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Chapter 6

Conclusion and future directions

In the previous chapters, successful attempts to solve GNEPs were presented. In this

chapter, the significant contributions of this thesis are summarized. The possible direc-

tions for future work are also discussed.

6.1 General conclusions

The principal conclusions of this thesis are as follows.

• We have solved GNEP using proposed algorithms and have compared their nu-

merical performances in each chapter.

• The algorithms of each proposed method have been provided and the convergence

analysis for each algorithm have been discussed.

• We have provided the numerical results for solving GNEPs using the proposed

algorithms in Chapter 2, 3, and 4.

6.2 Contribution of the thesis

This thesis mainly focused on solving GNEPs by different optimization methods. In this

thesis, we have proposed algorithms in Chapter 2, 3, 4. Chapter 5 proposes an extended
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Karush-Kuhn-Tucker condition to characterize efficient solutions to constrained interval

optimization problems and shows its application to support vector machines.

In the first contribution, reported in Chapter 2, we have solved GNEPs by an

improved BFGS using two line search techniques: The Armijo-Goldstein line search

technique and the MWWP line search technique. We have reformulated GNEPs into

a smooth system of equations, and with the help of the merit function, we have solved

GNEPs by improved BFGS method using two-line search techniques. The BFGS

method using the MWWP line search technique converges globally and works well com-

pared to other quasi-Newton methods. However, we have used the Armijo-Goldstein

line search technique to minimize computation costs. The improved BFGS method

with the Armijo-Goldstein line search technique takes lesser computation costs than

the MWWP-line search technique. We have solved five numerical problems using the

proposed algorithms, and have given a numerical comparison of both algorithms.

In the next contribution, reported in Chapter 3, an inexact Newton method to solve

generalized Nash equilibrium problems is proposed for both the cases of player con-

vex GNEP and jointly convex GNEP. In the proposed approach, we have reformulated

GNEP into a nonsmooth system of equations and then solved it by the inexact Newton

method. Under some mild conditions, the numerical Algorithms globally converge Q-

quadratically, which is a faster rate of convergence for such equilibrium problems. The

numerical Algorithms have been tested on various problems found in the specialized

literature on GNEPs (see [41, 63–65]). Previously, GNEP was solved by other conven-

tional methods, such as the smoothing Newton method [77], a feasible direction interior

point method [78], etc., but it has been reported that the proposed numerical scheme

converges faster than semismooth Newton method II and hence than all the existing

method (see [1]).

In another contribution, reported in Chapter 4, we have proposed an INATR method

for constrained optimization problems and have shown its application to solve GNEPs.
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In this method, we have computed an adaptive trust region radius ((4.5)-(4.9)) using

gradient and Hessian matrix information. It affects the convergence of the algorithm

as well as the number of iterations. Also, we have used a new nonmonotone technique

(4.11), a convex combination of the functional value obtained in the current iteration

and the maximum of the functional values obtained from some prior successful iter-

ations. Subsequently, we have given a global convergence of the proposed algorithm.

Further, we have solved a dataset of 35 GNEPs using the INATR method and have

provided a comparison of the performance profiles of the INATR method with the ex-

isting two methods: the nonmonotone trust region (NTR) method and monotone trust

region (MTR) method.

In Chapter 5, we have considered the problem of interval optimization for con-

strained IOPs with the aim of characterizing the efficient solution from a geometrical

viewpoint. We have proposed extensions to Gordon’s Theorems of the alternatives for

an interval-valued system of inequalities and used it to derive the Fritz John conditions

for IOPs. We also derived an extension to KKT conditions for IOPs and thereby pro-

posed the optimality conditions for both constrained and unconstrained IOPs. These

proposed optimality conditions have been applied to binary classification problems us-

ing SVMs for interval-valued dataset and a comparison has been drawn with existing

methods.

Next, the possible future scope of the above-discussed work is discussed.

6.3 Future directions

The above-discussed contributions in the thesis may lead to several future research

directions:

(i) We have proposed an extended Karush-Kuhn-Tucker condition to characterize ef-

ficient solutions to constrained interval optimization problems. Therefore, we can

compute the extended Karush-Kuhn-Tucker condition for the inter-valued gen-
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eralized Nash equilibrium problems, so that we can reformulate the inter-valued

generalized Nash equilibrium problems into an inter-valued system of equations.

In the future, we will try to solve inter-valued GNEPs.

(ii) In this thesis, we have solved a smooth version of the constrained optimization

problem using the proposed INATR method. In the future, we will try to develop

an INATR method for nonsmooth-constrained optimization problems so that we

can apply the nonsmooth version of the INATR method to the nonsmooth refor-

mulation of GNEPs.
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