
CHAPTER 1

INTRODUCTION

This chapter contains a brief descriptions of the objective, approach, and organiza-

tion of the thesis. Sect. 1.1 discusses a brief history about the fractional calculus

and fractional partial differential equations (FPDEs). In Sect. 1.2, basic definitions

of fractional integral and derivatives are given which is being used throughout the

thesis. In sec. 1.3 we have discussed about the brief literature review for the frac-

tional mathematical models that we have taken in our study. Sec. 1.4 presents some

mathematical preliminaries. In Sect. 1.5, some fundamental mathematical results

based on proposed numerical methods are discussed that are used in this thesis. The

challenges and motivations behind the topics are explained in Sect. 1.6. Sect. 1.7

defines the lists the objectives of the thesis.
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1.1 Background

1.1.1 Fractional calculus

The origin of the fractional calculus lies in a conversation between Leibniz and

L’Hospital. Leibniz invented the notation dny/dxn. In 1695, L’Hospital ask Leib-

niz,“What if n be 1/2”. Leibniz replied, “This is an apparent paradox from which,

one day, useful consequences can be drawn.” In his correspondance with Johann

Bernoilli, Leibniz mentions derivative of “general order” [4]. In 1772, J.L. Lagrange

developed the law of exponents for differential operators of integer order and wote:

dm

dxm
dn

dxn
y =

dm+n

dxm+n

In 1812, P.S. Laplace defined a fractional derivative by means of an integral and

in 1819, for the first time, S.F.Lacroix [5], mentioned “the derivative of arbitrary

order”. He generalizes from a case of integer order to develop the derivative of

arbitrary order as for y = xm, m being a positive integer

dny

dxn
=

m!

(m− n)!
xm−n,m ≥ n.

Using the definition of the gamma function, he wrote

dny

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n,m ≥ n.

then he gave an example for y = x and n = 1/2, he obtain

d1/2y

dx1/2
=

2
√
x√
π
,m ≥ n.
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It is interesting to note that the result obtained by Lacroix is the same as yielded

by present-day Riemann-Liouville definition of a fractional derivative.

Joseph Fourier [6] was the next to mention derivatives of arbitrary order. His defi-

nition of fractional operations was obtained from his integral representation of any

function f(x) as

dα

dxα
f(x) =

1

2π

∫ ∞

−∞
f(u)du

∫ ∞

−∞
pα cos[p(x− u) +

1

2
απ]dp. (1.1)

The number α will be regarded as any quantity, whatsoever, positive or negative.

The first use of fractional operations was made by Niels Henrik Abel in 1823. He

applied the fractional calculus in the solution of an integral equation that arises in

the formation of the tautochrone problem. If the time of slide is a known constant

‘k’, then Abel’s integral equation is

k =

∫ x

0

(x− t)−1/2f(t)dt (1.2)

Abel wrote the R.H.S. of (1.2) as
√
π[d−1/2/dx−1/2]f(x). Then he operated on both

side of the equation with d1/2/dx1/2 to obtain

d1/2

dx1/2
k =

√
πf(x) (1.3)

Thus, when the fractional derivative of order 1/2 of a constant ‘k’ is computed, f(x)

is determined. This is a remarkable achievement of Abel in fractional calculus.

In 1832, the first major study of fractional calculus was done by Joseph Liouville.He

assumed that the arbitrary derivative of a function f(x) that may be expanded in a
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series of the form

f(x) =
∞∑
n=0

cne
anx, Re an > 0 (1.4)

is

Dαf(x) =
∞∑
n=0

cna
α
ne

anx (1.5)

This is known as Liouville’s first formula for a fractional derivatives. Later in 1847,

G.F. Bernhard Riemann sought a generalization of a Taylor’s series expansion and

derived the following definition for fractional integration:

D−vf(x) =
1

Γ(v)

∫ x

c

(x− t)v−1f(t)dt+Ψ(x). (1.6)

However, he saw fit to add a complementary function Ψ(x) to the above definition.

Today, this definition is in common use as a definition for fractional integration but

with complementary function taken to be identically zero, and the lower limit of

integration c is usually zero, i.e.

0D
−v
x f(x) =

1

Γ(v)

∫ x

0

(x− t)v−1f(t)dt, Re(v) > 0. (1.7)

This form of the fractional integral often is referred to as Riemann-Liouville frac-

tional integral. For f(x) = xa and v > 0, we have from (1.8) that

0D
−v
x xa =

Γ(a+ 1)

Γ(a+ v + 1)
xa+v, a > −1. (1.8)

Later, in the second half of nineteenth century, many mathematicians like A.K.

