
Chapter 1

Preliminaries

This chapter is mainly devoted to the collection of definitions and basic results,

which are used in the subsequent chapters of the thesis. Throughout the thesis,

unless otherwise indicated, all rings are considered as associative rings with unity

and all modules are unital right R-modules denoted by MR or M for short. For a

right R-module M , S = EndR(M) denotes the endomorphism ring of M . In this

case, we take M as left S-module and right R-module. For undefined definitions

and notations if any, we refer to [5] and [60].

Rings and Modules

Definition 1.0.1. An algebraic structure (R, +, .), where R is a non-empty set

together with two binary operations + and . is said to be a ring if the following

conditions are satisfied.

(1) (R,+) is an abelian group.

(2) (R, .) is a semi-group.
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(3) The binary operation ‘ . ’ distributes over ‘ + ’ from the left as well as from

the right, i.e., ∀ r, s, t ∈ R

(i) r.(s+ t) = r.s+ r.t

(ii) (r + s).t = r.t+ s.t

A ring (R,+, .) is called commutative if r.s = s.r ∀ r, s ∈ R. Further, R is said to

be a ring with unity if there exists 1 ∈ R such that 1.r = r.1 = r ∀ r ∈ R.

Definition 1.0.2. (1) Let R be a ring. An additive abelian group (M,+) is called

a right R-module if there exists a mapping from M × R to M defined by

(m, r) → mr, ∀ m ∈M , r ∈ R satisfying the following conditions:

(i) (m+ n)r = mr + nr for every m,n ∈M and r ∈ R.

(ii) m(r + s) = mr +ms for every m ∈M and r, s ∈ R.

(iii) m(rs) = (mr)s for every m ∈M and r, s ∈ R.

A left R-module can be defined by taking action of the ring R from left.

(2) Further, if m.1 = m for all m ∈M , where 1 is the unity of R, then R is called

an unital right R-module.

(3) A non-empty subset N of a module M is called a submodule of M if N is also

an R-module and we denote it by N ≤M .

Definition 1.0.3. Let M and N be R-modules. Then

(1) A mapping φ :M → N is called a module homomorphism or R-homomorphism

or simply homomorphism if φ satisfies the following conditions:

(i) φ(m1 +m2) = φ(m1) + φ(m2) for all m1,m2 ∈M .

(ii) φ(mr) = φ(m)r for all m ∈M and r ∈ R.
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The set of all R-homomorphism from M to N is denoted by HomR(M,N).

(2) For any φ ∈ HomR(M,N), the kernel and the image of φ are defined as follows

Ker(φ) = {m ∈M : φ(m) = 0} and Im(φ) = {φ(m) ∈ N : m ∈M}.

(3) An R-homomorphism from M to M is called an endomorphism and the set of

all endomorphisms is denoted by EndR(M).

Theorem 1.0.4. (Fundamental theorem of module homomorphisms) Let M and N

be R-modules. If φ :M → N be any R-homomorphism, then φ(M) ∼= M/Ker(φ).

Direct Sums, Direct Products and Direct Summands

Definition 1.0.5. Let {Mi}i∈I be a family of R-modules, where I is an arbitrary

index set. Then

(i) Πi∈IMi = {(mi)i∈I : mi ∈Mi ∀ i ∈ I} denotes the direct product of the family

of R-modules {Mi}i∈I .

(ii)
⊕

i∈IMi = {(mi)i∈I : mi ∈Mi and finitely manym
′
is arenon− zero} denotes

the direct sum of the family of R-modules {Mi}i∈I .

Further, we have M (I) =
⊕

i∈I Xi and M
I = Πi∈IXi, where Xi =M for every i ∈ I.

Definition 1.0.6. (1) A moduleM is said to be the direct sum of a family (Mi)i∈I

(where I is an arbitrary index set) of submodules of M if

(i) M =
∑

i∈IMi, and

(ii) Every element m ∈ M can be uniquely expressed as m = mj1 + mj2 +

· · ·+mjn, where mj ∈Mj for each j ∈ I.
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We shall usually express this fact by M =
⊕

i∈IMi.

