
CHAPTER 2

EFFICIENT NUMERICAL ALGORITHMS FOR

RIESZ-SPACE FRACTIONAL PARTIAL DIFFERENTIAL

EQUATIONS BASED ON FINITE

DIFFERENCE/OPERATIONAL MATRIX

In this chapter, we have developed two efficient numerical algorithms to find the

numerical solutions of Riesz fractional diffusion equations (RFDE) and RFADEs.

For this purpose, we have constructed the numerical schemes by applying a finite

difference scheme based on MTM in spatial direction and a meshfree OMM based on

shifted Legendre polynomials in the time direction. To the best of our knowledge,

this approach has not been applied so far to solve proposed RFDEs and RFADEs.

In Section 2.2, we discuss the MTM for Riesz derivatives and function approxima-

tion by operational matrix approach. In Section 2.3, we give the construction of

the numerical schemes for RFDE and RFADE. Optimal error bounds for the ap-

proximation are discussed in Section 2.4. In Section 2.5, the numerical stability has

29
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been verified and two numerical examples of RFDE and RFADE are presented to

show the effectiveness and accuracy of the proposed schemes followed by concluding

remarks.

2.1 Introduction

In this chapter, we consider the following space fractional partial differential equation

with Riesz-space fractional derivative

∂

∂t
u(x, t) = kα

∂α

∂|x|α
u(x, t) + kβ

∂β

∂|x|β
u(x, t), 0 ≤ t ≤ T, 0 ≤ x ≤ L, (2.1)

with initial condition

u(x, 0) = f(x), (2.2)

and Dirichlet boundary conditions

u(0, t) = u(L, t) = 0, (2.3)

where, 1 < α ≤ 2, 0 < β < 1, u is a solute concentration; kα and kβ represent

the dispersion coefficient and the average fluid velocity, respectively. Here, we take

kα > 0 and kβ ≥ 0. When kβ = 0, (2.1) reduces to RFDE otherwise, it is called

RFADE.

In order to find the numerical solution of the proposed model (2.1)-(2.3), we have

approximated the Riesz derivatives by using MTM, which converts the (2.1) into

a system of time ordinary differential equations (TODEs). Yang et al. [72] used

differential algebraic system solver (DASSL) to solve the system of TODEs. Joubert
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et al. questions the credibility of ODE solvers in his paper [163] and suggested that

the blind trust on these ODE solvers is not always suitable for every problem. The

authors also gave the justification that for a large scale of time, these solvers are not

reliable. The disadvantages of these ODE solvers also motivated us to develop this

numerical approach to solve the system of TODEs without using any ODE solvers,

which will work for a large scale of time. Therefore, we apply OMM based on shifted

Legendre polynomials for approximating the time derivative.

The advantages of this proposed numerical schemes are manifold. The MTM leads

to a system of TODEs with a spatial discretization matrix raised to fractional order

and provides the best approximation to the analytical solution [72]. The choice of

shifted Legendre polynomials is due to their orthogonal properties. It also saves the

computational cost in calculating the unknown Legendre’s coefficients. Furthermore,

the operational matrix of integration for shifted Legendre polynomials is sparse in

nature, which eases the transformation of the system of TODEs to a system of linear

algebraic equations. It is meshfree in the time domain, and the numerical solution

does not depend on the previous time levels. Therefore, one does not have to store

the numerical value at any time level. We have observed that the convergence rate

of the proposed numerical scheme is of second order in spatial direction for all values

of α ∈ (1, 2) and derived the optimal error bound for the approximate solution. The

accuracy of the schemes also depends on the optimum number of basis functions. The

stability of the numerical scheme has also been verified numerically by introducing

some noisy data in the initial condition. The effectiveness and accuracy of the

developed numerical schemes have been tested on some numerical experiments. It

is found that the schemes are simple, easy to implement and yield high accurate

results.
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2.2 Matrix transform method and the operational

matrix

In this section, we discuss about the MTM for Riesz-space fractional derivative and

function approximation by shifted Legendre polynomials. We have also derived the

operational matrix of integration for solving the problem (2.1).

2.2.1 Matrix transform method for Riesz space fractional

derivative

The MTM, for space fractional diffusion equation, is proposed by Illic et al. [71].

It says that the Riesz fractional derivative is equivalent to the fractional power of

the Laplacian operator under Dirichlet boundary conditions. It provides the best

approximation to the analytic solution.

Let xi = ih, i = 0, 1, 2, ..., N be the number of grid points in space direction and

h = L/N be the step size in space, where N is the total number of grid points and

L is the length of the interval.

At first, we consider the following RFDE

∂

∂t
u(x, t) = kα

∂α

∂|x|α
u(x, t). (2.4)

Using Lemma (1.2.1), we get

∂

∂t
u(x, t) = −kα(−∆)α/2u(x, t) = −kα

(
− ∂2

∂x2

)α/2
u(x, t). (2.5)
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Consider the standard diffusion equation

∂

∂t
u(x, t) = −kα

(
− ∂2

∂x2

)
u(x, t). (2.6)

Let ui(t) = u(xi, t), i = 1, 2, ..., N − 1, be the numerical value of the u(x, t) at each

grid points. Now, applying central difference formula on the R.H.S. of (2.6), we get

d

dt
ui(t) = −kα

(
−ui+1(t) + 2ui(t)− ui−1(t)

h2

)
.

Then, the above equation can be written in matrix form as;

d

dt
U(t) = −kαThU(t) + b, (2.7)

where, Th ∈ RN−1×N−1 and U(t), b ∈ RN−1 are given as;

Th =
1

h2



2 −1 0 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0

...
. . . . . . . . .

...

0 · · · · · · −1 2 −1

0 · · · · · · 0 −1 2


, U(t) =



u1(t)

...

...

uN−1(t)


, and b =

kα
h2



u0

0

...

0

uN


.

(2.8)

If b = 0 (using Dirichlet boundary condition), then (2.7) can be written as;

d

dt
U(t) = −kαThU(t). (2.9)
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Hence, we can write (2.5) as;

d

dt
U(t) = −kα(Th)

α/2U(t), (2.10)

Since, the matrix Th is a symmetric positive definite matrix, therefore, there exist

a nonsingular matrix V ∈ RN−1×N−1 such that,

Th = VDVT ,

where, D = diag(λ1, λ2, ..., λn−1) and λi, i = 1, 2, ..., N − 1, be the eigenvalues of

matrix T and V is the matrix containing the eigen vectors vi of T corresponding to

eigen values λi such that V = [v1, v2, ..., vN−1]. Therefore, (2.10) can be written as,

d

dt
U(t) = −kα

(
VDα/2VT

)
U,

d

dt
U(t) = −kαAU(t), (2.11)

where A = VDα/2VT is the symmetric as well as centro-symmetric matrix of order

(N − 1).

Lemma 2.2.1 ([164]). If Th is a positive definite matrix and Th = VDVT , where V

is the orthogonal matrix then for any arbitrary α/2

T
α/2
h = V(D)α/2VT , (2.12)

and the eigenvalues of the real symmetric matrix V(D)α/2VT are given by;

λi =

(
4

h2
sin2

(
πi

2N

))α/2
, i = 1, 2, ..., N − 1. (2.13)

Lemma 2.2.2. If λi, i = 1, 2, ..., N−1, be the eigen values of the matrix Th arranged
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in such a manner that λ1 ≤ λ2 ≤ · · · ≤ λN−1 and let vi = [v1,i, v2,i, ..., vN−1,i]
T be the

eigen vectors corresponding to the eigen values λi such that D = diag[λ1, λ2, ..., λN−1]

and V = [v1, v2, ..., vN−1] then the product matrix A =
(
V(D)α/2VT

)
is the symmet-

ric as well as centro-symmetric matrix of order (N − 1) and is of the form

A = [aij] =



a1,1 a2,1 a3,1 · · · aN−3,1 aN−2,1 aN−1,1

a2,1 a2,2 a3,2 · · · aN−3,2 aN−2,2 aN−2,1

a3,1 a3,2 a3,3 · · · aN−3,3 aN−3,2 aN−3,1

...
...

...
. . .

...
...