Grunwald, A.V. Letnikov, H. Laurent, A. Krug, O. Heaviside etc contributed in

the development of fractional calculus [7]. In twentieth century, M.T. Naraniengar,
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H.H. Hardy, J.E. Littilewood, H.T. Davis, W. Fabian, J. Caputo, M. Riesz, T.J.

Osler, K.B. Oldham [8], J. Spanier, T.R. Prabhakar, I. Podlubny [9], A. Kilbas and

H.M. Srivastava [10] etc. played an important role in the growth and application of

fractional calculus in the field of science, engineering and technology.

1.1.2 Fractional order partial differential equations

In recent years, the theory of fractional partial differential equations have played an

important role in modeling of many physical and natural phenomena. The fractional-

order derivative allows the memory description and hereditary properties of various

substances. Because of this reason, the fractional-order models have proved to be

more accurate than integer-order models [9, 10]. In the past two decades, it has

become more popular and important due to its applications in the various fields of

science and engineering. Fractional differential equations (FDEs) provide a powerful

and flexible tool for modeling and describing the behavior of real materials [11], signal

and image processing [12], finance [1], fluid dynamics [13, 14], electromagnetic waves

[15], electrochemical process, where a particle plume spreads at a rate inconsistent

with the classical Brownian motion model [8], biological systems [16, 17], control

theory [18, 19], graph theory [20] and so on. In many mathematical models, the

most commonly used fractional derivatives are the Riemann-Liouville derivative and

the Caputo derivative. Riemann-Liouville derivatives are generally used to model

the space fractional PDEs, whereas Caputo derivatives are mostly used in modeling

the time-fractional PDEs.

The fractional derivatives have important nonlocal property and memory effect. The

main advantage of FDEs is that it provides a powerful tool for depicting the systems

with memory, long-range interactions and hereditary properties of several materials
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as opposed to the classical differential equations in which such effects are difficult to

incorporate [21, 22]. For the first time processes with memory were mathematically

described by Ludwig Boltzmann in 1874 and 1876 [23, 24]. Memory means that the

existence of output of any process will depend not only on current time but also on

the history of change of input on a finite or infinite time interval. It can be described

by functions called memory functions. These functions are the kernel of integro-

differential operator known as power-law memory in fractional calculus. This can

also be seen as an advantage of FDEs over integer-order differential equations as the

latter has the property of being differentiable only in an infinitesimal neighbourhood

of the considered point. So it cannot describe the processes with memory. Since,

the non-integer order derivatives violate the Leibnitz rule, it allows us to represent

memory. A wide range of functions with memory in continuous time models of

physics actively uses fractional integro-differential equations. Some applications of

FDEs in different fields of real-life problems are discussed in [25]. Now we discuss

about some fractional order partial differential equations which we have considered

in this thesis.

1.1.2.1 Riesz-space fractional partial differential equations

Space fractional derivatives are used to model anomalous diffusion or dispersion

process [13, 14]. Space fractional advection-dispersion equations are used to describe

the transport in a complex system which is governed by anomalous diffusion and

non-exponential reaction patterns [26–28]. Benson et al. [29, 30] has modelled the

transport of passive tracer carried by fluid flow in a porous medium for groundwater

hydrology research.
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Recently, many researchers have drawn their attention to Riesz-space fractional

derivatives in their models. Baleanu [31] discussed fractional variational princi-

ple of constrained systems involving Riesz-derivative. Rabei et al. [32] presented

a fractional Hamilton-Jacobi formulations for systems containing Riesz fractional

derivatives. Saichev et al. [33], derived the RFADE from the kinetics of chaotic

dynamics. The importance of taking Riesz derivative is that it is the linear sum

of left and right Riemann-Liouville derivatives which makes it easier to model the

flow regime that is impacted by both sides of the domain [34]. In this thesis, we

consider the following space fractional partial differential equation with Riesz-space

fractional derivative

∂

∂t
u(x, t) = kα

∂α

∂|x|α
u(x, t) + kβ

∂β

∂|x|β
u(x, t), 0 ≤ t ≤ T, 0 ≤ x ≤ L, (1.9)

with initial condition

u(x, 0) = f(x), (1.10)

and Dirichlet boundary conditions

u(0, t) = u(L, t) = 0, (1.11)

where, 1 < α ≤ 2, 0 < β < 1, u is a solute concentration; kα and kβ represent

the dispersion coefficient and the average fluid velocity, respectively. Here, we take

kα > 0 and kβ ≥ 0.

To find the physical and mathematical behaviors of these models based on Riesz

derivatives, analytical solution will play a vital role. But, due to non-local prop-

erties of fractional integral and fractional derivatives, it seems difficult to find the
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analytical solution of most of the FDEs. Thus, it is necessary and important to

establish the numerical schemes with significant accuracy to solve the FDEs. Dif-

ferent forms of FDEs have been solved by using different numerical approachs e.g.

finite difference methods (FDM)[1, 35–41], spectral methods [42–44], collocation

methods [45–47], finite element methods [48–50], finite volume methods [51, 52] and

operational matrix method [53, 54] etc.