(2) A submodule N of a module M is called a direct summand of M if there exists

a submodule N ′ of M such that M = N ⊕N ′, and we denote it by N ≤⊕M . In this

case M = N ⊕N ′ implies M = N +N ′ and N ∩N ′ = 0.

Idempotents and Semi-central idempotents

Definition 1.0.7. (i) An element e of a ring R is called an idempotent element

of R if e2 = e.

(ii) An idempotent element e ∈ R is said to be right (left) semi-central if ea = eae

(ae = eae) for every a ∈ R. Sr(R) (Sl(R)) denotes the set of all right (left)

semi-central elements of R.

Proposition 1.0.8. If N1 and N2 are submodules ofM such that M = N1⊕N2 then

there exists an unique idempotent endomorphism e ∈ EndR(M) such that N1 = eM

and N2 = (1− e)M .

Exact Sequences

Definition 1.0.9. Let Mn be an R-module ∀ n and φn be a homomorphism from

Mn to Mn−1 for all n. Then a sequence · · · → Mn+1
φn+1−−−→ Mn

φn−→ Mn−1 → . . . is

called an exact sequence at Mn if Ker(φn) = Im(φn+1), while this sequence is called

an exact sequence if it is exact at Mn for each n.

Definition 1.0.10. Let L, M and N be R-modules. Then an exact sequence

0 → L
φ−→M

ψ−→ N → 0 is called a short exact sequence.

Proposition 1.0.11. Let L, M and N be R-modules
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(i) A sequence 0 → L
φ−→M is exact if and only if φ is a monomorphism.

(ii) A sequence M
ψ−→ N → 0 is exact if and only if ψ is an epimorphism.

Proposition 1.0.12. For R-modules L, M and N , the following conditions are

equivalent:

(i) The exact sequence 0 → L
φ−→M

ψ−→ N → 0 splits;

(ii) There exists a homomorphism φ′ : M → L such that φ′oφ = IL, where IL is

the identity map on L;

(iii) There exists a homomorphism ψ′ : N → M such that ψoψ′ = IN , where IN is

the identity map on N .

Proposition 1.0.13. Let M and N be R-modules.

(i) Let φ : M → N and ψ : N → M be homomorphisms such that φψ = IN ,

where IN is the identity map on N . Then M = Ker(φ)⊕ Im(ψ).

(ii) A monomorphism ψ : N →M splits if and only if Im(ψ) ≤⊕ M .

(iii) An epimorphism φ :M → N splits if and only if Ker(φ) ≤⊕ M

Essential and Small Submodules, Uniform Modules, Closed

Submodules, Closure of Submodules, Torsion-free Modules

and Non-singular Modules

Definition 1.0.14. A submodule N of a module M is called an essential submodule

denoted as N ≤eM if N ∩L ̸= 0 for each non-zero submodule L of M . In this case,

M is called an essential extension of N .
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Proposition 1.0.15. The following statement hold for R-modules:

(i) Let L, M , N be R-modules such that L ≤ M ≤ N . Then L ≤e N if and only

if L ≤e M and M ≤e N .

(ii) Let N and N ′ be submodules of a module M . Then N ∩N ′ ≤e M if and only

if N ≤e M and N ′ ≤e M .

(iii) Let {Mi}i∈I be a family of R-modules and Ni ≤Mi for each i ∈ I, where I be

an arbitrary index set. Then Ni ≤e Mi if and only if
⊕

i∈I Ni ≤e
⊕

i∈IMi

(iv) If N ≤e M then for any L ≤M , N ∩ L ≤e L

Definition 1.0.16. A module M is said to be uniform if every non-zero submodule

of M is essential in M .

Definition 1.0.17. A submodule N of M is called small (or superfluous) in M

abbreviated as N << M , if whenever N + L = M , where L is a submodule of M ,

then L =M .

Definition 1.0.18. A submodule C of a module M is said to be a closed submodule

of M if it has no non-zero proper essential extension in M , i.e., whenever L is a

submodule of M such that C ≤e L, then C = L

Definition 1.0.19. Let M be a right R-module and N be a submodule of M .

