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PREFACE

The thesis consists of five chapters. Chapter 1 is preliminaries which are the

collection of definitions and basic results used in the subsequent chapters.

In Chapter 2, we introduce the notion of principally quasi-dual-Baer modules (in

short PQ-dual-Baer modules), which dualizes the notion of principally quasi-Baer

modules. We study some properties of PQ-dual-Baer modules. We find some con-

ditions for which the direct sum of arbitrary copies of PQ-dual-Baer modules is

PQ-dual-Baer. We also study the ring of endomorphisms of PQ-dual-Baer modules.

In Chapter 3, we dualize the concept of Σ-Rickart modules as Σ-dual-Rickart

modules. We prove that each cohereditary module over the Noetherian ring is a

Σ-dual-Rickart module. We introduce the notion of strongly cogenerated modules

and characterize Σ-dual-Rickart modules in terms of strongly cogenerated modules.

We show when a Σ-Rickart module is a Σ-dual-Rickart module and vice-versa. We

also study some properties of Σ-dual-Rickart modules and find their connections

with semisimple Artinian rings, von Neumann regular rings, semi-hereditary rings

and FP -injective modules. Further, we study endomorphism rings of Σ-dual-Rickart

modules.

In Chapter 4, we introduce the notion of finite Σ-dual-Rickart modules, which

generalizes the notion of Σ-dual-Rickart modules. We characterize von Neumann

regular rings, hereditary rings, semi-hereditary rings and semisimple Artinian rings

in terms of finite Σ-dual-Rickart modules. We examine connections between finite Σ-

Rickart modules and finite Σ-dual-Rickart modules. Also, we study endomorphism

rings of finite Σ-dual-Rickart modules.
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In Chapter 5, we study several properties of purely extending modules and intro-

duce the notion of purely essentially Baer modules. A module M is said to be a

purely essentially Baer if the right annihilator in M of any left ideal of the endomor-

phism ring of M is essential in a pure submodule of M . We study some properties

of purely essentially Baer modules and characterize von Neumann regular rings in

terms of purely essentially Baer modules.
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ABBREVIATION

N The set of natural numbers

Z The set of integers

Zn Z/nZ for some n ∈ N

Zp∞ The Prüfer p-group

Q The set of rational numbers

R The set of real numbers

C The set of complex numbers

⊆ A subset

≤ A submodule

≤⊕ A direct summand

M (I) The direct sum of I copies of M indexed by I

M I The direct product of I copies of M indexed by I

≤p A pure submodule

≤c A closed submodule

⊴ A fully invariant submodule or An ideal

⊴p A projection invariant submodule

≤e An essential submodule

Matn(X) n by n matrix over the set X

Tn(X) n by n upper triangular matrix over the set X

AnnrA(B) The right annihilator of a set B in the set A

AnnlA(B) The left annihilator of a set B in the set A

ClA(B) The closure of the set B in the set A
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INTRODUCTION

The concept of ring theory was started in the 1870s at the time of Richard Dedekind

and key contributions to this theory were given by Dedekind, Hilbert, Fraenkel and

Noether. The ring is the first generalization of the Dedekind domain that occurs

in the number theory. The ring theory has wide applications in number theory,

algebraic geometry, algebraic graph theory, coding theory, etc. There are mainly

two ways to study the structure of rings. The first way is to study the structure of

rings by studying their left and right ideals (inner conditions) and the second way

is to study the structure of rings by studying modules over them (outer conditions).

In this thesis, we study the structure of rings by the second way.

In module theory, the concept of injective modules was introduced by Baer [7] in

1940. The study of injective modules became the center of attraction for many

mathematicians when Eckmann and Schopf [23] proved the existence of the injec-

tive hull of a module. In literature, the injective module is generalized by many

mathematicians to quasi-injective modules [29], pseudo injective modules [51], con-

tinuous modules and quasi-continuous modules [43], extending modules [22], etc.

