
Chapter 5

Extended Karush-Kuhn-Tucker

Condition for Constrained Interval

Optimization Problems and its

Application in Support Vector

Machines

5.1 Introduction

Optimization theory has applications in various fields with wide engineering applica-

tions. Data acquisition and its quantification play a significant role to model an op-

timization problem. The data behind an optimization model is generally taken from

measurements or observations. Often the sets of acquired data are reported with a given

error percentage or with an imprecision. Such data is appropriately represented by fuzzy

numbers or intervals. Hence, the different parameters/coefficients in the expression of

the objective and constraint functions, which are modeled through the acquired data,
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become intervals or fuzzy numbers [89,90]. This makes the objective and/or constraint

functions of the optimization problem fuzzy-valued or interval-valued. In this chapter,

we deal with interval-valued functions. The optimization problems with interval-valued

objective and/or constraint functions are called Interval Optimization Problems (IOPs).

In finding solutions to such optimization problems, the conventional optimization tech-

niques are not directly applicable since they deal with real-valued functions.

5.2 Motivation

There have been numerous studies on IOPs. In many of the existing approaches, de-

pending on best or worst case scenarios, the lower or the upper function (or their

average) of the objective function is optimized [91–96]. Thereby the resulting problem

becomes a conventional optimization problem, which has been solved by traditional

optimization techniques. This strategy of transforming the IOP to a conventional op-

timization problem provides a single solution to the problem. It ignores to analyze the

complete set of solutions. The Karush-Kuhn-Tucker (KKT) optimality conditions have

also been applied to IOPs. It has been extensively studied by Wu in [97], [98] and [99].

Chalco-Cano et al. [100] have proposed KKT optimality conditions for IOPs using

generalized derivative. Singh et al. [101, 102] utilized the partial ordering of intervals

from [97] and the generalized derivatives from [100] to formulated KKT conditions for

IOPs using the sum of lower and upper functions. It is to observe that existing literature

on finding optimality conditions for IOPs attempted to generalize the conventional op-

timality conditions by some algebraic manipulations instead of the geometrical analysis

of an optimal point. Apart from this, there are several other issues with the existing

KKT theory for IOPs (for details, see the subsection 5.5.3). Therefore, we extend KKT

conditions for constrained IOPs.
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5.3 Contributions

In this chapter, we aim to find the KKT-optimality results by the geometrical analysis

of the solutions of constrained and unconstrained IOPs. As an application of the derived

results, we attempt to apply them on the binary classification problem with interval-

valued data using support vector machines [103,104].

5.4 Fundamentals of intervals and interval-valued functions

5.4.1 Interval arithmetic

Consider two intervalsA = [a, ā] and B = [b, b̄]. Parametrically, A can be written as set

of a(t)’s where a(t) = a+ t(a−a), t ∈ [0, 1]. The addition and the scalar multiplication

defined, respectively,

A⊕B =
{
a(t1) + b(t2) : t1, t2 ∈ [0, 1]

}
= [a+ b, a+ b], and

λ⊙A =
{
λa(t) : t ∈ [0, 1]

}
=


[λa, λa] if λ ≥ 0

[λa, λa] if λ < 0,

where λ is a real constant.

The difference between two intervals needs slightly more attention. This is mainly be-

cause of the following two reasons for the definitionA⊖B =
{
a(t1)− b(t2) : t1, t2 ∈ [0, 1]

}
:

(i) A⊖A ̸= {0}, and

(ii) given C = A⊖B, the relation A = B⊕C does not necessarily hold.

A much refined definition was proposed in [105] and [106], which resolves these two

drawbacks and gives the difference between two intervals as the interval C such that

A = B ⊕ C. However, there is still a problem as the difference may not always

exist for any two arbitrary compact intervals. This presents difficulties in defining

differentiability of interval-valued functions (see [106] for details). Therefore, we employ
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the generalized Hukuhara difference (gH-difference) in order to appropriately define the

difference between two intervals.

Definition 5.1 (gH-difference of intervals [105]). The gH-difference between two in-

tervals A = [a, a] and B = [b, b] is denoted by A⊖gH B, defined by

A⊖gH B = [min{a− b, a− b},max{a− b, a− b}]

.

It is easy to see that the gH-difference between any two intervals exists and also the

relation A⊖gH A = {0} holds.

Definition 5.2 (Dominance relation of intervals [107]). Let A and B be two elements

of I(R).