The closure of N in M is denoted by ClM(N) (or in short Cl(N)) and defined

as ClM(N) = {m ∈M : (N ;m) ≤e R}, where (N ;m) = {r ∈ R : mr ∈ N}

Definition 1.0.20. A submodule C ofM is said to be a complement of a submodule

N ≤M if it is maximal in the collection H of all submodules of M with the property

H ∩N = 0. A submodule L is a complement in M if there exists a submodule N of

M such that L is a complement of N .
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Proposition 1.0.21. [22, 1.10] Let K, L and N be submodules of a module M with

K ⊆ L, then

(i) There exists a closed submodule H of M such that N is essential in H.

(ii) K is closed in M if and only if whenever P is essential in M such that K ⊆ P ,

then P/K is essential in M/K.

(iii) If L is closed in M , then L/K is closed in M/K.

(iv) If K is closed in L and L is closed in M , then K is closed in M .

Definition 1.0.22. Let M be a right R-module with endomorphism S = EndR(M),

I ⊆ S and X ⊆ M . Then the right annihilator of X ⊆ M in R is defined by

AnnrR(X) = {r ∈ R : xr = 0, ∀ x ∈ X} and the left annihilator of X ⊆ M in

S is denoted by AnnlS(X) = {φ ∈ S : φ(m) = 0, ∀ m ∈ X}. Further, the right

annihilator of I ⊆ S in M is denoted by AnnrM(I) = {m ∈M : φ(m) = 0, ∀ φ ∈ I}

Definition 1.0.23. Let R be a commutative integral domain and M be a right R-

module. Then the set T(M) = {m ∈ M : mr = 0 for some 0 ̸= r ∈ R} is a

submodule of M , called the torsion submodule of M . If T(M) = M , then M is

called a torsion module and if T(M) = 0 then M is called a torsion-free module.

Definition 1.0.24. For an R-module M , Z(M) = {m ∈ M : AnnrR(m) ≤e R} is

called the singular submodule ofM . M is called a non-singular module if Z(M) = 0

and M is called a singular module if Z(M) =M

Fully Invariant Submodules

Definition 1.0.25. A submodule N of a module M is called a fully invariant sub-

module of M , denoted as N ⊴M , if φ(N) ⊆ N for every φ ∈ EndR(M).
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Lemma 1.0.26. Let L and N be submodules of M such that L ≤ N ≤ M . Then

L ⊴ N ⊴M implies L ⊴M .

Lemma 1.0.27. [48, Lemma 1.10] LetM =M1⊕M2 be the direct sum of R-modules

M1 and M2. If N is a fully invariant submodule M , then N = N1 ⊕N2, where each

Ni is a fully invariant submodule of Mi and Ni = N ∩Mi for i = 1, 2.

Finitely Generated Modules, Free Modules, Finitely Related

Modules, Finitely Presented Modules, Cogenerated Modules,

Cyclic Modules, Coherent Modules

Definition 1.0.28. A module M is said to be finitely generated if there exist

m1,m2, . . . ,mn ∈ M such that M =
∑n

i=1miR. The set {m1,m2, . . . ,mn} is called

a set of generators of M . A module generated by a single element is called a cyclic

module. Further, a submodule is called cyclic if it is generated by a single element.

Definition 1.0.29. A right R-moduleM is called a free module if it has a basis, i.e.,

there exists a subset B ⊆M such that each element m ∈M can be uniquely expressed

as a finite sum, m =
∑n

i=1miri for some r1, r2, . . . , rn ∈ R and m1,m2, . . . ,mn ∈ B.

Definition 1.0.30. A module N is said to be finitely related [32] if there exists an

exact sequence 0 → L→M → N → 0 of right R-modules, where M is a free module

(of arbitrary rank) and L is finitely generated.

Definition 1.0.31. A module N is said to be finitely presented [32] if there exists

an exact sequence 0 → L → M → N → 0 of right R-modules, where M is a free

module (of finite rank) and L is finitely generated (or equivalently, there exists an

exact sequence Rm → Rn → N → 0 with m,n ∈ N).
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Definition 1.0.32. Let M and V be R-modules. Then M is said to be (finitely)

cogenerated by V if there exists a monomorphism ψ : M → V (I) for some (finite)

arbitrary index set I [5]. Equivalently, a module M is called finitely cogenerated if

for every set I of submodules of M such that ∩I = 0, there exists a finite collection

F of submodules of I such that ∩F = 0.