Recall that a moduleM is extending (or CS) if every submodule ofM is essential in

a direct summand ofM . The theory of extending modules developed by Harada and

his school in Japan, Muller and his collaborators [43] in Canada, Osofsky, Smith,

Huynh, Dung, Wisbauer [22] and many more people worldwide. In [15], Clark intro-

duced the notion of purely extending modules which is a generalization of extending

modules. A module M is said to be purely extending if every submodule of M is

essential in a pure submodule of M .

The following implications are true

Injective Module⇒Quasi-Injective Module⇒ Continuous Module⇒Quasi-Continuous
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Module ⇒ Extending Module ⇒ Purely Extending Module

But the converse of above implications need not be true (see [15], [22], [32], [43])

The concept of a projective module is dual to the concept of an injective module,

although it originates at almost the same time as an injective module. However, the

work on projective modules started only after the publication of the book “Homo-

logical Algebra” by Cartan and Elinberg [12]. Later on, the projective module is

generalized to the quasi-projective module [42] then the quasi-projective module is

generalized to the pseudo-projective module [53] which is further generalized to the

lifting module [45], D2-module, D3-module [43], D4-module [21], etc.

The notion of Baer and quasi-Baer rings have their roots in functional analysis.

According to Kaplansky [30] a ring R is called Baer if the right annihilator of any

right ideal (or non-empty subset) of R is a right ideal generated by an idempotent

element of R. Examples of Baer rings are right self-injective von Neumann regular

rings, von Neumann algebras, W ∗-algebras (i.e., ∗-algebras of bounded operators

on a Hilbert space containing the identity operator which is closed under weak

operator topology), any domain (with a unit element) and the endomorphism rings

of semisimple modules (thus, endomorphism rings of all vector spaces), etc. The

concept of Baer rings was generalized to quasi-Baer rings by W.E. Clark [16] in

1967 by replacing the ‘left ideal’ with a ‘two-sided ideal’ in the definition of Baer

rings. In 2001, Birkenmeier [9] introduced the notion of principally quasi-Baer (or

PQ-Baer) rings that generalizes the notion of quasi-Baer rings. A ring is said to

be PQ-Baer if the right annihilator of any principal ideal is a right ideal generated

by an idempotent element of R. Motivated by Kaplansky’s work on Baer rings, the

notion of Rickart rings initially appeared in Maeda [41, p. 510] and was further

studied by Hattori [27, p. 147] and Berberian [8, p. 18]. A ring R is called right

(left) Rickart (also known as p.p. ring) if an idempotent element of R generates the

right (left) annihilator of any single element of R as a right (left) ideal of R.
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In 2004, Rizvi and Roman [48] defined the module theoretical notion of Baer and

quasi-Baer rings as Baer and quasi-Baer modules, respectively. Further, they find

module theoretic analog of Chatters and Khuri’s results of [14]. A moduleM is called

a Baer (quasi-Baer) if the left annihilator in S = EndR(M) of any submodule (fully

invariant submodule) of M is a direct summand of S. In the last few years, there

have been numerous generalizations of Baer modules. The module theoretic notion

of principally quasi-Baer rings is defined by Ungor et al. [58], Dana and Moussavi

[19], and Lee [33] in different aspects. A module M is known as a principally quasi-

Baer module (simply PQ-Baer module) [58] if the left annihilator in S = EndR(M)

of any cyclic submodule of M is a direct summand of S. But according to Lee

[33], a module M is called PQ-Baer if the right annihilator in M of every principal

right ideal of S is a direct summand of M . In 2010, Lee et al. [36] introduced

the notion of Rickart modules in general module theoretic setting by utilizing the

endomorphism ring of a module. According to them M is called a Rickart module

if the right annihilator in M of any single element of S = EndR(M) is generated

by an idempotent element of S or Kernel of every endomorphism of M is a direct

summand of M .

In general, the following implications are true

Baer module ⇒ Quasi-Baer module ⇒ PQ-Baer module

But the converse of these implications need not be true (see [10], [19], [33], [48]).