(i) B is said to be dominated by A if a(t) ≤ b(t) for all t ∈ [0, 1], and then we write

A ⪯ B;

(ii) we say A ̸= B if there exists a t0 ∈ [0, 1] such that a(t0) ̸= b(t0);

(iii) B is said to be strictly dominated by A if A ⪯ B and A ̸= B, and then we write

A ≺ B.

For two interval vectors Ak
v = (A1,A2, . . . ,Ak)

⊤ and Bk
v = (B1,B2, . . . ,Bk)

⊤, we write

Ak
v ⪯ Bk

v if Ai ⪯ Bi for each i = 1, 2, . . . , k. Similarly, we can define Ak
v ≺ Bk

v also.

Lemma 5.1 For any A and B in I(R), A ⪯ B if and only if A⊖gH B ⪯ 0.

Proof: Let

A = [a, ā] = {a(t) : a(t) = a+ t(ā− a), 0 ≤ t ≤ 1}

and

B = [b, b̄] = {b(t) : b(t) = b+ t(b̄− b), 0 ≤ t ≤ 1}.
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Then (see [105]), A⊖gH B =

[
min

{
a− b, a− b

}
,max

{
a− b, a− b

}]
.

Let A ⪯ B. Then, by Definition 5.2, we note that

A ⪯ B

=⇒ a+ t(ā− a) = a(t) ≤ b(t) = b+ t(b̄− b) for all t ∈ [0, 1]

=⇒ a(0) ≤ b(0) and ā(1) ≤ b̄(1)

=⇒ a ≤ b and ā ≤ b̄

=⇒ a− b ≤ 0 and ā− b̄ ≤ 0

=⇒ A⊖gH B ⪯ 0.

Conversely, let A ⊖gH B ⪯ 0. Therefore, we have a − b ≤ 0 and ā − b̄ ≤ 0, i.e., a ≤ b

and ā ≤ b̄.

Depending on b < ā or ā ≤ b, we consider the following two cases.

• Case 1. Let b < ā.

Then, a ≤ b < ā ≤ b̄. In order to show that A ⪯ B, we need to show that a(t) ≤ b(t)

for all t ∈ [0, 1].

Let us assume that there exists t0 ∈ [0, 1], such that a(t0) > b(t0).

As a ≤ b and ā ≤ b̄, therefore t0 ̸= 0 and t0 ̸= 1. Thus, 1
t0
> 1.

Note that from a(t0) = a + t0(ā − a), we have ā = 1
t0
a(t0) −

(
1
t0
− 1
)
a. Similarly

b̄ = 1
t0
b(t0)−

(
1
t0
− 1
)
b. Since a(t0) > b(t0),

1
t0
> 1 and a ≤ b, we see that

ā = 1
t0
a(t0)−

(
1
t0
− 1
)
a > 1

t0
b(t0)−

(
1
t0
− 1
)
b = b̄.

This contradicts ā ≤ b̄. Therefore, for any t ∈ [0, 1], a(t) ≤ b(t). Hence, A ⪯ B.

• Case 2. Let ā ≤ b.
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Note that a(t) and b(t) are increasing functions. Therefore, for any t ∈ [0, 1] we have

a(t) ≤ a(1) = ā ≤ b = b(0) ≤ b(t).

Hence, A ⪯ B and the proof is complete. □

5.4.1.1 Interval-valued functions

There have been numerous works in interval-valued functions, each developing the the-

ory further. We utilize the definitions proposed by Moore [108], Hansen [109], Wu [98],

Bhurjee and Panda [107] and Ghosh [106]. A parametric definition of interval-valued

functions as in [106] is given below.

Consider an interval-valued function FCk
v
: Rn → I(R), where Ck

v = (C1,C2, . . . ,Ck)
⊤

denotes the vector of k interval coefficients. Taking Cj =
[
cj, cj

]
, j = 1, 2, . . . , k, the

interval vector Ck
v can be presented by

{
c(t) : c(t) =

(
c1(t1), c2(t2), . . . , ck(tk)

)⊤
, t = (t1, t2, . . . , tk)

⊤,

cj(tj) = cj + tj(cj − cj), 0 ≤ tj ≤ 1, j = 1, 2, . . . , k
}
.

Therefore, the interval-valued function FCk
v
can be represented as a bunch of functions

fc(t)’s, where c(t) is a vector in Ck
v in the parametric form. In other words, for all x in

Rn we have

FCk
v
(x) =

{
fc(t)(x) : fc(t) : Rn → R, c(t) ∈ Ck

v , t ∈ [0, 1]k
}
.