1.1.2.2 Time fractional Black-Scholes model (TFBSM)

In the financial market, a derivative is a financial instrument whose pay-off depends

on the underlying asset’s value. An option is considered to be a popular and im-

portant financial derivative. It is categorized into two main categories. One is call

option and other is put option. A call option gives his owner the right, but not an

obligation, to buy the underlying asset at a fixed price (strike price) K at a specified

time in the future, i.e., at maturity. The call option owner wants the stock price

to rise so that he can buy the asset for less than its worth. The call option would

be profitable if exercised at maturity when the stock price (S) is above the strike

price (K). A put option gives his owner the right, but not an obligation, to sell the

underlying asset at strike price K at maturity. The owner of the put option wants

the stock price to fall to sell the asset for more than its worth. The put option

would be profitable if it is exercised at maturity when the stock price is below the

strike price. When an option is exercised only at maturity, it is called the European

option and, when it is exercised before maturity, it is called the American option.

Therefore, from both the theoretical and practical perspectives, pricing an option

now becomes a significant problem. In 1973, Black and Scholes proposed a model

called the Black-Scholes (B-S) model, which describes the underlying asset’s behav-

ior [55, 56]. Although the price of the options obtained from the B-S model is “very
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close” to the observed price, but it still has some drawbacks like the inability to

capture the significant movements called “volatility smile” of financial market or

jumps over small time intervals [57].

With the discovery of the fractal structure of a stochastic process, fractional calculus

is now being employed in modeling the financial process [58]. In this connection, two

types of fractional derivatives, namely space fractional derivative and time-fractional

derivative, plays a vital role in modeling the financial process. Using space-fractional

derivative, a finite moment log stable (FMLS) model was introduced by [59], where

they used the Fourier transform method to compute the option values. [60] derived

three popular space-fractional B-S models in which they established an essential

connection between FMLS, CGMY, and KoBoL process. Using the time-fractional

derivative, [61] priced a European call option by a time-fractional Black-Scholes

model for pricing the European vanilla options. [62] modeled the European-style

option by time-fractional partial differential equation utilizing tick-by-tick data via a

non-explosive market point process. The author has used the Caputo derivative as a

non-local operator in time-to-maturity. A time-space fractional B-S model is derived

by [63] using fractional order Taylor formula and Ito’s lemma, which later applied to

Merton’s optimal portfolio [64]. Based on this idea, [65] introduced a bi-fractional

B-S model with the assumption that the underlying asset follows a fractional Ito’s

process, and the change in the option price with time is a fractional transmission

system. In the same way, pricing an American option is also an important task in

the finance. A greedy algorithm for partition of unity collocation method is used in

pricing American option by [66]. Recently, [67, 68] have discussed the B-S model in

distributive order.
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1.1.2.3 Time-fractional wave equation (TFWE)

As we know, several fractional derivatives are used to model various physical phe-

nomena such as Riemann Liouville derivative, Caputo derivative, Riesz derivative,

Caputo-Fabrizio derivative, Atangana-Baleanu fractional derivative, etc. Among all

of them, the Caputo derivative are widely used to model many physical processes

into time-fractional partial differential equations (TFPDEs). One such important

TFDE is time-fractional wave equations (TFWEs). The TFWE is obtained by re-

placing the second order time derivative with a fractional order derivative α ∈ (1, 2).

In this chapter, we consider the following time-fractional wave equation [69, 70]:

C
0 D

α
t u(x, t) = uxx(x, t) + f(x, t), (x, t) ∈ Ω = [0, L]× [0, T ], (1.12)

with the initial conditions

u(x, 0) = ϕ1(x), ut(x, 0) = ϕ2(x); (1.13)

and boundary conditions.

u(0, t) = ψ1(x), u(L, t) = ψ2(x). (1.14)

Here C
0 D

α
t u(x, t) is the Caputo fractional derivative of order 1 < α < 2, and (x, t) ∈

Ω = [0, L]× [0, T ].
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1.1.2.4 Time fractional telegraph equation (TFTE)

Telegraph equations are used within wave propagation of electrical signals in a cable

transmission line as wave phenomena.



C
0 D

α
t u(x, t) + γ1

C
0 D

β
t u(x, t) + γ2u(x, t) = γ3uxx(x, t) + f(x, t),

I.C. : u(x, 0) = ϕ1(x), ∂tu(x, 0) = ϕ2(x);

B.C. : u(xl, t) = ψ1(x), u(xr, t) = ψ2(x).