...

aN−3,1 aN−3,2 aN−3,3 · · · a3,3 a3,2 a3,1

aN−2,1 aN−2,2 aN−3,2 · · · a3,2 a2,2 a2,1

aN−1,1 aN−2,1 aN−3,1 · · · a3,1 a2,1 a1,1



. (2.14)

e.g.: In particular, for N = 4 and N = 5

A =


a11 a21 a31

a21 a22 a21

a31 a21 a11

 , A =



a11 a21 a31 a41

a21 a22 a32 a31

a31 a32 a22 a21

a41 a31 a21 a11


.

2.2.2 Function approximation by orthogonal polynomials

2.2.2.1 Shifted Legendre polynomials

The shifted Legendre polynomials defined over the domain [0, 1] are given by;

ψj(t) = Pj(2t− 1), j = 0, 1, 2, 3, ... (2.15)



Chapter 2. Efficient Numerical Algorithm for Riesz space... 36

where Pj(t) are the Legendre polynomials of order j defined on the interval [−1, 1]

and satisfy the following recursive formula;

Pj+1(t) =

(
2j + 1

j + 1

)
tPj(t)−

(
j

j + 1

)
Pj−1(t), j = 1, 2, 3, ... (2.16)

where P0(t) = 1, P1(t) = t, P2(t) =
1

2
(3t2 − 1) and so on.

The shifted Legendre polynomials are orthogonal with respect to the weight function

w(t) = 1 such that,

∫ 1

0

w(t)Pi(t)Pj(t)dt =


1

2i+ 1
δij for i = j,

0 otherwise.

(2.17)

2.2.2.2 Shifted Chebyshev polynomial of second kind

The shifted Chebyshev polynomial of second kind on [0, 1] are given by

ϕj(t) = Uj(2t− 1), j = 0, 1, 2, 3, ... (2.18)

where Uj(t) are the Chebyshev polynomials of second kind of order j defined on the

interval [−1, 1] and satisfy the following recursive formula,

Uj+1(t) = 2tUj(t)− Uj−1(t), j = 1, 2, 3, ... (2.19)

where U0(t) = 1, U1(t) = t, U2(t) = 4t2 − 1 and so on. The shifted Chebyshev

polynomials of second kind are orthogonal with respect to the weight function w(t) =
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√
t− t2 such that

∫ 1

0

w(t)ϕi(t)ϕj(t)dt =


π/8 for i = j,

0 otherwise.

(2.20)

2.2.2.3 Function approximation

Let u(xi, t) be the numerical solution of the RFDE (2.4) at each grid point therefore,

we approximate the solution u(xi, t) at each grid point xi for i = 1, 2, ..., N − 1. For

this, let us suppose that the time derivative of u(xi, t) can be approximated as

du(xi, t)

dt
≈

M∑
j=0

cijψj(t) = CT
i Ψ(t), i = 1, 2, ..., N − 1, j = 0, 1, ...,M. (2.21)

Integrating (2.21) with respect to t, we get

∫ t

0

du(xi, t)

dt
dt ≈

∫ t

0

CT
i Ψ(t)dt,

u(xi, t) ≈ u(xi, 0) + CT
i KΨ(t),

u(xi, t) ≈ f(xi) + CT
i KΨ(t), (2.22)

where f(xi) is the initial condition at each grid point xi and K is the operational

matrix of integration, which we will discuss in the next subsection 2.2.2.4.

Now, approximating f(xi) as mentioned in (1.29), we get

f(xi) ≈
M∑
j=0

fijψj(t) = FTi Ψ(t), i = 1, 2, ..., N − 1, j = 0, 1, ...,M, (2.23)
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Using (2.23) in (2.22), we get

u(xi, t) ≈ FTi Ψ(t) + CT
i KΨ(t),

u(xi, t) ≈
(
FTi + CT

i K
)
Ψ(t), (2.24)

where,

Fi = [fij] =



fi0

fi1
...

fiM


, Ci = [cij] =



ci0

ci1
...

ciM


, and Ψ(t) =



ψ0(t)

ψ1(t)

...

ψM(t)


. (2.25)

Here Ci’s are the unknowns coefficients, which we need to find out. Since fi’s are

known, therefore, fij are calculated by,

fij =
⟨fi(t), ψj(t)⟩
⟨ψj(t), ψj(t)⟩

=

∫ 1

0
w(t)fi(t)ψj(t)dt∫ 1

0
w(t)ψj(t)ψj(t)dt

. (2.26)

2.2.2.4 Operational matrix of integration

Let Ψ(t) be the shifted Legendre polynomials defined in section 2.2.2, then

∫ t

0

Ψ(ξ)dξ =



∫ t
0
ψ0(ξ)dξ∫ t

0
ψ1(ξ)dξ

...∫ t
0
ψM(ξ)dξ


=



k0(t)

k1(t)

...

kM(t)


=

[
ki(t)

]
. (2.27)
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Now, approximating ki(t) as mentioned in (1.29)

ki(t) ≈
M∑
j=0

kijψj(t) =



k00 k01 · · · k0M

k10 k11 · · · k1M
...

kM0 kM1 · · · kMM





ψ0(t)

ψ1(t)

...

ψM(t)


= KΨ(t), (2.28)

where K is the operational matrix of integration of order (M +1), whose coefficient

kij are obtained by the formula

kij =
⟨ki(t), ψj(t)⟩
⟨ψj(t), ψj(t)⟩

=

∫ 1

0
w(t)ki(t)ψj(t)dt∫ 1

0
w(t)ψj(t)ψj(t)dt

. (2.29)

2.3 Construction of numerical scheme for RFDE

and RFADE

2.3.1 Numerical scheme for Riesz fractional diffusion equa-

tion (RFDE)

In this section, we construct the efficient numerical scheme for the RFDE

∂

∂t
u(x, t) = kα

∂α

∂|x|α
u(x, t), 0 ≤ t ≤ T, 0 ≤ x ≤ L, (2.30)

with the initial and boundary conditions given by

u(x, 0) = f(x), (2.31)

u(0, t) = u(π, t) = 0, (2.32)



Chapter 2. Efficient Numerical Algorithm for Riesz space... 40

where 1 < α ≤ 2.

After applying the MTM as mentioned in section 2.2.1, the RFDE (2.30)-(2.32)

converts in the form

d

dt
U(t) = −kαAU(t), (2.33)

where A = V(D)α/2VT is the symmetric as well as centro-symmetric matrix of order

(N − 1) and U(t) = [u1(t), u2(t), ..., uN−1(t)]
T .

We can write the above equation as

dui(t)

dt
= −kαAui(t). (2.34)

Let us denote u(xi, t) = ui(t), i = 1, 2, ..., N − 1, and use the approximation of ui(t),

mentioned in (2.21) and (2.24) as

dui(t)

dt
≈ CT

i Ψ(t), and ui(t) ≈
(
FTi + CT

i K
)
Ψ(t), (2.35)

where Fi, Ci and Ψ(t) are mentioned in (2.25) and K is mentioned in (2.28). Using

(2.35) in (2.34), we get

[CT
i ]Ψ(t) = −kαA[FTi + CT

i K]Ψ(t). (2.36)

The above equation can be written as

[CT
i ] = −kαA[FTi + CT

i K],

[CT
i ] = −kαACT

i K− kαAF
T
i , (2.37)
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where,

[
CT
i K
]
=

[
M∑
j=0

cijkj0,

M∑
j=0

cijkj1, · · · ,
M∑
j=0

cijkjM

]
, (2.38)

is a matrix of order (N − 1)(M + 1).

Now, putting the value of [FTi ], [C
T
i ] from (2.25) and [CT

i K] from (2.38) in (2.37), and

after rigorous calculations (see 2.6.1), comparing the coefficients of cij from (2.93),

for i = 1, 2, ..., N − 1 and j = 0, 1, ...,M , we get the (N − 1)(M + 1) a system of

algebraic equation, given as

cij = −kα
N−1∑
l=1

ail

(
M∑
m=0

clmkmj

)
−kα

N−1∑
l=1

ail (flj) , i = 1, 2, ..., N−1 j = 0, 1, ...,M,

(2.39)

where aij = aji with aij = aN−i+1,N−j+1 because A is symmetric as well as centro-

symmetric matrix. Let ‘⊗’ denotes the kronecker product then, the numerical

scheme in matrix form is given by



C1

C2

...

CN−1


=− kα



a1,1 a2,1 · · · aN−1,1

a2,1 a2,2 · · · aN−2,1

...
...

. . .
...

aN−1,1 aN−2,1 · · · a1,1


⊗



k00 k10 · · · kM0

k01 k11 · · · kM1

...

k0M k1M · · · kMM





C1

C2

...