Definition 5.3 (Interval-valued convex function [107]). Let X ⊆ Rn be a convex set.

An interval-valued function FCk
v
: X → I(R) is said to be a convex on X if for any x1
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and x2 in X,

FCk
v

(
λx1 + (1− λ)x2

)
⪯ λ⊙ FCk

v
(x1) ⊕ (1− λ)⊙ FCk

v
(x2) for all λ ∈ [0, 1].

5.4.1.2 gH-differentiability and gH-partial derivative

In all the definitions in this subsection, we consider that FCk
v
is an interval-valued

function defined on X ⊆ Rn.

Definition 5.4 (gH-partial derivative [106]). Let x0 = (x01, x
0
2, . . . , x

0
n) be an interior

point of X and h = (h1, h2, . . . , hn) ∈ Rn be such that x0 + h ∈ X. Define a function

Φi(xi) = FCk
v
(x01, x

0
2, . . . , x

0
i−1, xi, x

0
i+1, . . . , x

0
n).

If the generalized Hukuhara derivative (gH-derivative) of Φi exists at x
0
i , i.e.,

lim
hi→0

Φi(x
0
i + hi)⊖gH Φi(x

0
i )

hi

exists, then we say that FCk
v
has the i-th gH-partial derivative at x0 and it is denoted

by DiFCk
v
(x0), i = 1, 2, . . . , n.

Note 5.1 (See [106]). It is evident that ifDiFCk
v
(x0) exists, then Φi(x

0
i+hi)⊖gHΦi(x

0
i )

can be written as hi ⊙
(
DiFCk

v
(x0)⊕ Ei(x0;h)

)
, where lim

∥h∥→0
Ei(x0;h) = 0.

Definition 5.5 (gH-gradient [106]). The gH-gradient of an interval-valued function

FCk
v
at a point x0 ∈ X is denoted by ∇FCk

v
(x0) and defined by the vector

∇FCk
v
(x0) =

(
D1FCk

v
(x0), D2FCk

v
(x0), . . . , DnFCk

v
(x0)

)⊤
,

where DiFCk
v
(x0) is i-th gH-partial derivative of FCk

v
at x0 ∈ X for i = 1, 2, . . . , n.
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Definition 5.6 (gH-differentiability [106]). A function FCk
v
: X → I(R) is said to be

gH-differentiable at x0 in X if there exist two interval-valued functions E(x0;h) and

Lx0
: Rn → I(R) such that

FCk
v
(x0 + h)⊖gH FCk

v
(x0) = Lx0(h)⊕ ∥h∥ ⊙ E(x0;h)

for ∥h∥ < δ for some δ > 0, where lim
∥h∥→0

E(x0;h) = 0 and Lx0 is such a function that

(i) Lx0(x+ y) = Lx0(x)⊕ Lx0(y) for all x, y ∈ X, and

(ii) Lx0(cx) = c⊙ Lx0(x) for all c ∈ R and x ∈ X.

Theorem 5.1 (See [106]). Let FCk
v
be gH-differentiable at x0. Then Lx0 exists for

every h in Rn and Lx0(h) = h⊤ ⊙∇FCk
v
(x0).

Theorem 5.2 Let FCk
v
: X → I(R) be a gH-differentiable at any x ∈ X, where X is

a nonempty open convex subset of Rn. Then, FCk
v
is convex on X if and only if

(x2 − x1)
⊤ ⊙∇FCk

v
(x1) ⪯ FCk

v
(x2)⊕ (−1)⊙ FCk

v
(x1) for all x1, x2 ∈ X.

Proof: First, we assume that FCk
v
is convex on X, and x1 and x2 are any two elements

of X. Then, for h = x2 − x1 and 0 < τ0 < 1,

FCk
v
(x1 + τ0h) = FCk

v

(
(1− τ0)x1 + τ0(x1 + h)

)
⪯ (1− τ0)⊙ FCk

v
(x1)⊕ τ0 ⊙ FCk

v
(x1 + h).
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Therefore, by Lemma 5.1,

FCk
v
(x1 + τ0h)⊖gH FCk

v
(x1) ⪯ τ0 ⊙

(
FCk

v
(x1 + h)⊕ (−1)⊙ FCk

v
(x1)

)
or,

1

τ0
⊙
(
FCk

v
(x1 + τ0h)⊖gH FCk

v
(x1)

)
⪯ FCk

v
(x1 + h)⊕ (−1)⊙ FCk

v
(x1)

or,
1

τ0
⊙
(
FCk

v
(x1 + τ0h)⊖gH FCk

v
(x1)

)
⪯ FCk

v
(x2)⊕ (−1)⊙ FCk

v
(x1).