Close connections with module theory and applications of Baer modules and their

generalizations attracted many researchers to discover dual notions of these struc-

tures. In 2010, Tutuncu and Tribak [56] introduced dual-Baer modules. Amouzegar

and Talebi [4] generalized dual-Baer modules to quasi-dual-Baer modules. Every

R-module over the semisimple ring R is dual-Baer and every dual-Baer module is

quasi-dual-Baer.
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Motivated by the theory of PQ-Baer modules, which is generalization of the theory

of quasi-Baer modules, we generalize quasi-dual-Baer modules as principally quasi-

dual-Baer (in short PQ-dual-Baer) modules in Chapter 2. We study properties of

PQ-dual-Baer modules, like direct sum, direct summand and endomorphism ring of

them.

We have the following hierarchy for our structure as

Dual-Baer Module ⇒ Quasi-dual-Baer Module ⇒ PQ-dual-Baer Module

Recall that a ring R is said to be hereditary if every right ideal of R is projective.

Hereditary rings have been characterized in different ways, most common results

of them are that a ring R is right hereditary if and only if every submodule of

any projective right R-module is projective if and only if every factor module of

any injective right R-module is injective. In [34], Lee and Barcenas established

the module theoretic analog of a right hereditary ring as a Σ-Rickart module. A

moduleM is called a Σ-Rickart module if every direct sum of copies ofM is Rickart.

Further, in [35], they generalized this notion in the finite case and called a module

M finite Σ-Rickart if every finite direct sum of copies ofM is a Rickart module. The

following hierarchy holds for Rickart modules, but the converse need not be true

(see [34], [35])

Σ-Rickart Module ⇒ Finite Σ-Rickart Module ⇒ Rickart Module

In 2011, Lee [37] dualized the class of Rickart modules and called a module M

dual-Rickart if the image of each endomorphism of M is a direct summand of M .

Rickart and dual-Rickart modules are closely connected with von Neumann regular

rings. The key result which proves the connection between them is a consequence

of the result given by Rangaswamy [47] in 1976. According to [47, Theorem 4], the

endomorphism ring S = EndR(M) of a module M is von Neumann regular if and
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only if Kernel and Image of every endomorphism of M are direct summand of M ,

i.e., M is a Rickart and as well as a dual-Rickart module.

The structure of Σ-Rickart modules and finite Σ-Rickart modules motivated us to

introduce and study the dual version of these structures. So, in Chapter 3 we

define Σ-dual-Rickart modules and study their properties. Further, in Chapter 4

we introduce the class of finite Σ-dual-Rickart modules, which contains the class of

Σ-dual-Rickart modules and contained in the class of dual-Rickart modules. The

following implications hold for modules.

Σ-dual-Rickart Module ⇒ Finite Σ-dual-Rickart Module ⇒ Dual-Rickart Module

In [6], Atani et al. introduced purely Baer modules and called a module M purely

Baer if the right annihilator of every left ideal of S = EndR(M) in M is a pure

submodule of M . One of the key result of purely Baer modules is that a ring R is

von Neumann regular ring if and only if every right R-module is purely Baer.

Motivated by notions of purely Baer modules and purely extending modules, we

introduce the notion of purely essentially Baer modules in Chapter 5. We also study

some more properties of purely extending modules. Purely essentially Baer module

is a common generalization of purely Baer module and purely extending module.

Now, we give a brief description of the present thesis. The thesis consists of the

following five chapters with conclusions and future scope. Chapter 1 is prelimi-

naries which are the collection of notations, definitions and basic results used in the

subsequent chapters.

In Chapter 2, we introduce and study the notion of principally quasi-dual-Baer

modules (in PQ-dual-Baer modules), which dualizes the notion of principally quasi-

Baer modules [33]. We study some properties of PQ-dual-Baer modules. We find
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some conditions for which the direct sum of arbitrary copies of PQ-dual-Baer mod-

ules is PQ-dual-Baer. We also study the ring of endomorphisms of PQ-dual-Baer

modules.

The followings are the main results in Chapter 2:

1. The following are equivalent for an R-module M :

(i) M is a PQ-dual-Baer module;

(ii) For every cyclic submodule P ≤ M , there exists a decomposition M =

P1 ⊕ P2 with P1 ≤⊕ P and Hom(M, P ∩ P2) = 0.