CN−1



− kα



a1,1 a2,1 · · · aN−1,1

a2,1 a2,2 · · · aN−2,1

...
...

. . .
...

aN−1,1 aN−2,1 · · · a1,1


⊗



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1





F1

F2

...

FN−1


,

(2.40)
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or, simply we can write

C = −kα(A⊗KT )C− kα(A⊗ I)F,

C = −kαPC− kαQF,

[I + kαP]C = −kα[QF], (2.41)

where P and Q are the matrix of order (N − 1)(M + 1)× (N − 1)(M + 1) as given

in (2.42) and (2.43).

P = A⊗KT =



a11K
T a21K

T · · · aN−1,1K
T

a21K
T a22K

T · · · aN−2,1K
T

...
...

. . .
...

aN−1,1K
T aN−2,1K

T · · · a1,1K
T


, (2.42)

Q = A⊗ I =



a11I a21I · · · aN−1,1I

a21I a22I · · · aN−2,1I

...
...

. . .
...

aN−1,1I aN−2,1I · · · a1,1I


, (2.43)
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and C and F are vector of order (N − 1)(M + 1)× 1 given in (2.44)

C =



C1

C2

...

CN−1


=



c10
...

c1M

c20
...

c2M
...

cN−1,0

...

cN−1,M



, F =



F1

F2

...

FN−1


=



f10
...

f1M

f20
...

f2M
...

fN−1,0

...

fN−1,M



. (2.44)

Now, solving the system (2.41), we get the value of the coefficients Ci and putting

the value of CT
i and FTi in (2.35), one can obtain the numerical solution of the RFDE

(2.30)-(2.32) at each grid points xi.

The algorithm for solving RFDE (2.30)-(2.32) by the efficient numerical scheme 2.3.1

is given below.
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Algorithm 1: Approximating the numerical solution of RFDE (2.30)-(2.32)

Input: The constant kα, M,N , f(x), Ψ(t), 1 < α ≤ 2.

Output: The approximate solutions at each space grid point

u(xi, t) ≈
(
([Fi]

ψ)T + ([Ci]
ψ)T [K]ψ

)
Ψ(t).

for Numerical solution of RFDE (2.30)-(2.32) by the efficient numerical scheme

in subsection 2.3.1 do

Step-1.1 Generate the basis function ψj(t); j = 0, . . . ,M by using shifted

Legendre polynomials as given in Section 2.2.2.3.

Step-1.2 Assuming ut(xi, t) ≈ ([Ci]
ψ)TΨ(t), i = 1, . . . , N .

Step-1.3 Compute the operational matrix of integration [K]ψ of order

(M + 1) as in Section 2.2.2.4.

Step-1.4 Compute the operational vector [Fi]
ψ, by approximating the for

initial condition at each grid point, as mentioned in (2.26)

Step-1.5 Compute the matrix [A] of order (N − 1) for the Laplacian

operator (−∆)α/2 by using the Matrix Transform Method for uniform

mesh Ωh = {xi : xi = ih, i = 0, 1, . . . , N} as mentioned in Lemma 2.2.2.

Step-1.6 Evaluate the matrices [P] =
(
[A]⊗ ([K]ψ)T

)
and [Q] = ([A]⊗ [I])

of order (N − 1)(M + 1).

Step-1.7 Solve the system of equations ([I] + kα[P])) [C]
ψ = −kα[Q][F]ψ get

the value of unknown vector [C]ψ.

Step-1.8 Put the value of [F]ψ, [C]ψ and [K]ψ in

u(xi, t) ≈
(
([Fi]

ψ)T + ([Ci]
ψ)T [K]ψ

)
Ψ(t), i = 1, . . . , N − 1, we get the

approximate solution at each grid point xi.

end
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2.3.2 Numerical method for Riesz fractional advection dis-

persion equation (RFADE)

In this section, we construct an efficient numerical scheme for RFADE

∂

∂t
u(x, t) = kα

∂α

∂|x|α
u(x, t) + kβ

∂β

∂|x|β
u(x, t), 0 ≤ t ≤ T, 0 ≤ x ≤ L, (2.45)

with the initial and boundary conditions given by

u(x, 0) = f(x), (2.46)

u(0, t) = u(π, t) = 0, (2.47)

where 1 < α ≤ 2 and 0 < β < 1.

After applying the MTM as mentioned in section 2.2.1, the RFADE (2.45)-(2.47) is

converted in the form

d

dt
U(t) = −kαAU− kβBU. (2.48)

where A = V(D)α/2VT and B = V(D)β/2VT are the symmetric as well as centro-

symmetric matrix of order (N − 1) and U(t) = [u1(t), u2(t) · · · uN−1(t)]
T .

We can write the above equation as,

dui(t)

dt
= −kαAui(t)− kβBui(t) (2.49)
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Following the same process as mentioned in Section 2.3.1, we use the approximation

of
dui(t)

dt
and ui(t), from (2.35),

dui(t)

dt
≈ CT

i Ψ(t), and ui(t) ≈
(
FTi + CT

i K
)
Ψ(t), (2.50)

where Fi, Ci and Ψ(t) are mentioned in equation (2.25) and K is mentioned in (2.28).

Now, using (2.50) in the (2.49), we get

[CT
i ]Ψ(t) = −kαA[FTi + CT

i K]Ψ(t)− kβB[F
T
i + CT

i K]Ψ(t),

[CT
i ] = −kαA[FTi + CT

i K]− kβB[F
T
i + CT

i K],

[CT
i ] = −kαA[CT

i K]− kαA[F
T
i ]− kβB[F

T
i ]− kβB[C

T
i K]. (2.51)

Now, putting the value of [FTi ], [CT
i ] from (2.25) and [CT

i K] from (2.38) in 2.51

and after rigorous calculation (see 2.6.2) and comparing the coefficients of cij from

(2.95) for i = 1, 2, ..., N − 1 and j = 0, 1, ...,M , we get the (N − 1)(M + 1) system

of algebraic equation which is given below

cij = −kα
N−1∑
l=1

ail

(
M∑
m=0

clmkmj

)
−kα

N−1∑
l=1

ailflj−kβ
N−1∑
l=1

bil

(
M∑
m=0

clmkmj

)
−kβ

N−1∑
l=1

bilflj,

(2.52)

where aij = aji with aij = aN−i+1,N−j+1 for A and bij = bji with bij = bN−i+1,N−j+1

for B because A and B are symmetric as well as centro-symmetric matrix. Then,

the matrix form of the numerical scheme is given by

C = −kα(A⊗KT )C− kα(A⊗ I)F− kβ(B⊗KT )C− kβ(B⊗ I)F,

C = −kαPC− kαQF− kβRC− kβSF,

[I + kαP + kβR]C = −[kαQF + kβSF], (2.53)
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where ‘⊗’ denotes the kronecker product. P,Q,R, S are the matrices of order (N −

1)(M + 1) × (N − 1)(M + 1). R, S can be calculated in the same way as P,Q

mentioned in (2.42, 2.43) and C, F are the vectors of order (N − 1)(M + 1)×1 as

mentioned in (2.44), where

P = A⊗KT , Q = A⊗ I, R = B⊗KT , S = B⊗ I. (2.54)

Now, solving the system (2.53) we get the values of the coefficients Ci and putting

the value of CT
i and FTi in (2.50) one can obtain the numerical solution of the RFADE

(2.45)-(2.47) at each grid points xi.

The algorithm for solving RFADE (2.45)-(2.47) by the efficient numerical scheme

2.3.2 is given below.
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Algorithm 2: Approximating the numerical solution of RFADE (2.45)-(2.47)

Input: The constants kα, kβ, M,N , 1 < α ≤ 2, 0 < β < 1, f(x), Ψ(t).

Output: The approximate solutions at each space grid point

u(xi, t) ≈
(
([Fi]

ψ)T + ([Ci]
ψ)T [K]ψ

)
Ψ(t).

for Numerical solution of RFADE (2.45)-(2.47) by efficient numerical scheme in

subsection 2.3.2 do

Step-2.1 Generate the basis function ψj(t); j = 0, . . . ,M by using shifted

Legendre polynomials as given in Section 2.2.2.3.

Step-2.2 Assuming ut(xi, t) ≈ ([Ci]
ψ)TΨ(t), i = 1, . . . , N − 1.