Definition 1.0.33. A finitely generated R-module M is said to be coherent if every

finitely generated submodule of M is finitely presented. A ring R is called right (left)

coherent if RR is a right (left) coherent R-module.

Artinian and Noetherian Modules and Rings, Serial and Unis-

erial Modules, Hopfian and co-Hopfian Modules

Definition 1.0.34. A module M is called Noetherian if it satisfies the ascending

chain condition on its submodules, i.e., if every ascending chain M1 ≤ M2 ≤ · · · ≤

Mn ≤ . . . of submodules ofM becomes stationary after finitely many steps. A ring R

is called right (left) Noetherian if the right (left) R-module RR (RR) is Noetherian.

Theorem 1.0.35. For a module M , the following conditions are equivalent:

(i) M is Noetherian;

(ii) Every submodule of M is finitely generated;

(iii) Every non-empty set A of submodules of M has a maximal element.

Definition 1.0.36. A module M is called Artinian if it satisfies the descending

chain condition on its submodules, i.e., if every descending chain M1 ≥M2 ≥ · · · ≥

Mn ≥ . . . of submodules of M becomes stationary after finitely many steps. A ring

R is called right (left) Artinian if the right (left) R-module RR (RR) is Artinian.
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Definition 1.0.37. (i) A module M is called uniserial if for any two submodules

N1 and N2 of M either N1 ⊆ N2 or N2 ⊆ N1.

(ii) A module M is called serial if it decomposes into a direct sum of uniserial

submodules.

(iii) A ring R is called right (left) uniserial if it is a right (left) uniserial module

over itself. Further, a ring R is called a right (left) serial if it is a right (left)

serial module over itself

Definition 1.0.38. (i) A module M is said to be Hopfian if any surjective en-

domorphism of M is an isomorphism.

(ii) A module M is said to be co-Hopfian if any injective endomorphism of M is

an isomorphism.

Pure Submodules, Flat Modules, Pure Split Modules and

PDS ring

Definition 1.0.39. A short exact sequence 0 → N1
ϕ−→ N2 → N3 → 0 of right

R-modules is said to be pure exact if 0 → N1 ⊗ F → N2 ⊗ F → N3 ⊗ F → 0 is an

exact sequence (of abelian groups) for any left R-module F [32].

According to P.M. Cohn [17], a submodule N of a right R-module M is said to be a

pure submodule of M , abbreviated by N ≤p M , if and only if 0 → N ⊗ L→M ⊗ L

is exact for every left R-module L. Further, a right (left) ideal I of a ring R is said

to be pure if I is a pure submodule of RR (RR).

Definition 1.0.40. A right R-moduleM is said to be flat if 0 →M⊗N1 →M⊗N2

is exact whenever 0 → N1 → N2 is exact for left R-modules N1 and N2.
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Proposition 1.0.41. (i) [32, Proposition 4.29] A ring R is Noetherian if and

only if all finitely generated right R-modules are finitely presented.

(ii) [32, Theorem 4.30] Let P be a finitely related R-module. Then P is flat if and

only if it is projective.

Lemma 1.0.42. [24, Proposition 8.1]. The following conditions hold:

(i) Let N be a submodule of a right R module M . If M/N is flat, then N is a

pure submodule of M . Moreover, for a flat right R module M , N is a pure

submodule of M if and only if M/N is flat.

(ii) If N is a submodule of M such that every finitely generated submodule of N is

a pure submodule of M , then N is a pure submodule of M .

Lemma 1.0.43. [24, Proposition 7.2]. Suppose L ⊆ N ⊆ M be right R modules.

Then

(i) If L ≤p N and N ≤p M , then L ≤p M .

(ii) If L ≤p M , then L ≤p N .

(iii) If L ≤p N , then N/L ≤p M/L.

(iv) If L ≤p M and N/L ≤p M/L, then N ≤p M .

Definition 1.0.44. A module M is called pure split if every pure submodule of M

is a direct summand of M .

Definition 1.0.45. A ring R is called a right (left) PDS ring [24] every pure

submodule of an R-module is a direct summand of M .