2. Every direct summand of a PQ-dual-Baer module is PQ-dual-Baer.

3. The endomorphism ring of a PQ-dual-Baer module is a left PQ-Baer ring.

4. If the endomorphism ring of every direct sum of copies of a PQ-dual-Baer M

is left PQ-dual-Baer, then the endomorphism ring of M is a quasi-dual-Baer

ring.

In Chapter 3, we dualize the concept of Σ-Rickart modules [34] as Σ-dual Rickart

modules. We introduce the notion of strongly cogenerated modules and characterize

Σ-dual Rickart modules in terms of strongly cogenerated modules. We show when

a Σ-Rickart module is a Σ-dual Rickart module and vice-versa. Further, we study

the endomorphism ring of Σ-dual Rickart modules.

The following are the main results in Chapter 3:

1. An R-module is Σ-dual-Rickart if and only if R is a semisimple Artinian ring.

2. Every cohereditary module over a Noetherian ring is a Σ-dual-Rickart module.

3. Let R be a Noetherian ring. Then the following conditions are equivalent:
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(i) Every injective R-module is a Σ-dual Rickart module;

(ii) R is a right hereditary ring.

4. The following conditions are equivalent for a ring R:

(i) Every right R-module is a Σ-Rickart module;

(ii) Every right R-module is a Σ-dual-Rickart module;

(iii) R is a right semisimple Artinian ring.

5. If M is a finitely generated Σ-dual-Rickart module with endomorphism ring

S = EndR(M), then S is a left hereditary ring and SM is an FP-injective

S-module.

In Chapter 4, we introduce the notion of finite Σ-dual-Rickart modules, which

generalizes the notion of Σ-dual-Rickart modules. We study some basic properties of

the finite Σ-dual-Rickart modules. We examine connections between finite Σ-Rickart

[35] modules and finite Σ-dual-Rickart modules. Also, we study the endomorphism

ring of finite Σ-dual-Rickart modules.

The following are the main results in Chapter 4:

1. Every cohereditary module is a finite Σ-dual-Rickart module.

2. For an R-module M , the following statements are true:

(i) Every finite Σ-dual-Rickart module has SSP.

(ii) Every finite Σ-dual-Rickart module with D3 condition has SIP.

3. The following statements are equivalent for a ring R.

(i) Every finitely generated free (projective)R-module is finite Σ-dual-Rickart;

(ii) The free R-module R(2) has SSP;
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(iii) R is a von Neumann regular ring.

4. A projective and quasi-injective right R-module M over right hereditary ring

R is a finite Σ-dual-Rickart module.

5. Every quasi-injective finite Σ-Rickart module is finite Σ-dual-Rickart module.

6. The endomorphism ring of a finite Σ-dual-Rickart module is left semi-hereditary.

Conversely, if S = EndR(M) is a left semi-hereditary ring with C2-condition

as a left S-module, then M is a finite dual-Rickart module.

In Chapter 5, we study several properties of purely extending modules [15] and

introduce the notion of purely essentially Baer modules.

The following are the main results in Chapter 5:

1. (i) A finitely generated flat module M over a Noetherian ring is purely ex-

tending module if and only if it is extending module.

(ii) A module M over a pure semisimple ring is purely extending if and only

if it is extending.

(iii) A pure split module is purely extending if and only if it is extending.

2. Every finitely generated torsion-free module over a principal ideal domain is

purely extending.

3. Let M be an R-module with endomorphism ring S = EndR(M). Then the

following statements are equivalent:

(i) Every purely essentially Baer R-module is purely Baer;

(ii) Every purely extending R-module is purely Baer;

(iii) R is a von Neumann regular ring.
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4. Let M =
⊕

i∈IMi (where I is an index set) be such that HomR(Mi,Mj) = 0

for every i ̸= j ∈ I. Then M is purely essentially Baer module if and only if

each Mi is purely essentially Baer module.
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