(1.15)

Where, (x, t) ∈ Ω = [xl, xr] × [0, T ], 1 < α < 2 and 0 < β < 1. γ1, γ2, γ3 are the

real coefficients. If γ1 > 0 and γ2 = 0 then the above equation represents a damped

wave motion.

1.2 Definition of some fractional derivatives

In this section, we present the definition of some fractional-order derivatives.

Definition 1.1. (Grünwald-Letnikov derivatives) The left and right Grünwald-

Letnikov derivatives with order α > 0 of the given function u(t), t ∈ (a, b) are defined

as [10, 37]:

GL
a Dα

t u(t) = lim
h→0
h= t−a

N

h−α
N∑
j=0

(−1)j
(
α

j

)
u(t− jh), (1.16)

and,

GL
t Dα

b u(t) = lim
h→0
h= b−t

N

h−α
N∑
j=0

(−1)j
(
α

j

)
u(t+ jh), (1.17)

respectively.
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Definition 1.2. (Riemann-Liouville fractional derivative) The left and right

Riemann-Liouville fractional derivatives with order α > 0 of the given function u(t),

t ∈ (a, b) are defined as [10, 37]:

RL
a Dα

t u(t) =
1

Γ(m− α)

dm

dtm

∫ t

a

(t− s)(m−α−1)u(s)ds, (1.18)

and,

RL
t Dα

b u(t) =
(−1)m

Γ(m− α)

dm

dtm

∫ b

t

(s− t)(m−α−1)u(s)ds, (1.19)

respectively, where m ∈ Z+ satisfying m− 1 ≤ α < m.

Definition 1.3. (Caputo fractional derivative) The left and right Caputo frac-

tional derivatives with order α > 0 of the given function u(t), t ∈ (a, b) are defined

as [10, 37]:

C
aD

α
t u(t) =

1

Γ(m− α)

∫ t

a

(t− s)m−α−1u(m)(s)ds, (1.20)

and,

C
t D

α
b u(t) =

(−1)m

Γ(m− α)

∫ b

t

(s− t)m−α−1u(m)(s)ds, (1.21)

respectively, where m ∈ Z+ satisfying m− 1 < α ≤ m.



Chapter 1. Introduction 13

Definition 1.4. (Riesz fractional derivative) The Riesz fractional derivative

with order α > 0 of the given function u(x), x ∈ (a, b) is defined as [10, 37]:

RZDα
t u(t) =

∂αu(t)

∂|t|α
= −cα(RLa Dα

t +
RL
t Dα

b )u(t), (1.22)

where cα = − 1

2 cos(απ/2)
, α ̸= 2k + 1, k = 0, 1, . . . . RL

0 Dα
t and RL

t Dα
L are defined

as the left and right Riemann-Liouville derivatives, respectively.

Definition 1.5 ([71]). Suppose the Laplacian (−∆) has complete set of orthonor-

mal eigenfunctions {ϕn} corresponding to eigenvalue λ2n on a bounded region Ω i.e.

(−∆)ϕn = λ2nϕn on Ω; B(ϕ) = 0 on ∂Ω where B(ϕ) is one of the standard three

homogeneous boundary conditions. Let

Fγ =
{
f =

∞∑
n=1

fnϕn, fn =< f, ϕn >:
∞∑
n=1

|fn|2|λ|γn <∞}, γ = max(α, 0)
}

(1.23)

then for any f ∈ Fγ, (−∆)α/2 : Fγ → L2(Ω) is defined by

(−∆)α/2f =
∞∑
n=1

fn(λ
2
n)
α/2ϕn. (1.24)

Definition 1.6 ([71]). Let {ϕn} be the complete set of orthonormal eigenfunctions

corresponding to eigenvalues λ2n for the Laplacian (−∆) on a bounded region Ω with

homogeneous boundary conditions on Ω. Then

(−∆)
α
2 f =


(−∆)mf, if α = 2m, m = 0,1,2...

(−∆)
α
2
−m(−∆)mf, if m− 1 < α

2
< m, m = 1,2...∑∞

n=1 λ
α
n⟨f, ϕn⟩ϕn, if α < 0.

(1.25)
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Lemma 1.2.1 ([10, 37]). For a function u(t) defined on the infinite domain −∞ <

x <∞, the following inequality holds:

−(−∆)α/2u(t) = −cα(RL−∞Dα
t +

RL
t Dα

∞)u(t) =
∂αu(t)

∂|t|α
. (1.26)

Proof. See ([72]).