Lemma 1.0.46. If R is a Noetherian ring and M is a finitely generated R-module,

then each pure submodule of M is a direct summand of M .
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Injective Modules, Injective Envelopes, FP-injective and In-

trinsically Injective Modules, Cohereditary Modules

Definition 1.0.47. (i) Let Q and M be R-modules. Then Q is said to be an

M-injective module if for every submodule L of M with a monomorphism i :

L→M and for any homomorphism φ : L→ Q, there exists a homomorphism

0 // L

φ

��

i //M

ψ��
(1) Q

ψ :M → Q such that the diagram (1) is commutative, i.e., φ = ψi.

(ii) A module Q is called injective if Q is injective for every R-module M .

(iii) A module Q is called quasi-injective if Q is Q-injective.

Definition 1.0.48. An R-module H is called the injective hull (envelope) of an

R-module M if H is the minimal injective module containing M . The injective hull

of a module M is denoted by E(M). In general, every module has an injective hull.

Definition 1.0.49. Let M and N be R-modules. N is called weakly M-injective

module, if for every diagram in Mod-R

0 // L

ψ

��

ϕ //M (N)

η
}}

(2) N

with exact row and L finitely generated, can be extended commutatively by a homo-

morphism η : M (N) → N , i.e. ψ = ηϕ. If M = R, then weakly R-injective modules

are also called FP-injective (see [60, 16.9]).
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Definition 1.0.50. An R-module M is said to be intrinsically injective module, if

every diagram with exact row

0 // N

��

//M (n)

}}
(3) M

where n ∈ N and N a factor module of M , can be extended commutatively by some

homomorphism from Mn to M (see [59]).

Theorem 1.0.51. (Bass-Papp Theorem, [49, Theorem 4.1]) A ring R is right

Noetherian if and only if every direct sum of injective right R-modules is injective.

C1, C2, C3, C4-Modules, Continuous Modules, Extending

(CS) Modules

Consider the following conditions for a right R-module M introduced by Jeremy

[28], Mohammed and Muller [43], Ding et al. [20].

C1 : Every submodule of M is essential in a direct summand of M .

C2 : Every submodule of M that is isomorphic to a direct summand of M is itself

a direct summand of M .

C3 : If L and N are direct summands of M with L ∩N = 0. Then L⊕N is also a

direct summand of M .

C4 : Let N1 and N2 be submodules of M such that M = N1 ⊕N2. If ψ : N1 → N2

be any homomorphism such that Ker(ψ) ≤⊕ N1, then Im(ψ) ≤⊕ N2.

Definition 1.0.52. (i) A module with C1-condition is called a CS or an extend-

ing module. A module with Ci-conditions is called a Ci-module for i = 1, 2, 3, 4.

(ii) A module with C1 and C2 conditions is called a continuous module.
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(iii) A module with C1 and C3 conditions is called a quasi-continuous module.

Proposition 1.0.53. [43, Proposition 2.1] Any quasi-injective module satisfies C1

and C2 conditions.

Remark 1.0.54. The following implications are true for a module ([43]),

Injective⇒ Quasi−injective⇒ Continuous⇒ Quasi−continuous⇒ Extending

But the converse of these implications need not be true, in general (see [38]).

Cohereditary Modules, V-rings, SSI-rings

Definition 1.0.55. A right R-moduleM is called a cohereditary module [61] if every

factor module of M is injective.

Definition 1.0.56. (i) A ring R is called a right V-ring [18] if every simple right

R-module is injective.

(ii) A ring R is called a right SSI-ring [11] if every semisimple right R-module is

injective.

Projective Modules, Hereditary and Semi-Hereditary Rings

Definition 1.0.57. (i) Let P andM be R-modules. Then P is called M-projective

if for every submodule L of M with an epimorphism π :M → L and for any

P
ψ

��
φ

��

(4)

M
π // // L // 0

homomorphism φ : P → L there exists a homomorphism ψ : P → M such

that the diagram (4) is commutative, i.e., φ = πψ.
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(ii) A module P is called projective if P is M-projective for every R-module M .

(iii) A module P is called quasi-projective [31] if P is P -projective.