Hence, as τ0 → 0+, with the help of Definition 5.6 and Theorem 5.1, we get

(x2 − x1)
⊤ ⊙∇FCk

v
(x1) ⪯ FCk

v
(x2)⊕ (−1)⊙ FCk

v
(x1).

Conversely, let

(x2 − x1)
⊤ ⊙∇FCk

v
(x1) ⪯ FCk

v
(x2)⊕ (−1)⊙ FCk

v
(x1)

be true for any x1 and x2 in X. Thus, for 0 ≤ λ ≤ 1, denoting xλ = λx1 + (1 − λ)x2,

the following two inequalities hold true

(1− λ)⊙
(
(x1 − x2)

⊤ ⊙∇FCk
v
(x1)

)
⪯ FCk

v
(x1)⊕ (−1)⊙ FCk

v
(xλ) (5.1)

and λ⊙
(
(x2 − x1)

⊤ ⊙∇FCk
v
(x1)

)
⪯ FCk

v
(x2)⊕ (−1)⊙ FCk

v
(xλ). (5.2)

Multiplying (5.1) by λ and (5.2) by (1− λ), and then adding, we obtain

0 ⪯
(
λ⊙ FCk

v
(x1)⊕ (1− λ)⊙ FCk

v
(x2)

)
⊕ (−1)⊙ FCk

v
(xλ).

Hence,

FCk
v
(λx1 + (1− λ)x2) ⪯ λ⊙ FCk

v
(x1)⊕ (1− λ)⊙ FCk

v
(x2).

Arbitrariness of λ ∈ [0, 1] proves that FCk
v
is convex on X. □
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5.5 Fritz John and Karush-Kuhn-Tucker optimality conditions

Theorem 5.3 Let FCk
v
: Rn → I(R) be an interval-valued function which is gH-

differentiable at x0. Let there exists a vector d ∈ Rn such that d⊤ ⊙ ∇FCk
v
(x0) ≺ 0.

Then, there exists δ > 0 such that for each α ∈ (0, δ), FCk
v
(x0 + αd) ≺ FCk

v
(x0).

Proof: As FCk
v
is gH-differentiable at x0, by Definition 5.6 and Theorem 5.1 we get

FCk
v
(x0 + h)⊖gH FCk

v
(x0) = h⊤ ⊙∇FCk

v
(x0) ⊕ ∥h∥ ⊙ E(x0;h),

for some E(x0;h) which tends to 0 as ∥h∥ → 0. On replacing h = αd, for α > 0, we get

FCk
v
(x0 + αd) = FCk

v
(x0) ⊕ αd⊤ ⊙∇FCk

v
(x0) ⊕ |α| ∥d∥ ⊙ E(x0;h).

Since d⊤ ⊙ ∇FCk
v
(x0) ≺ 0 and E(x0;αd) → 0 as α → 0+, we have FCk

v
(x0 + αd) ≺

FCk
v
(x0), for each α ∈ (0, δ), for some δ > 0. □

Note 5.2 Theorem 5.3 shows that the vector d is a descent direction of FCk
v
at x0.

Definition 5.7 (Cone of descent directions). For an interval-valued function FCk
v
:

Rn → I(R) which is gH-differentiable at x0, the set of descent directions at x0 is given

by the set

F̂ (x0) = {d ∈ Rn : d⊤ ⊙∇FCk
v
(x0) ≺ 0}.

As for any d in F̂ (x0), λd ∈ F̂ (x0) for all λ > 0, the set F̂ (x0) is called the cone of

descent directions.

Definition 5.8 (Cone of feasible directions [110]). Given a nonempty set X ⊆ Rn and

x0 ∈ X. At x0, the cone of feasible directions of X is defined by

Ŝ(x0) = {d ∈ Rn : d ̸= 0, x0 + αd ∈ X ∀α ∈ (0, δ) for some δ > 0}.
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Analogous to the efficient solution concept in multi-objective optimization problems,

we use the following efficient solution concept for IOPs.