1.3 Literature review

The theory of integrals and derivatives of fractional order has achieved much pop-

ularity and importance due to the applications in science and engineering. Mathe-

matical models based on arbitrary order integrals and derivatives provide a powerful

and flexible tool for describing the behavior of real materials [11], viscoelastic fluid

[14, 73, 74], finance [1, 75–77], signal and image processing [12, 78–80], electrochem-

ical process [8, 81], biological systems [16, 82], control theory [18, 19, 83], electro-

magnetic waves [15, 84, 85] and so on. We now present a brief literature review for

some classes of fractional mathematical problems that are considered in this thesis.

1.3.1 Literature review on Riesz-fractional partial differen-

tial equation

In 2007, Lin and Xu [42] presented a finite difference/spectral approximation for the

time fractional diffusion wave equation where they have applied the finite difference

method in time and Legendre spectral method in space. Yang et al. [72] in 2010, gave

three numerical methods based on the fractional method of lines to solve the RFDE

and RFADE. They have shown that the MTM provides the best result in all the three
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numerical schemes but did not discuss the theoretical convergence and stability of

the numerical schemes. In 2012, Celik et al. [86] used the Crank-Nicolson scheme for

RFDE, where the Riesz derivative is approximated by fractional central difference

schemes. In the same year, Ding et al. [87] developed a new numerical method

with improved MTM for Riesz-space derivative and (2,2) Pade approximation for

computing the exponential matrix to solve the RFDE and RFADE. They also used

the matrix analysis method to prove the unconditional stability of the scheme. In

2016, Yuan et al. [88] proposed a meshfree point interpolation method (PIM) to

solve RFADE. Recently, Saberi et al. [89] developed radial basis function collocation

method to solve RFADE. Some more numerical investigations on RFDE and RFADE

are available in literatures [90–92].

1.3.2 Literature review on time fractional Black-Scholes model

governing European option

Due to the importance of fractional-order derivatives, the fractional B-S model has

gained much interest amongst the researchers to find its solution. To find the analyt-

ical solution, some of the researchers have used the homotopy perturbation method

[93], homotopy analysis method [94], integral transform method [61, 64, 65, 95] for

the fractional B-S model. But the problem with these solutions lies in the fact that

they are of the form of convolution of some special functions or an infinite series

with integrals [1]. Therefore, developing a numerical approximation for the solution

of TFBSM becomes more crucial. In the past few years, only a few reports are

available on the numerical solution of TFBSM using different approaches.

• In 2016, Zhang et al., [1] proposed an implicit numerical scheme based on the

finite difference approach, which is of the order (2-α) in time and second order
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accurate in space. However, the authors did not discuss the effect of various

parameters on option pricing.

• In 2017, DeStaelen and Hendy [2] improved the spatial order of convergence

of the scheme given by [1] by applying the compact difference scheme in space

while maintaining the (2-α) order in time. The effects of market parameters

on option pricing have not been discussed here also.

• In 2018, Cen et al. [96] used an integral discretization scheme on an adopted

mesh in time and a central difference scheme on a piece-wise uniform mesh in

space to overcome the non-physical oscillation caused by the degeneracy of the

B-S differential operator.

• In 2019, Golbabai and Nikan [97] proposed a new approach based on the radial

basis function combined with a finite difference approach (RBF-FD) to solve

TFBSM for European options, which is again of (2-α) order in time.

• Soleymani and Akgul, [98] proposed a localized RBF-FD approach for the

European multi-asset option pricing problem. Later, the authors [99] have

applied the weights of Guassian RBF-FD scheme to solve the partial integro-

differential equation arising from the Bates model in finance.

• In 2021, Roul and Goura, [100] gave a compact finite difference scheme to

solve the TFBSM with the help of L1 scheme of order (2-α). An et al. [101]

developed a space-time spectral method for the TFBSM.
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1.3.3 Literature review on approximation of the Caputo

derivatives and time fractional wave equation

The fractional derivative possesses the non-local property where the fractional deriva-

tive of any function f at any time t depends on the value of the function at all the

previous time intervals 0 < s < t. This makes the computation more costly and time

consuming and requires more memory for data storage in our computer. Therefore,

designing a good approximation of fractional derivative and high-order numerical

methods has becomes an emerging area for the last decade. Several researchers have

developed many different numerical approximations of Caputo fractional derivatives

for α ∈ (0, 1) by using the idea of interpolation such as L1 approximation [8],

L1-2 approximation [102], higher order approximation [103], L2-1σ approximation

[38], FL1-2 approximation [104], FL2-1σ approximation [105], L1-2-3 approxima-

tion [106], and recently, a new L2 type approximation [107]. These approxima-

tions combined with the method of order reduction were generally used to solve the

time-fractional partial differential equation (TFPDE) for α ∈ (1, 2). Till now, very

few direct higher order approximation are available for the Caputo derivative when

α ∈ (1, 2). Some of them are as follows.

