk)) be arbitrary. Then θij ∈ Σψk∈TDS(Sψk) for

every i, j ∈ I. Thus, θij(Sψk) ⊆ Sψk for all i, j, k ∈ I. Therefore, θ(Hψ) ⊆ Hψ.

Hence, θ ∈ DH(Hψ), which proves our claim. Now assume that P = Σψk∈TDS(Sψk).

So from our claim H∩MatI(P ) = DH(Hψ). Since from assumption H is PQ-dual-

Baer ring, there exists F 2 = F = [Fij] ∈ H such that DH(Hψ) = HF . Note



Chapter 2. Principally quasi-dual... 32

that EiiFEii = FiiEii is a right semi-central idempotent of EiiHEii. Thus, PEii =

Eii(H ∩MatI(P ))Eii = EiiHFEii = EiiHFEiiFEii. Thus, P = PFii ⊆ SEii for all

i ∈ I. Since HF = H +MatI(P ), SFii ⊆ P . Hence, P = SEii with Fii is a right

semi-central idempotent of S. Therefore, S is a quasi-dual-Baer ring.