Definition 1.0.58. (i) A ring R is called right (left) hereditary if each right (left)

ideal of R is projective as an R-module.

(ii) A ring R is called right (left) semi-hereditary if each finitely generated right

(left) ideal of R is projective as an R-module.

A left hereditary (left semi-hereditary) ring is defined similarly.

Theorem 1.0.59. [12, Theorem 5.4] The following statements are equivalents are

equivalent for a ring R:

(i) R is right hereditary;

(ii) Every submodule of a projective right R-module is projective;

(iii) Every quotient module of an injective right R-module is injective.

D1 (Lifting) Modules, D2-Modules, D3-Modules and D4-

Modules

Consider the following conditions defined in [43] and [21] for an R-module M .

D1: For every submodule N of M , there is a decomposition M = M1 ⊕M2 such

that M1 ≤ N and N ∩M2 << M .

D2: If N is a submodule of M and M/N is isomorphic to a direct summand of M ,

then N is also a direct summand of M .

D3: If L and N are direct summands of M with M = L+N , then L∩N is a direct

summand of M .
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D4: If M1 and M2 are submodules of M with M = M1 ⊕M2 and φ : M1 → M2 is

a homomorphism with Im(φ) ≤⊕ M2, then Ker(φ) ≤⊕ M1.

Definition 1.0.60. (i) A module with D1-condition is known as lifting module.

(ii) A module with Di-condition is called a Di-module for every i = 1, 2, 3, 4.

Semisimple Modules and Rings, Socle of Modules, von Neu-

mann Regular Rings

Definition 1.0.61. Let M be a right R-module. Then

(i) M is called a simple module if it contains no non-trivial proper submodule.

(ii) M is called an indecomposable module if it can not be written as a direct sum

of two proper direct summands of M .

Definition 1.0.62. The sum of all simple submodules of a right R-module M is

called the right socle of M , and it is denoted by Soc(M).

Definition 1.0.63. A non-zero module M is called semisimple if it is expressible

as a sum of simple submodules, while a ring R is called a right (left) semisimple if

the right (left) R-module RR (RR) is a semisimple module.

Proposition 1.0.64. An R-module M is semisimple if and only if Soc(M) =M .

Proposition 1.0.65. The following conditions are equivalent for a ring R:

(i) R is semisimple;

(ii) Every R-module is semisimple;

(iii) Every R-module is injective;
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(iv) Every R-module is projective;

(v) Every ideal of R is a direct summand.

Note 1.0.66. A ring R is called right (left) semisimple if every right (left) ideal of

R is a direct summand of R.

Definition 1.0.67. A ring R is called von Neumann regular if for each a ∈ R,

there exists b ∈ R such that a = aba.

Definition 1.0.68. A module M is called endoregular [40] if the endomorphism

ring of M is a von Neumann regular.

Proposition 1.0.69. [60, 3.10] The following conditions are equivalent for a ring

R:

(i) R is von Neumann regular;

(ii) Every principal right ideal is a direct summand;

(iii) Every finitely generated right ideal is a direct summand.

SSSP (SSP) Modules, SSIP (SIP) Modules, FI-SSP (FI-SSSP)

modules

Definition 1.0.70. An R-module M is said to have summand sum property (SSP )

if the sum of any two direct summands of M is a direct summand of M , while M

is said to have strong summand sum property (SSSP ) if the sum of arbitrary direct

summands of M is a direct summand of M . A module M is called an SSP (SSSP )

module if M has SSP (SSSP ).
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Definition 1.0.71. An R-module M is said to have summand intersection property

(SIP ) if the intersection of any two direct summands of M is a direct summand

of M , while M is said to have strong summand intersection property (SSIP ) if the

intersection of arbitrary direct summands ofM is a direct summand ofM . A module

M is called an SIP (SSIP ) module if M has SIP (SSIP ).

Definition 1.0.72. An R-module M is said to have fully invariant summand sum

property ( FI-SSP ) if the sum of any two fully invariant direct summands of M is

a direct summand of M , while M is said to have fully invariant strong summand

sum property ( FI-SSSP ) if the sum of every fully invariant direct summands of M

is a direct summand of M . A module M is called an FI-SSP (FI-SSSP ) module

if M has FI-SSP (FI-SSSP ).