• Liu et al. [27] in 2004 discussed the L2 approximation of order (3 − α) in

which they have used quadratic interpolation to approximate the second order

derivative.

• Lynch et al. [108] proposed the L2C scheme of order (3 − α) by using four

point discretization and shows that the L2C method is more accurate than the

L2 method when 1 < α < 1.5, whereas the L2 method gives more accuracy

than the L2C method when 1.5 < α < 2. At α = 1.5, both schemes give the

same accuracy.
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• In 2010, Du et al. [109] derived a compact difference scheme of order O(τ3−α+

h4) for TFDWE. In 2014, Yang et al. [110] used the fractional multistep

method and proposed a numerical scheme of orderO(τα+h2) to solve TFDWE.

• 2016, Sun et al. gave a second order difference scheme for TFWE [111] and

multi-term TFWE [112] using the method of order reduction combined with

L2-1σ scheme and FL2-1σ, respectively.

• In 2018, Liu et al. [69] proposed a novel difference scheme of order O(τ3−α+h2)

to solve the time-fractional diffusion wave equation (TFDWE).

• In 2019, Du et al. [113] designed a (4 − α) order formula for the Caputo

derivative
1

2

(
C
0D

α
t f(tk) +

C
0D

α
t f(tk−1)

)
to solve the TFDWE for the time level

k ≥ 3. This approximation is an average of the fractional derivative at kth and

(k− 1)th level and one have to use some other numerical method to obtain the

numerical solution at the first two time level.

• In 2020, Shen et al. [114] has derived an H2N2 interpolation formula for the

Caputo derivative of order α ∈ (1, 2) and its application to TFWE in 1D and

2D.

• Recently, in 2021, Hengfei Ding [115] has developed two second order numerical

differential formulas for the Caputo derivative of order α ∈ (0, 1) and β ∈ (1, 2)

at point tk+1/2. The author has implemented this to solve the time-fractional

mixed subdiffusion and diffusion-wave equation.
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1.3.4 Literature review on time fractional telegraph equa-

tion

In the past decades, many researchers have found the analytical solution for the

TFTE. Moami [116] in 2005 have found the analytical and approximate solution

of TSFTE by Adomian decomposition method. In 2008, Chen et al. [117] have

derived the analytical solution of TFTE with three different boundary conditions

using method of separation of variables. Das et al. [118] have given approximate

analytical solution of TFTE by Homotopy Analysis Method. In 2011, Jiang and Lin

[119] gave representation of exact solution for the TFTE in the reproducing kernel

space. In recent years, many scholars have focused on finding the numerical solution

of TFTE. Some of them are as follows:

• In 2012, Li and Cao [120] presented a finite difference method for TFTE with

order of convergence O(τ3−α, h2).

• In 2015, Chen et al. [121] gave a high order unconditionally stable differ-

ence schemes for the Riesz space-FTE. Shivanian et al. [122] presented local

integration of 2-D fractional telegraph equation via moving least squares ap-

proximation. In the same year, Hosseini et al. [123] presented local integration

of 2D fractional telegraph equation via local radial point interpolant approxi-

mation.

• In 2017, Wang and Mei [124] have used generalized finite difference/spectral

Galerkin approximations for the TFTE.

• In 2020, Liang et al. [125] have proposed a fast high order difference schemes

for the TFTE by using FL2-1σ approximation. In the same year, Akram et al.

[126] proposed a novel numerical approach based on modified extended cubic
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B-spline functions for solving non-linear TFTE. Kumar et al. [3] gave a local

meshless method to approximate the TFTE.

• In 2021, Al-Smadi et al. [127] provided numerical simulation of telegraph and

Cattaneo fractional type models using adaptive reproducing kernel framework.

Khater et al. [128] numerically investigated for the fractional nonlinear space-

time telegraph equation via the trigonometric Quintic B-spline scheme. Nikan

et al. [129] gave numerical approximation of the nonlinear TFTE arising in

neutron transport by using local radial basis function finite difference (LRBF-

FD) approach.

1.4 Mathematical preliminaries

In this section, we discuss about the Legendre and Chebyshev polynomial which is

used as a basis function to approximate the function.

1.4.1 Legendre polynomials

Legendre polynomials were discovered in 1782 by Adrien-Marie Legendre, which

form a system of complete and orthogonal polynomials in the domain [−1, 1], with

a vast number of mathematical properties, and numerous applications with the or-

thogonality property as:

∫ 1

−1

Pn(x)Pm(x)dx =
2

2n+ 1
δnm,

where, δnm is the Kronecker delta.
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Definition 1.7. The Legendre polynomials can be defined as the coefficients in a

formal expansion in powers of t of the generating function

1√
1− 2xt+ t2

=
∞∑
n=0

Pn(x)t
n.