Step-2.3 Compute the operational matrix of integration [K]ψ of order

(M + 1) as defined in Section 2.2.2.4.

Step-2.4 Compute the operational vector [Fi]
ψ by approximating the for

initial condition at each grid point as mentioned in (2.26).

Step-2.5 Compute the matrix [A] and [B] of order (N − 1) for the

Laplacian operator (−∆)α/2 and (−∆)β/2 respectively by using the Matrix

Transform Method for uniform mesh Ωh = {xi : xi = ih, i = 0, 1, . . . , N}

as mentioned in Lemma 2.2.2.

Step-2.6 Evaluated matrices [P] =
(
[A]⊗ ([K]ψ)T

)
, [Q] = ([A]⊗ [I]),

[R] =
(
[B]⊗ ([K]ψ)T

)
and [S] = ([B]⊗ [I]) of order (N − 1)(M + 1).

Step-2.7 Solve the system of equations

([I] + kα[P] + kβ[R])) [C]
ψ = −

(
kα[Q][F]ψ + kβ[S][F]

ψ
)
get the value of

unknown vector [C]ψ.

Step-2.8 Put the value of [F]ψ, [C]ψ and [K]ψ in

u(xi, t) ≈
(
([Fi]

ψ)T + ([Ci]
ψ)T [K]ψ

)
Ψ(t), i = 1, . . . , N − 1, we get the

approximate solution at each grid point xi.

end
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2.4 Optimal error bounds of numerical approxi-

mation

Lemma 2.4.1. Let u(xi, t) be sufficiently smooth function in L2[0, 1] and
∂ũi(t)

∂t

be the numerial approximation of
∂ui(t)

∂t
obtained by using (M+1) elements of

the shifted Legendre polynomial. Assuming that the third derivative of
∂ui(t)

∂t
is

bounded by a constant K i.e.

∣∣∣∣∂3ui(t)∂t3

∣∣∣∣ ≤ K , then we have the following upper

bound of error

∥∥∥∥∂ui(t)∂t
− ∂ũi(t)

∂t

∥∥∥∥2
L2

≤
∞∑

j=M+1

K 2

(2j − 3)4
. (2.55)

Proof. Let us suppose that the time derivative of the function u(xi, t) is approxi-

mated by the basis Ψ(t) of L2[0, 1], then

∂ui(t)

∂t
=

∞∑
j=0

cijψj(t), (2.56)

where the coefficient cij are calculated by

cij =

〈
∂ui(t)

∂t
, ψj(t)

〉
⟨ψj(t), ψj(t)⟩

. (2.57)

Truncating the summation upto M basis point, (2.56) can be written as

∂ũi(t)

∂t
=

M∑
j=0

cijψj(t). (2.58)
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Subtracting (2.58) to (2.56),

∂ui(t)

∂t
− ∂ũi(t)

∂t
=

∞∑
j=M+1

cijψj(t). (2.59)

By definition of L2-norm

∥∥∥∥∂ui(t)∂t
− ∂ũi(t)

∂t

∥∥∥∥2
L2

=

∫ 1

0

(
∂ui(t)

∂t
− ∂ũi(t)

∂t

)2

dt

=

∫ 1

0

(
∞∑

j=M+1

cijψj(t)

)2

dt

=
∞∑

j=M+1

c2ij
1

(2j + 1)
dt, (2.60)

where, ψj(t) is the shifted Legendre polynomials of order j, i.e.

ψj(t) = Pj(2t− 1), j = 0, 1, 2, ..., (2.61)

Now, the coefficients cij are calculated by the formula (2.57), we get

cij = (2j + 1)

∫ 1

0

∂ui(t)

∂t
ψj(t)dt

= (2j + 1)

∫ 1

0

∂ui(t)

∂t
Pj(2t− 1)dt

= (2j + 1)

∫ 1

−1

∂ui(
s+1
2
)

∂s
Pj(s)ds, (2.62)

where s = 2t− 1. By the property of Legendre polynomials

(2j + 1)Pj(t) =
d

dt
(Pj+1(t)− Pj−1(t)). (2.63)
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Using above property in (2.62),

cij = (2j + 1)

∫ 1

−1

∂ui(
s+1
2
)

∂s

[
(Pj+1(s)− Pj−1(s))

′

(2j + 1)

]
ds,

=

∫ 1

−1

∂ui(
s+1
2
)

∂s
[Pj+1(s)− Pj−1(s)]

′ds,

= −1

2

∫ 1

−1

∂2ui(
s+1
2
)

∂s2
[Pj+1(s)− Pj−1(s)]ds,

= −1

2

∫ 1

−1

∂2ui(
s+1
2
)

∂s2

[
(Pj+2(s)− Pj(s))

′

(2j + 3)
− (Pj(s)− Pj−2(s))

′

(2j − 1)

]
ds,

=
1

4

∫ 1

−1

∂3ui(
s+1
2
)

∂s3

[
(Pj+2(s)− Pj(s))

(2j + 3)
− (Pj(s)− Pj−2(s))

(2j − 1)

]
ds,

=
1

4

∫ 1

−1

∂3ui(
s+1
2
)

∂s3
σj(s)ds, (2.64)

where σj(s) =
(Pj+2(s)− Pj(s))

(2j + 3)
− (Pj(s)− Pj−2(s))

(2j − 1)
.

Taking square of the absolute of (2.64), one can obtain

|cij|2 =
∣∣∣∣14
∫ 1

−1

∂3ui(
s+1
2
)

∂s3
σj(s)ds

∣∣∣∣2
=

1

16

∣∣∣∣∫ 1

−1

∂3ui(
s+1
2
)

∂s3
σj(s)ds

∣∣∣∣2
≤ 1

16

∫ 1

−1

∣∣∣∣∂3ui( s+1
2
)

∂s3

∣∣∣∣2 |σj(s)ds|2
≤ K 2

16

∫ 1

−1

|σj(s)ds|2

≤ K 2

16

∫ 1

−1

(
(Pj+2(s)− Pj(s))

(2j + 3)
− (Pj(s)− Pj−2(s))

(2j − 1)

)2

ds

≤ K 2

16

∫ 1

−1

(
(2j − 1)Pj+2(s)− (4j + 2)Pj(s) + (2j − 3)Pj−2(s)

(2j + 3)(2j − 1)

)2

ds

≤ K 2

16

∫ 1

−1

(
(2j − 1)2P 2

j+2(s) + (4j + 2)2P 2
j (s) + (2j − 3)2P 2

j−2(s)

(2j + 3)2(2j − 1)2

)
ds
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|cij|2 ≤
K 2

16

1

(2j + 3)2(2j − 1)2
12(2j + 3)2

(2j − 3)

≤ K 2

16

12

(2j − 1)2(2j − 3)
, (2.65)

Substituting (2.65) in (2.60), we obtain

∥∥∥∥∂ui(t)∂t
− ∂ũi(t)

∂t

∥∥∥∥2
L2

=
∞∑

j=M+1

c2ij
1

(2j + 1)
dt

≤
∞∑

j=M+1

3

4

K 2

(2j − 1)2(2j − 3)

1

(2j + 1)

≤
∞∑

j=M+1

K 2

(2j − 1)3(2j − 3)

≤
∞∑

j=M+1

K 2

(2j − 3)4
.

This proves the Lemma.

Lemma 2.4.2. Let u(xi, t) be sufficiently smooth function in L2[0, 1] and
∂ũi(t)

∂t

be the numerial approximation of
∂ui(t)

∂t
obtained by using (M+1) elements of the

shifted Chebyshev polynomial of second kind. Assuming that the third derivative

of
∂ui(t)

∂t
is bounded by a constant ξ i.e.

∣∣∣∣∂3ui(t)∂t3

∣∣∣∣ ≤ ξ , then we have the following

upper bound of error

∥∥∥∥∂ui(t)∂t
− ∂ũi(t)

∂t

∥∥∥∥2
L2

≤ πξ2

3072
F3(1 +M). (2.66)

where Fn(z) is the Poly Gamma function defined by

Fn(z) = (−1)n+1n!
∞∑
k=0

1

(z + k)n+1
(2.67)

Proof. Proof is similar to Theorem 3 of [165] when α = 1



Chapter 2. Efficient Numerical Algorithm for Riesz space... 53

2.5 Numerical examples

In this section, we give the numerical examples of the RFDE and RFADE to demon-

strate the effectiveness of the numerical schemes. The accuracy of the proposed

schemes for both cases is demonstrated by the following error norms

∥u− U∥ =


(∑N

i=1 h|u(xi, T )− U(xi, T )|2
) 1

2
, L2-Norm,

max0≤i≤N |u(xi, T )− U(xi, T )|, L∞-Norm,

(2.68)

where u(x, t) and U(x, t) are exact and numerical solutions of the FDEs. The spatial

and temporal order of convergence is calculated by the following formula

Rate of convergence in spacial direction= logN1
N2

∥error(N1)∥
∥error(N2)∥

, (2.69)

where, error(Ni) denotes the error corresponds to the grid points Ni.