Baer Rings and their Generalizations

Definition 1.0.73. A ring R is said to be right (left) Baer [30] if the right (left)

annihilator of any right (left) ideal is generated by an idempotent element of R.

Equivalently, a ring R is right Baer if for every right (left) ideal I of R there exists an

idempotent element a2 = a ∈ R such that AnnrR(I) = {r ∈ R : xr = 0, ∀x ∈ I} = aR

(AnnlR(I) = {r ∈ R : rx = 0, ∀ x ∈ I} = Ra).

Definition 1.0.74. A ring R is called quasi-Baer [16] ( principally quasi-Baer

[9]), if the right annihilator of every ideal (principal ideal) in R is generated by

an idempotent element of R, i.e., for every ideal (principal ideal) there exists an

idempotent element a2 = a ∈ R such that AnnrR(I) = aR.

Definition 1.0.75. (i) A ring R is called a PP ring if every principal ideal of R

is projective.
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(ii) A ring R is said to be a right (left) Rickart ring if the right (left) annihilator

of every element of R is generated by an idempotent element of R.

Note 1.0.76. In 1960, Hattori [27] introduced the notion of a right PP ring. It was

later shown that the right PP rings are precisely the right Rickart rings.

Baer Modules and their Generalizations

Definition 1.0.77. LetM be an R-module and S = EndR(M) be the endomorphism

ring of M . Then M is called a Baer module [48] if for any N ≤M , there exists an

idempotent element e2 = e such that AnnlS(N) = {φ ∈ S : φ(N) = 0} = Se

Definition 1.0.78. A module M is called a quasi-Baer module [48] if for any fully

invariant submodule N ⊴ M , there exists an idempotent element e2 = e such that

AnnlS(N) = {φ ∈ S : φ(N) = 0} = Se

Definition 1.0.79. A module M is said to be a principally quasi-Baer (in short

PQ-Baer) module [33] if the left annihilator in S of any cyclic submodule N of M

there exists an idempotent element e2 = e ∈ S such that AnnlS(N) = Se.

Definition 1.0.80. A module M is said to be a purely Baer [6] if the right anni-

hilator of any left ideal of S in M is a pure submodule of M .

Definition 1.0.81. A module M is said to be an essentially Baer module [44] if for

every left ideal I of S, there exists a direct summand N ≤⊕ M such AnnrM(I) ≤e N .

Definition 1.0.82. (i) Let M and N be modules. M is said to be N-Rickart [36]

(in short M is N-Rickart) module if for every homomorphism ψ : M → N ,

Ker(ψ) is a direct summand of M .

(ii) A module M is called Rickart [36] if for every φ ∈ S = EndR(M), Ker(φ) is

a direct summand of M .
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Definition 1.0.83. (i) A module M is said to be Σ-Rickart module [34] if every

direct sum of copies of M is a Rickart module.

(ii) A module M is said to be a finite Σ-Rickart module [35] if every finite direct

sum of copies of M is a Rickart module.

Dual-Baer Modules and their Generalizations

Definition 1.0.84. A module M is called dual-Baer [56] if for every submodule

N of M , there exists an idempotent element e2 = e ∈ S = EndR(M) such that

DS(N) = {φ ∈ S : Im(φ) ⊆ N} = Se.

Definition 1.0.85. A module M is called quasi-dual-Baer [4] if for every fully

invariant submodule N of M , there exists an idempotent element e2 = e ∈ S such

that DS(N) = {φ ∈ S : Im(φ) ⊆ N} = Se. Equivalently, M is called a quasi-dual-

Baer module if for ideal I of S , EM(I) =
∑

φ∈I Im(φ) = eM for some e2 = e ∈ S.

Definition 1.0.86. Let M and N be modules. M is called N-dual-Rickart [37] (in

short M is N-dual-Rickart) module if for every homomorphism ψ :M → N , Im(ψ)

is a direct summand of N .

Definition 1.0.87. A module M is said to be dual-Rickart [37] if for every φ ∈ S =

EndR(M), Im(φ) is a direct summand of M .