The coefficients of each tn is a polynomial of degree n.

Definition 1.8. The Legendre polynomial is the series solution of Legendre’s dif-

ferential equation

d

dx

[
(1− x2)

dPn(x)

dx

]
+ n(n+ 1)Pn(x) = 0.

The first few Legendre polynomials are

P0(x) = 1,

p1(x) = x,

P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

2
(35x4 − 30x2 + 3).

1.4.2 Chebyshev polynomials of second kind

The Chebyshev polynomial of second kind of order j defined on [−1, 1] are given by

Uj(x), j = 0, 1, 2, 3, ... satisfy the following recursive formula

Uj+1(x) = 2tUj(x)− Uj−1(x), j = 1, 2, 3, ... (1.27)
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where the first few Chebyshev polynomials are

U0(x) = 1,

U1(x) = 2x,

U2(x) = 4x2 − 1,

U3(x) = 8x3 − 4x,

U4(x) = 16x4 − 12x2 + 1.

The Chebyshev polynomials of second kind are orthogonal with respect to the weight

function w(x) =
√
1− x2 such that

∫ 1

0

w(x)ϕi(x)ϕj(x)dt =


π/2 for i = j,

0 otherwise.

(1.28)

1.4.3 Function approximation

Let f(t) ∈ L2[0, 1] and Ψ(t) = [ψ0(t), ψ1(t), ..., ψM(t)]T be the basis of L2[0, 1], then

the function f(t) can be approximated by

f(t) ≈
M∑
j=0

cjψj(t) = CTΨ(t), (1.29)

where,

C = [c0, c1, ..., cM ]T , (1.30)
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and the coefficients cj are calculated by

cj =
⟨f(t), ψj(t)⟩
⟨ψj(t), ψj(t)⟩

=

∫ 1

0
w(t)f(t)ψj(t)dt∫ 1

0
w(t)ψj(t)ψj(t)dt

. (1.31)

1.5 Numerical methods

In this thesis, we have used two numerical methods to develop the numerical scheme

for solving the fractional mathematical models. One is operational matrix method

and other is finite difference method.

1.5.1 Operational matrices

Operational matrices are those matrices which are produced by approximating a

derivative or integration of a function in terms of orthogonal functions. Orthogonal

functions and polynomials play one of the important roles in theory of operational

matrix. In the numerical analysis, operational matrix technique is a powerful tech-

nique for approximating solutions of integral and fractional differential equations

(see [130–135]). The proposed operational matrix techniques are not only simplifies

the singularity based problems but also speed up the computation as well as min-

imize the error. The operational matrices with respect to orthogonal polynomials

are sparse in nature. This helps the original problem in transforming into system of

algebraic equations.

The theory of the operational matrices mainly depends on two operators, differentia-

tion and integration and the corresponding operational matrices can be constructed
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in the following manner:

dΨ(t)

dt
≈ DΨ(t),∫ t

a

Ψ(x)dx ≈ IΨ(t),

where, D and I are the operational matrices of differentiation and integration, re-

spectively of dimension N +1 and Ψ(t) = [ψ1(t), ψ2(t), . . . , ψN+1(t)] is the orthonor-

mal basis which is orthonormal in the certain interval. More general, mathematical

representation of operational matrices are given below as:

dkΨ(t)

dtk
≈ DkΨ(t),∫ t

a

· · ·
∫ t

a

Ψ(x) (dx)k ≈ IkΨ(t).

The operational matrix method becomes more popular among the researcher due

to its smooth implementation, high order convergence, and easy to extend in higher

dimensions. Some of the advantages are listed below:

• It can be easily extended into higher dimensions using Kronecker product [136].

• It reduces the given equation (PDEs, FPDEs etc.) into a system of algebraic

equations which can be solved by well-known methods.

• Solution is convergent even though the size of increment is large.

• Removes the singularities in the equation.
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Because of these advantages, the operational matrices of differentiation and inte-

gration have been used by many researchers in the past two decades. Many or-

thogonal basis functions have been used to generate operational matrix of differ-

entiation and integration such as Legendre polynomial [137–139], Berstein polyno-

mials [135, 140], Bessel functions [141], Fourier series [142, 143], Legendre wavelets

[144, 145], Bernoulli wavelets [146], Chebyshev wavelets [147–149], Haar wavelets

[150] etc..

1.5.1.1 Kronecker product

Definition 1.9. Let P and Q be two matrices of orders p1 × p2 and q1 × q2, respec-

tively. Then the Kronecker product P ⊗ Q of matrices P and Q is defined as the

following p1q1 × p2q2 order block structure [151]:

P ⊗Q =


p11Q p12Q · · · p1nQ

...
...