Apart from this, the numerical stability and robustness of our numerical algorithms

are verified numerically by adding some noisy data in the initial condition, as dis-

cussed in [166, 167]. Let f δ(x, 0) denotes the initial condition with noise δ i.e.

f δ(xi, 0) = f(xi, 0) + δω, (2.70)

where, ω is the uniform random variable whose values lies in [−1, 1], such that

max
1≤i≤N

(f(xi, 0)− f δ(xi, 0)) ≤ δ, (2.71)
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we have choosen two different value of noise δi as δ1 = m% of µN and δ2 = σN ,

where µNk is the mean of the initial values at each grid points defined as

µN =
1

N + 1

N∑
i=0

f(xi, 0), (2.72)

and σN is standard deviation (sometimes called root mean square) and defined as

σN =

(
N∑
i=1

h|u(xi, T )− U(xi, T )|2
) 1

2

. (2.73)

Remark 2.5.1. In all test examples, calculation of σN is performed by takingN = 160

and m = 0.1.

Remark 2.5.2. Numerical experiments are carried out on a Laptop with (a) Intel(R)

Core (TM) i5-2430M CPU @ 2.40 GHz (b) RAM 8GB and (c) System type 64-

bit operating system running on MATLAB 2015a (The MathWorks, Inc., Natick,

Massachusetts) programming.

2.5.1 Numerical examples for Riesz-space fractional diffu-

sion equation

Example 2.5.1. Consider the following RFDE

∂

∂t
u(x, t) = kα

∂α

∂|x|α
u(x, t), 1 < α ≤ 2, (2.74)

with initial and boundary condition

u(x, 0) = x2(π − x), 0 ≤ x ≤ π, (2.75)

u(0, t) = u(π, t) = 0, 0 ≤ t ≤ T. (2.76)
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From [72], we know the exact solution of RFDE in Ex. 2.5.1 is given by,

u(x, t) =
∞∑
n=1

[
8

n3
(−1)n+1 − 4

n3

]
sin(nx)e−[(n

2)
α
2 kα]t. (2.77)

The outcomes of Ex. 2.5.1 are presented as:

• Fig. 2.1 and Fig. 2.2 show approximate solution, exact solution and absolute

errors in Ex. 2.5.1, respectively, for α = 1.5, kα = 0.25 and M = 10 SLP basis

function. It can be observed from these figures that, approximate solutions by

the proposed scheme (2.41) are in good agreement with the exact solutions at

each time level.

• Fig. 2.3 reflects the behavior of fractional order α in the solution profile of Ex.

2.5.1 at the various time levels. It can be observed that the numerical scheme

beautifully captures the shifting property of fractional diffusion process which

is rightwards than standard diffusion process (in red color) at each time levels.

• Fig. 2.4 and Fig 2.5 verifies the numerical stability of our scheme with respect

to SLP and SCP basis function respectively. The behavior of absolute errors at

final time T = 1 for α = 1.5 without noise and with two different noisy inputs,

δ1 = 0.1%µ160 and δ2 = σ160, in the initial data is shown in both the figures.

We see that the variation in the absolute error with noisy data is negligible

as compared to without noisy data. Therefore, it can be concluded that the

scheme (2.41) is numerically stable with respect to both the basis function.

• Tables 2.1-2.4 demonstrate the role of basis function, L2-error, CPU time (in

seconds) and spacial order of convergence. We have calculated the convergence

order in space of the proposed scheme with respect to L2-norm at time T = 0.4

by using two different set of elements in the basis function i.e. M = 5 and
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Figure 2.1: Surface plot of approximate solution (left) and exact solution (right)
of Ex. 2.5.1 for α = 1.5, h = π/160 and M = 10 SLP basis.

M = 10 for both the SLP/SCP basis functions. It is clear from Tables 2.1-2.4

that an increase in the number of basis function will reduce the absolute error

at higher grid points when α increase. It is also found that the spacial order

of convergence is of the second order for all values of α ∈ (1, 2].

• It can be seen from the Tables 2.1-2.4 that L2 error obtained by using SCP

basis is almost same as obtained by SLP basis but the CPU time taken by

SLP basis function is very less as compared to SCP basis function. Therefore

the proposed numerical scheme is more efficient with SLP basis function.
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Figure 2.2: Surface plot of absolute error of Ex. 2.5.1 for α = 1.5, h = π/160
and M = 10 SLP basis.
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Figure 2.3: Approximate solution of Ex. 2.5.1 at various α and at various time
level, when h = π/20 and M = 10 SLP basis.
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Figure 2.4: Absolute error of Ex. 2.5.1 for α = 1.5, h = π/160, at T = 1.0, with
different noisy input δi in the initial data, when M = 10 SLP basis.
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Figure 2.5: Absolute error of Ex. 2.5.1 for α = 1.5, h = π/80, at T = 1.0, with
different noisy input δi in the initial data, when M = 5 SCP basis.
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h

M = 5, α = 1.1 M = 5, α = 1.5 M = 5, α = 1.9

∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time

π/5 1.667e-02 - 3.45 2.815e-02 - 3.34 4.961e-02 - 3.38

π/10 7.055e-03 1.23 4.36 1.292e-02 1.12 4.21 1.834e-02 1.44 4.80

π/20 2.353e-03 1.58 6.72 3.635e-03 1.83 6.38 4.662e-03 1.98 6.74

π/40 6.334e-04 1.89 14.29 8.834e-04 2.04 14.27 1.135e-03 2.04 14.76

π/80 1.517e-04 2.06 42.46 2.307e-04 1.94 44.55 4.982e-04 1.18 48.54

π/160 3.691e-05 2.04 245.02 1.651e-04 0.48 248.42 4.991e-04 0.00 232.59

Table 2.1: Errors, Convergence Order (CO) and CPU time (in seconds) by using
SLP basis for Ex. 2.5.1 at time T = 0.4 with dt = 0.1 and different values of α.

h

M = 5, α = 1.1 M = 5, α = 1.5 M = 5, α = 1.9

∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time

π/5 1.659e-02 - 9.47 2.809e-02 - 9.70 4.957e-02 - 9.98

π/10 7.054e-03 1.23 10.12 1.289e-02 1.12 10.00 1.830e-02 1.44 10.08

π/20 2.352e-03 1.58 18.32 3.613e-03 1.83 18.41 4.622e-03 1.99 18.58

π/40 6.299e-04 1.90 45.89 8.699e-04 2.05 43.44 1.134e-03 2.03 45.47

π/80 1.484e-04 2.08 251.68 2.349e-04 1.89 234.11 5.775e-04 0.97 226.65

π/160 3.758e-05 1.98 4585.94 1.889e-04 0.31 4311.81 5.954e-04 0.45 4401.33

Table 2.2: Errors, Convergence Order (CO) and CPU time (in seconds) by using
SCP basis for Ex. 2.5.1 at time T = 0.4 with dt = 0.1 and different values of α.
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h

M = 10, α = 1.1 M = 10, α = 1.5 M = 10, α = 1.9

∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU ∥u− U∥2 CO CPU time

π/5 1.667e-02 - 4.70 2.815e-02 - 4.70 4.961e-02 - 4.96

π/10 7.055e-03 1.23 6.26 1.292e-02 1.12 6.57 1.853e-02 1.43 6.64

π/20 2.361e-03 1.58 12.86 3.693e-03 1.81 12.78 4.814e-03 1.94 10.21

π/40 6.475e-04 1.87 36.72 9.415e-04 1.97 39.38 1.212e-03 1.99 37.86

π/80 1.643e-04 1.98 186.51 2.363e-04 1.99 180.89 3.091e-04 1.97 168.32

π/160 4.132e-05 1.99 1039.77 5.982e-05 1.98 1216.99 9.523e-05 1.97 1078.45

Table 2.3: Errors, Convergence Order (CO) and CPU time (in seconds) by using
SLP basis for Ex. 2.5.1 at time T = 0.4 with dt = 0.1 and different values of α.

h

M = 10, α = 1.1 M = 10, α = 1.5 M = 10, α = 1.9

∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time

π/5 1.659e-02 - 24.42 2.809e-02 - 25.91 4.959e-02 - 24.41

π/10 7.057e-03 1.23 26.98 1.293e-02 1.12 30.10 1.846e-02 1.43 29.81

π/20 2.362e-03 1.58 62.11 3.689e-03 1.81 61.17 4.812e-03 1.94 60.67

π/40 6.467e-04 1.87 267.95 9.405e-04 1.97 256.15 1.217e-03 1.98 255.86

π/80 1.644e-04 1.98 5628.09 2.367e-04 1.99 5489.89 3.291e-04 1.44 5461.44

Table 2.4: Errors, Convergence Order (CO) and CPU time (in seconds) by using
SCP basis for Ex. 2.5.1 at time T = 0.4 with dt = 0.1 and different values of α.