Definition 5.9 (Efficient solution [107]). A feasible solution x̄ ∈ X is called a (local)

efficient solution of the IOP

min
x∈X⊆Rn

FCk
v
(x)

if there does not exist any x ∈ X (∈ Nδ(x̄)) such that FCk
v
(x) ≺ FCk

v
(x̄) (Nδ(x̄) is a

δ-neighborhood of x̄). If a solution x̄ is (local) efficient, then we call FCk
v
(x̄) as a (local)

non-dominated solution to the IOP.

Theorem 5.4 Given a nonempty open set X ⊆ Rn, consider the interval optimization

problem,

min
x∈X⊆Rn

FCk
v
(x),

where FCk
v
: Rn → I(R). If FCk

v
is gH-differentiable at a point x0 ∈ X and x0 is a local

efficient solution, then F̂ (x0) ∩ Ŝ(x0) = ∅.

Proof: We shall prove the theorem by contradiction. Let F̂ (x0) ∩ Ŝ(x0) ̸= ∅ and d be

an element in F̂ (x0) ∩ Ŝ(x0). Then, in view of Theorem 5.3, there exists δ1 > 0 such

that

FCk
v
(x0 + αd) ≺ FCk

v
(x0) for each α ∈ (0, δ1).

Also, by Definition 5.8, there exists δ2 > 0 such that x0 + αd ∈ X for each α ∈ (0, δ2).

Defining δ = min{δ1, δ2} > 0, we see that for all α ∈ (0, δ),

x0 + αd ∈ X and FCk
v
(x0 + αd) ≺ FCk

v
(x0).

This is contradictory to x0 a local efficient solution. Hence, F̂ (x0) ∩ Ŝ(x0) = ∅. □

The following corollary is immediately followed from the Theorem 5.4.
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Corollary 1 Let FCk
v
: Rn → I(R) be an interval-valued function. If at a point x0 ∈ X,

F̂ (x0) ∩ Ŝ(x0) ̸= ∅, then x0 is not an efficient point for the problem min
x∈X

FCk
v
(x).

Example 5.1 (Example to support the Theorem 5.4 and Corollary 1).

Let X ⊂ R2 be the set {(x1, x2)|1 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2}. Consider the interval

optimization problem

min
x∈X

F(x1, x2),

where F(x1, x2) =
[
F (x1, x2), F (x1, x2)

]
and

F (x1, x2) = 1 + 2(x1 − 1)2 + 2(x2 − 2)2

and F (x1, x2) = 5 + 5(x1 − 1)2 + 5(x2 − 1)2.

The objective function F(x1, x2) is depicted in the Figure 5.1. The red dots in the

surfaces of F (x1, x2) and F (x1, x2) are the locations of the minima of the functions F

and F , respectively. From the figure, it is evident that x0 = (1, 1.5) ∈ X is an efficient

point. At x0, the cone of feasible directions is given by

Ŝ(x0) = {(d1, d2) ̸= (0, 0) : (1 + αd1, 1.5 + αd2) ∈ X ∀α ∈ (0, δ) for some δ > 0}

= {(d1, d2) ̸= (0, 0) : d1 ≥ 0}.

At x0, the partial derivatives of F are

D1F(x0) =

min

{
∂F

∂x1
(x0),

∂F

∂x1
(x0)

}
,max

{
∂F

∂x1
(x0),

∂F

∂x1
(x0)

} = [0, 0]

and D2F(x0) =

min

{
∂F

∂x2
(x0),

∂F

∂x2
(x0)

}
,max

{
∂F

∂x2
(x0),

∂F

∂x2
(x0)

} = [−2, 5]
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Figure 5.1: The objective function F(x1, x2) of the Example 5.1

Hence, at x0, the cone of descent directions is given by

F̂ (x0) = {(d1, d2) ∈ R2 : (d1, d2)⊙∇F(x0)
⊤ ≺ 0}

= {(d1, d2) ∈ R2 : d1 ⊙D1F(x0)⊕ d2 ⊙D1F(x0) ≺ 0}

= {(d1, d2) ∈ R2 : d2 ⊙ [−2, 5] ≺ 0}

= ∅.

Thus, at the efficient solution x0 = (1, 1.5), we see that Ŝ(x0) ∩ F̂ (x0) = ∅.

Let us take another point x00 = (2, 1.5). In a similar way as that for the point x0, we

can check that at the point x00:

Ŝ(x00) = {(d1, d2) ̸= (0, 0) : d1 ≤ 0}

and F̂ (x00) = {(d1, d2) : 2d1 < d2 < −2d1}.
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The cone F̂ (x00) is depicted in the Figure 5.2.
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Figure 5.2: The cones of descent directions F̂ (x0) and F̂ (x00) for the Example 5.1

We note that

Ŝ(x00) ∩ F̂ (x00) = {(d1, d2) : 2d1 < d2 < −2d1} ≠ ∅.