. . .
...

pm1Q pm2Q · · · pmnQ

 ,

where

P =


p11 p12 · · · p1n
...

...
. . .

...

pm1 pm2 · · · pmn

 , Q =


q11 q12 · · · q1n
...

...
. . .

...

qm1 qm2 · · · qmn

 .

1.5.2 Finite difference method

In finite difference approximation, we approximate the derivative of a known func-

tion by finite difference formulas based only on the values of the function itself at
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discrete points. A finite difference method proceeds by replacing the derivatives in

the differential equation with finite difference approximations. This gives a large

but finite algebraic system of equations to be solved in place of the differential equa-

tion [152]. This method requires use of a regular grid and to facilitate explanation

of the approach, and it will be considered that it is uniform, although this is not

essential. The grid must be constructed such that the nodal points ar located at the

intersection of either curved lines or rectilinear. Some of the applications of FDM in

FDEs are described in details in the articles [1, 39, 41, 69]. Among various difference

approximations method, Taylor’s series expansion is one of the most popular one to

derive difference approximations of DEs. The numerical solutions, based on FDM,

provide the values of dependent variables at discrete nodal points in the domain.

Consider the space-time domain such that the space variable x ∈ [x0, xl] and time

variable t ∈ [t0, tf ]. The discretization in spatial and temporal direction is denoted

by h and τ respectively. It may be uniform and non-uniform. In order to achieve

higher accuracy in FDM, one has to refine the mesh by taking more number of

grid points. Let Nx & Nt be denotes the number of grid point in space and time

direction, respectively. Let h =
xl − x0
Nx

and τ =
tf − t0
Nt

be the uniform discretiza-

tion parameters in spatial and temporal direction, respectively. Now, discretize the

spacial and temporal domain as Ωx = {xi : xi = x0 + ih, i = 0, 1, . . . , Nx} and

Ωt = {tj : tj = t0 + kτ, j = 0, 1, . . . , Nt}. Let uji denote the approximate value of

u(xi, tj) at the nodal points (xi, tj), then the forward difference schemes for space

and time are

∂u

∂x

∣∣∣∣
(xi,tj)

≈
uji+1 − uji

h
+O(h), (1.32)

∂u

∂t

∣∣∣∣
(xi,tj)

≈ uj+1
i − uji
k

+O(τ), (1.33)
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and the backward space and time difference schemes are given by

∂u

∂x

∣∣∣∣
(xi,tj)

≈
uji − uji−1

h
+O(h), (1.34)

∂u

∂t

∣∣∣∣
(xi,tj)

≈ uji − uj−1
i

k
+O(τ), . (1.35)

The difference approximations given in (1.32)-(1.35) are of first order accuracy in

space and time direction. Second order central difference schemes in space direction

are given by the relations:

∂u

∂x

∣∣∣∣
(xi,tj)

≈
uji+1 − uji−1

2h
+O(h),

∂2u

∂x2

∣∣∣∣
(xi,tj)

≈
uji+1 − 2uji + uji−1

h2
+O(h2), .

In the same way, one can generate the finite difference approximation of higher order

derivative (see [153]).

1.6 Challenges and motivations

The fractional derivatives posses non-local property and have memory effect. There-

fore, it is very challenging to find the analytical solution of the problems with FDs.

Several researchers have developed different numerical methods to solve the FDEs

like finite difference method (FDM) [1, 39–41, 69, 154], spectral methods [42–44, 155–

157], collocation methods [45, 47, 158], finite element methods [48–50, 159–161], fi-

nite volume methods [51, 52], operational matrix method [135, 162]. But the main

challenge in these numerical methods is to get a stable numerical solution having

higher accuracy with higher order of convergence. This motivates us to develop nu-

merical methods which are numerically stable with good rate of convergence. In this
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thesis, we consider different space and time fractional mathematical models governed

by the Riesz and the Caputo fractional derivative. We have also designed a semi

discrete scheme which is combination of finite difference method with operational

matrix method. Later, two fully discrete scheme is designed for two time-fractional

mathematical models with newly developed L3 approximation of the Caputo deriva-

tive.

1.7 Objective of the thesis

The objectives of the thesis are:

1. To develop the efficient numerical schemes for Riesz-space fractional partial

differential equations with the help of matrix transform method and opera-

tional matrix method.

2. To develop a computational algorithm for the financial mathematical model

governing European options with the help of L-12 approximation of the Caputo

derivatives and operational matrix method.

3. To develop two numerical approximation of the Caputo derivative of order

α ∈ (1, 2) (namely L3 and ML3 approximation) and its application to time-

fractional wave equations.

4. To design a difference scheme for time-fractional telegraph equation with the

help of L3 and L-123 approximation of the Caputo derivatives.

***********
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