Now, we will test the numerical scheme to demonstrate the role of fractional order

α in a more effective manner. Let’s consider another example.

Example 2.5.2. Consider the following RFDE

∂

∂t
u(x, t) = kα

∂α

∂|x|α
u(x, t), 1 < α ≤ 2, (2.78)



Chapter 2. Efficient Numerical Algorithm for Riesz space... 61

with initial and boundary condition

u(x, 0) = sin(4x), 0 ≤ x ≤ π, (2.79)

u(0, t) = u(π, t) = 0, 0 ≤ t ≤ T. (2.80)

From [72], we know the exact solution of the RFDE in Ex. 2.5.2 is given by

u(x, t) =
∞∑
n=1

bn sin(nx)e
−[(n2)

α
2 kα]t, (2.81)

where

bn =
2

π

∫ π

0

f(ξ) sin(nξ)dξ. (2.82)

The outcomes of Ex. 2.5.2 are presented as:

• Fig. 2.6 shows approximate solution of Ex. 2.5.2 for α = 1.5, kα = 0.25 and

M = 10 SLP basis functions. The absolute errors shown in Fig. 2.7 verifies

that approximate solution by scheme (2.41) are in good agreement with the

exact solution at each time level.

• Fig. 2.8 demonstrate the case of standard diffusion (α = 2) of Ex. 2.5.2. From

Figs. 2.6, 2.8 and 2.9 we can say that the phenomena of fractional diffusion

process is slower than the standard diffusion process.

• Fig. 2.9 demonstrates the behavior of α in the solution profile of Ex. 2.5.2 at

T = 0.5. It can be seen that by increasing the value of fractional order α, the

amplitude of sine wave decreases. Therefore, the given scheme verifies that

the diffusion process is proportional to Riesz-space fractional derivative α.
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• Table 2.5 shows the L2 error and verifies that the second order convergent rate

in space with respect to L2-norm at time T = 0.4 for all values of 1 < α ≤ 2.

Figure 2.6: Surface plot of approximate solution of Ex. 2.5.2 for α = 1.5,
h = π/160 and M = 10 SLP basis.

Figure 2.7: Surface plot of absolute error in Ex. 2.5.2 for α = 1.5, h = π/160
and M = 10 SLP basis.
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Figure 2.8: Surface plot of approximate solution of Ex. 2.5.2 for α = 2 (standard
diffusion), h = π/160 and M = 10 SLP basis.
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Figure 2.9: Approximate solution of Ex. 2.5.2 for α = 1.1, 1.5, 1.9 at T = 0.5,
h = π/40 and M = 10 SLP basis.
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h

M = 10, α = 1.1 M = 10, α = 1.5 M = 10, α = 1.9

∥u− U∥2 CO ∥u− U∥2 CO ∥u− U∥2 CO

π/5 1.022e-01 - 2.814e-02 - 2.414e-01 -

π/10 2.614e-02 1.96 1.290e-02 1.12 5.617e-02 2.10

π/20 6.573e-03 1.99 3.691e-03 1.81 1.373e-02 2.04

π/40 1.642e-03 2.00 9.415e-04 1.97 3.402e-03 2.01

π/80 4.116e-04 2.00 2.362e-04 1.99 8.471e-04 2.00

π/160 1.032e-04 2.00 5.983e-05 1.98 2.124e-04 2.00

Table 2.5: Errors and Convergence Order (CO) by using SLP basis for Ex. 2.5.2
at time T = 0.4 with dt = 0.1 and different values of α.

2.5.2 Numerical example for Riesz-space fractional advec-

tion dispersion equation

Example 2.5.3. Consider the following RFADE

∂

∂t
u(x, t) = kα

∂α

∂|x|α
u(x, t) + kβ

∂β

∂|x|β
u(x, t), 1 < α ≤ 2, 0 < β < 1, (2.83)

with initial and boundary condition

u(x, 0) = x2(π − x), 0 ≤ x ≤ π, (2.84)

u(0, t) = u(π, t) = 0, 0 ≤ t ≤ T. (2.85)

From [72], we know the exact solution of the RFADE in Ex. 2.5.3 is given by

u(x, t) =
∞∑
n=1

[
8

n3
(−1)n+1 − 4

n3

]
sin(nx)e

−
[
(n2)

α
2 kα+(n2)

β
2 kβ

]
t
. (2.86)
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The outcomes of Ex. 2.5.3 are presented as:

• Fig. 2.10 and Fig. 2.11 shows approximate solution, exact solution and ab-

solute errors in Ex. 2.5.3, respectively, for α = 1.5, β = 0.5, kα = kβ = 0.25

and M = 10 SLP basis functions. It can be observed from these figures that,

approximate solutions by scheme (2.53) shows a good similarity with exact

solutions at each time level.

• Fig. 2.12 reflects the behavior of fractional order α, for a fix β and Fig. 2.13

reflects the behavior of fractional order β, for a fix α, in the solution profile of

Ex. 2.5.3 at various time levels. In this case also, the numerical scheme very

well captures the rightward shifting nature of fractional advection dispersion

process than standard advection dispersion process (α = 2, β = 1) at each

time level. The role of α dominates over β in this process which is more

effectively seen in Ex. 2.5.4.

• Fig. 2.14 verifies the numerical stability of our scheme. The behavior of

absolute errors at final time T = 1 for α = 1.4 and β = 0.6 without noise and

with two different noisy inputs, δ1 = 0.01%µ160 and δ2 = σ160, in the initial

data is shown in Fig. 2.14. The variation in absolute errors with noisy data is

negligible as compared to without noisy data. Therefore, it can be concluded

that the scheme (2.53) is numerically stable.

• Tables 2.6–2.9 show the L2-error and spacial order of convergence of RFADE

by the proposed scheme for various values of α and β. All tests have been

performed with respect to L2-norm at time T = 0.4 by usingM = 10. From the

results in Tables 2.6–2.9, we can conclude that the spacial order of convergence

are of second order for all values of α ∈ (1, 2) and β ∈ (0, 1).
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Figure 2.10: Surface plot of approximate solution (left) and exact solution
(right) of Ex. 2.5.3 for α = 1.5, β = 0.5, h = π/160 and M = 10 SLP ba-

sis.

• It can be seen from the Tables 2.6-2.7 that L2 error obtained by using SCP is

almost same as obtained by SLP but the CPU time taken by SLP basis function

is very less as compared to SCP basis. Therefore the proposed numerical

scheme is more efficient with SLP basis function.

Figure 2.11: Surface plot of absolute errors of Ex. 2.5.3 for α = 1.5, β = 0.5,
h = π/160 and M = 10 SLP basis.



Chapter 2. Efficient Numerical Algorithm for Riesz space... 67

0 0.5 1 1.5 2 2.5 3 3.5

X-axis

0

0.5

1

1.5

2

2.5

3

3.5

U
(x

,t
)

t=0.5, =1.2

t=1.5, =1.2

t=2.5, =1.2

t=0.5, =1.6

t=1.5, =1.6

t=2.5, =1.6

t=0.5, =2.0

t=1.5, =2.0

t=2.5, =2.0

t=0.5

t=1.5

t=2.5

Figure 2.12: Approximate solution of Ex. 2.5.3 at various α and at various time
level, when β = 0.4, h = π/20 and M = 10 SLP basis.
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Figure 2.13: Approximate solution of Ex. 2.5.3 at various β and at various time
level when α = 1.8, h = π/20 and M = 10 SLP basis.
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Figure 2.14: Absolute errors of Ex. 2.5.3 for α = 1.4, β = 0.6, h = π/160,
at T = 1.0, with different noisy input δi in the initial data, when dt = 0.1 and

M = 10 SLP basis.

h

α = 1.1 β = 0.1 α = 1.1 β = 0.5 α = 1.1 β = 0.9

∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time

π/5 1.598e-02 - 5.02 2.068e-02 - 5.29 2.69e-02 - 5.26

π/10 6.615e-03 1.27 7.86 7.923e-02 1.38 7.98 1.00e-02 1.43 8.09

π/20 2.179e-03 1.60 15.52 2.445e-03 1.70 14.83 2.92e-02 1.78 15.44

π/40 5.934e-04 1.88 61.93 6.491e-04 1.91 62.09 7.54e-03 1.95 59.85

π/80 1.508e-04 1.98 292.95 1.642e-04 1.98 322.13 1.90e-04 1.99 345.36

π/160 3.782e-05 1.99 1931.83 4.115e-05 2.00 2000.74 4.75e-04 2.00 2253.46

Table 2.6: Errors, Convergence Order (CO) and CPU time (in seconds) by using
M = 10 SLP basis function for Ex. 2.5.3 for α = 1.1, β = 0.1, 0.5, 0.9 at time

T = 0.4.
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h

α = 1.1 β = 0.1 α = 1.1 β = 0.5 α = 1.1 β = 0.9

∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time ∥u− U∥2 CO CPU time

π/5 1.583e-02 - 27.15 2.068e-02 - 24.93 2.69e-02 - 24.52

π/10 6.614e-03 1.27 35.35 7.922e-02 1.38 30.78 1.00e-02 1.44 29.99

π/20 2.217e-03 1.60 80.96 2.446e-03 1.69 70.81 2.92e-03 1.78 74.53

π/40 5.931e-04 1.88 329.29 6.492e-04 1.91 309.27 7.54e-03 1.95 327.23

π/80 1.505e-04 1.99 6290.23 1.640e-04 1.89 6352.23 1.90e-04 1.99 6436.89

Table 2.7: Errors, Convergence Order (CO) and CPU time (in seconds) by using
M = 10 SCP basis function for Ex. 2.5.3 for α = 1.1, β = 0.1, 0.5, 0.9 at time

T = 0.4.

h

α = 1.5, β = 0.1 α = 1.5, β = 0.5 α = 1.5, β = 0.9

∥u− U∥2 CO ∥u− U∥2 CO ∥u− U∥2 CO

π/5 2.630e-02 - 3.091e-02 - 3.738e-02 -

π/10 1.182e-02 1.15 1.261e-02 1.29 1.397e-02 1.42

π/20 3.359e-03 1.82 3.502e-03 1.85 3.767e-03 1.89

π/40 8.560e-03 1.97 8.890e-04 1.98 9.539e-04 1.98

π/80 2.150e-04 1.99 2.234e-04 1.99 2.394e-04 1.99

π/160 5.456e-05 1.98 5.673e-05 1.98 6.091e-05 1.97

Table 2.8: Errors and Convergence Order (CO) by using M = 10 SLP basis
function for Ex. 2.5.3 for α = 1.5, β = 0.1, 0.5, 0.9 at time T = 0.4.
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h

α = 1.9, β = 0.1 α = 1.9, β = 0.5 α = 1.9, β = 0.9

∥u− U∥2 CO ∥u− U∥2 CO ∥u− U∥2 CO

π/5 4.551e-02 - 4.900e-02 - 5.440e-02 -

π/10 1.676e-02 1.44 1.721e-02 1.51 1.795e-02 1.60

π/20 4.367e-03 1.94 4.462e-03 1.95 4.635e-03 1.95

π/40 1.102e-03 1.99 1.124e-03 1.99 1.168e-03 1.99

π/80 2.813e-04 1.97 2.871e-04 1.97 2.983e-04 1.97

π/160 9.002e-05 1.64 9.185e-05 1.64 9.618e-05 1.63

Table 2.9: Errors and Convergence Order (CO) by using M = 10 SLP basis
function for Ex. 2.5.3 for α = 1.9, β = 0.1, 0.5, 0.9 at time T = 0.4.

To further demonstrate the role of fractional order α and β, we consider another

example

Example 2.5.4. Consider the following RFADE

∂

∂t
u(x, t) = kα

∂α

∂|x|α
u(x, t) + kβ

∂β

∂|x|β
u(x, t), 1 < α ≤ 2, 0 < β < 1, (2.87)

with initial and boundary condition

u(x, 0) = sin(4x), 0 ≤ x ≤ π, (2.88)

u(0, t) = u(π, t) = 0, 0 ≤ t ≤ T. (2.89)

From [72], we know the exact solution of the RFADE in Ex. 2.5.4 is given by

u(x, t) =
∞∑
n=1

bn sin(nx)e
−
[
(n2)

α
2 kα+(n2)

β
2 kβ

]
t
, (2.90)
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where

bn =
2

π

∫ π

0

f(ξ) sin(nξ)dξ. (2.91)

The outcomes of Ex. 2.5.4 are presented as:

• Fig. 2.15 shows approximate solution of Ex. 2.5.4 for α = 1.5, β = 0.5,

kα = kβ = 0.25 and M = 10. The absolute errors shown in Fig. 2.16 verify

that approximate solution by scheme (2.53) are in good agreement with exact

solution at each time level.

• Fig. 2.17 demonstrate the case of standard advection dispersion equation

(α = 2, β = 1) of Ex. 2.5.4. From Figs. 2.15 and 2.17, we can say that

the phenomena of fractional advection-dispersion process is slower than the

standard advection dispersion process.

• Fig. 2.18 reflects the behavior of fractional order α, for a fix β and Fig. 2.19

reflects the behavior of fractional order β, for a fix α, at time T = 0.5. It can

be seen that by increasing the value of fractional order α and β, the amplitude

of sine wave decreases. Therefore, we can say that the advection-dispersion

process is also proportional to the Riesz-space fractional derivative of order α

and β. The dominant nature of fractional order α over β is clearly visible in

this example.

• Tables 2.10–2.12 shows the L2-error and second order of convergence of the

proposed scheme with respect to L2-norm for all values of α ∈ (1, 2] and

β ∈ (0, 1).
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Figure 2.15: Surface plot of approximate solution of Ex. 2.5.4 for α = 1.5,
β = 0.5, h = π/160 and M = 10 SLP basis.

Figure 2.16: Surface plot of absolute error of Ex. 2.5.4 for α = 1.5, β = 0.5,
h = π/160 and M = 10 SLP basis.
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Figure 2.17: Surface plot of approximate solution of Ex. 2.5.4 for α = 2, β = 1,
i.e. standard advection-dispersion equation, h = π/160 and M = 10 SLP basis.
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Figure 2.18: Approximate solution of Ex. 2.5.4 for α = 1.1, 1.5, 1.9, β = 0.1,
h = π/40 and M = 10 SLP basis.
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Figure 2.19: Approximate solution of Ex. 2.5.4 for α = 1.1, β = 0.1, 0.5, 0.9,
h = π/40 and M = 10 SLP basis.

h

α = 1.1, β = 0.1 α = 1.1, β = 0.5 α = 1.1, β = 0.9

∥u− U∥2 CO ∥u− U∥2 CO ∥u− U∥2 CO

π/5 9.352e-02 - 1.029e-01 - 1.227e-01 -

π/10 2.387e-02 1.97 2.581e-02 1.99 3.029e-02 2.02

π/20 5.992e-03 1.99 6.455e-03 2.00 7.539e-03 2.01

π/40 1.500e-04 2.00 1.614e-03 2.00 1.882e-03 2.00

π/80 3.750e-04 2.00 4.034e-04 2.00 4.705e-04 2.00

π/160 9.376e-05 2.00 1.009e-05 2.00 1.176e-05 2.00

Table 2.10: Errors and Convergence Order (CO) by using M = 10 SLP basis
function for Ex 2.5.4 for α = 1.1, β = 0.1, 0.5, 0.9 at time T = 0.4.
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h

α = 1.5, β = 0.1 α = 1.5, β = 0.5 α = 1.5, β = 0.9

∥u− U∥2 CO ∥u− U∥2 CO ∥u− U∥2 CO

π/5 1.599e-01 - 1.610e-01 - 1.669e-01 -

π/10 4.014e-02 1.99 3.980e-02 2.02 4.025e-02 2.05

π/20 1.001e-03 2.00 9.880e-03 2.01 9.940e-03 2.02

π/40 2.502e-03 2.00 2.470e-03 2.00 2.477e-03 2.00

π/80 6.235e-04 2.00 6.160e-04 2.00 6.187e-04 2.00

π/160 1.563e-05 2.00 1.540e-05 2.00 1.546e-04 2.00

Table 2.11: Errors and Convergence Order (CO) by using M = 10 SLP basis
function for Ex. 2.5.4 for α = 1.5, β = 0.1, 0.5 & 0.9 at time T = 0.4.

h

α = 1.9, β = 0.1 α = 1.9, β = 0.5 α = 1.9, β = 0.9

∥u− U∥2 CO ∥u− U∥2 CO ∥u− U∥2 CO

π/5 2.160e-01 - 2.088e-02 - 2.011e-02 -

π/10 5.028e-02 2.10 4.793e-02 2.12 4.493e-02 2.16

π/20 1.225e-03 2.04 1.163e-03 2.04 1.084e-02 2.05

π/40 3.040e-03 2.01 2.886e-03 2.01 2.683e-03 1.94

π/80 7.587e-04 2.00 7.200e-04 2.00 6.692e-04 2.00

π/160 1.896e-04 2.00 1.700e-04 2.00 1.672e-04 2.00

Table 2.12: Errors and Convergence Order (CO) by using M = 10 SLP basis
function for Ex. 2.5.4 for α = 1.9, β = 0.1, 0.5, 0.9 at time T = 0.4.
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Figure 2.20: Comparison of RFDE Ex. 2.5.2 and RFADE Ex. 2.5.4 at T = 0.5,
h = π/40 and M = 10 SLP basis.

Fig. 2.20 shows the role of fractional advection term in the RFADE. It shows that

the diffusion process becomes faster after the addition of advection term in RFDE.

2.6 Appendix

2.6.1 Derivation of equation (2.39)

From equation (2.37)

[CT
i ] = −kαACT

i K− kαAF
T
i ,
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the above equation can be rewritten as


CT

1

...

CT
N−1

 = −kα


a1,1 · · · aN−1,1

...
. . .

...

aN−1,1 · · · a1,1



CT

1 K
...

CT
N−1K



−kα


a1,1 · · · aN−1,1

...
. . .

...

aN−1,1 · · · a1,1



F T
1

...

F T
N−1

 , (2.92)

Now, putting the value of [FTi ], [C
T
i ] from (2.25) and [CT

i K] from (2.38) in above

expression, we get


c10 · · · c1M
...

. . .
...

cN−1,0 · · · cN−1,M

=

− kα


a1,1 · · · aN−1,1

...
. . .

...

aN−1,1 · · · a1,1



∑M

j=0 c1jkj0 · · ·
∑M

j=0 c1jkjM
...

. . .
...∑M

j=0 cN−1jkj0 · · ·
∑M

j=0 cN−1jkjM



− kα


a1,1 · · · aN−1,1

...
. . .

...

aN−1,1 · · · a1,1




f10 · · · f1M
...

. . .
...

fN−1,0 · · · fN−1,M

 ,

after matrix multiplication, we get,
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c10 · · · c1M
...

. . .
...

cN−1,0 · · · cN−1,M

=

− kα


∑N−1

l=1 a1l

(∑M
m=0 clmkm0

)
· · ·

∑N−1
l=1 a1N−1

(∑M
m=0 clmkmN−1

)
...

. . .
...∑N−1

l=1 aN−1,l

(∑M
m=0 clmkm0

)
· · ·

∑N−1
l=1 aN−1,N−1

(∑M
m=0 clmkmN−1

)


− kα


∑N−1

l=1 a1lfl0 · · ·
∑N−1

l=1 a1N−1fl0
...

. . .
...∑N−1

l=1 aN−1,lfl0 · · ·
∑N−1

l=1 aN−1,N−1fl0

 . (2.93)

comparing the coefficients of cij for i = 1, 2, ..., N−1 and j = 0, 1, ...,M from (2.93),

we get (2.39), i.e.

cij = −kα
N−1∑
l=1

ail

(
M∑
m=0

clmkmj

)
−kα

N−1∑
l=1

ail (flj) , i = 1, 2, ..., N−1 j = 0, 1, ...,M,

where aij = aji with aij = aN−i+1,N−j+1 because A is symmetric as well as centro-

symmetric matrix.

2.6.2 Derivation of equation (2.52)

From equation (2.51)

[CT
i ] = −kαA[CT

i K]− kαA[F
T
i ]− kβB[F

T
i ]− kβB[C

T
i K]. (2.94)

Now, putting the value of [FTi ], [C
T
i ] from (2.25) and [CT

i K] from (2.38) in above

expression and performing the same process as mentioned in 2.6.1 we get,
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c10 · · · c1M
...

. . .
...

cN−1,0 · · · cN−1,M

=

− kα


∑N−1

l=1 a1l

(∑M
m=0 clmkm0

)
· · ·

∑N−1
l=1 a1N−1

(∑M
m=0 clmkmN−1

)
...

. . .
...∑N−1

l=1 aN−1,l

(∑M
m=0 clmkm0

)
· · ·

∑N−1
l=1 aN−1,N−1

(∑M
m=0 clmkmN−1

)


− kα


∑N−1

l=1 a1lfl0 · · ·
∑N−1

l=1 a1N−1fl0
...

. . .
...∑N−1

l=1 aN−1,lfl0 · · ·
∑N−1

l=1 aN−1,N−1fl0



− kβ


∑N−1

l=1 b1l

(∑M
m=0 clmkm0

)
· · ·

∑N−1
l=1 b1N−1

(∑M
m=0 clmkmN−1

)
...

. . .
...∑N−1

l=1 bN−1,l

(∑M
m=0 clmkm0

)
· · ·

∑N−1
l=1 bN−1,N−1

(∑M
m=0 clmkmN−1

)


− kβ


∑N−1

l=1 b1lfl0 · · ·
∑N−1

l=1 b1N−1fl0
...

. . .
...∑N−1

l=1 bN−1,lfl0 · · ·
∑N−1

l=1 bN−1,N−1fl0

 . (2.95)

comparing the coefficients of cij for i = 1, 2, ..., N−1 and j = 0, 1, ...,M from (2.95),

we get (2.52), i.e.

cij = −kα
N−1∑
l=1

ail

(
M∑
m=0

clmkmj

)
−kα

N−1∑
l=1

ailflj−kβ
N−1∑
l=1

bil

(
M∑
m=0

clmkmj

)
−kβ

N−1∑
l=1

bilflj,

where aij = aji with aij = aN−i+1,N−j+1 for A and bij = bji with bij = bN−i+1,N−j+1

for B because A and B are symmetric as well as centro-symmetric matrix.
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2.7 Conclusion

In summary, we have proposed two efficient numerical scheme for RFDE and RFADE,

by applying a finite difference scheme based on MTM in spatial direction and a

meshfree OMM based on SLP/SCP basis function in time direction. It is found

from the study that the numerical solution at any time level does not depend on

the numerical solution at previous time levels. The optimal error bound for the

numerical approximation is investigated. Increasing the number of elements in basis

functions improves the accuracy of the solution as α increases. Further, and it is

found that the spatial convergence order of the proposed schemes are second order.

Noise applied to the initial condition verifies the numerical stability of the schemes.

A detailed numerical study of RFDEs and RFADEs, confirms the effectiveness and

accuracy of the proposed schemes. It can be observed that both the basis function

(SLP/SCP) gives almost the same accuracy but the CPU time taken by SLP is far

less than SCP basis function. The proposed schemes very well capture the shifting

nature of RFDE and RFADE and signify the role of fractional order α and β. It

also justifies that the fractional-order processes are slower than the standard order

processes. Hence, it is concluded that the numerical schemes with SLP basis are

simple, fast, easy to implement and yield high accurate results. Application of these

schemes can further be extended to the higher dimension for solving space fractional

PDEs, which is one of our goals and a topic for future study.

***********
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