Thus, due to the Corollary 1 of the Theorem 5.4, the point x00 must not be an efficient

point.

For any δ in (0, 1), we observe that the point (2 − δ, 1.5) of X lies in the (circular)

δ-neighborhood of x00 and

F(2− δ, 1.5) = [1.5 + 2(1− δ)2, 6.25 + 5(1− δ)2] ≺ [3.5, 11.25] = F(2, 1.5).

Thus, indeed, the point x00 = (2, 1.5) is not an efficient point for min
x∈X

F(x1, x2).

Theorem 5.5 For the interval-valued functions Gi
Dp

v
: Rn → I(R), i = 1, 2, . . . ,m,

consider the set S = {x ∈ X : Gi
Dp

v
(x) ⪯ 0 for i = 1, 2, . . . ,m}, where X is a nonempty

open set in Rn. Let x0 ∈ S and I(x0) = {i : Gi
Dp

v
(x0) = 0}. Assuming Gi

Dp
v
to be gH-
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differentiable at x0 for all i ∈ I(x0) and gH-continuous for i /∈ I(x0), define

Ĝ(x0) = {d : d⊤ ⊙∇Gi
Dp

v
(x0) ≺ 0 for all i ∈ I(x0)}.

Then, Ĝ(x0) ⊆ Ŝ(x0), where Ŝ(x0) = {d ∈ Rn : d ̸= 0, x0 + αd ∈ S ∀α ∈

(0, δ) for some δ > 0}.

Proof: Let d be an element in Ĝ(x0).

As x0 ∈ X and X is an open set, there exists δ0 > 0 such that

x0 + αd ∈ X for α ∈ (0, δ0). (5.3)

For each i /∈ I(x0), as G
i
Dp

v
is gH-continuous at x0,

Gi
Dp

v
(x0 + αd) = Gi

Dp
v
(x0)⊕ Ei(x0;αd),

where Ei(x0;αd) → 0 as ∥d∥ → 0.

Since Gi
Dp

v
(x0) ≺ 0, for i /∈ I(x0), there exists δi > 0 such that

Gi
Dp

v
(x0 + αd) ≺ 0 for α ∈ (0, δi) and i /∈ I(x0). (5.4)

Also, as d ∈ Ĝ(x0), for each i ∈ I(x0) there exists δi > 0 such that (see Theorem 5.3)

Gi
Dp

v
(x0 + αd) ≺ Gi

Dp
v
(x0) = 0 for all α ∈ (0, δi). (5.5)

Let δ = min{δ0, δ1, δ2, . . . , δm}. Evidently, δ > 0. From (5.3), (5.4) and (5.5), we see

that the points of the form x0+αd belong to S for each α ∈ (0, δ). Therefore, d ∈ Ŝ(x0).

Hence, Ĝ(x0) ⊆ Ŝ(x0). □

Theorem 5.6 Let X be a nonempty open set in Rn. Consider an interval optimization
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problem

min FCk
v
(x)

s.t. Gi
Dp

v
(x) ⪯ 0 for i = 1, 2, . . . ,m

x ∈ X,


(5.6)

where FCk
v
: Rn → I(R) and Gi

Dp
v
: Rn → I(R) for i = 1, 2, . . . ,m. For a feasible

point x0, define I(x0) = {i : Gi
Dp

v
(x0) = 0}. Let at x0, FCk

v
and Gi

Dp
v
, i ∈ I(x0), be

gH-differentiable, and for i /∈ I(x0), G
i
Dp

v
be gH-continuous. If x0 is a local efficient

solution of (5.6), then

F̂ (x0) ∩ Ĝ(x0) = ∅,

where F̂ (x0) = {d : d⊤ ⊙ ∇FCk
v
(x0) ≺ 0} and Ĝ(x0) = {d : d⊤ ⊙ ∇Gi

Dp
v
(x0) ≺

0 for each i ∈ I(x0)}.

Proof: We can infer the following using Theorem 5.4 and Theorem 5.5:

x0 is a local efficient solution =⇒ F̂ (x0) ∩ Ŝ(x0) = ∅ =⇒ F̂ (x0) ∩ Ĝ(x0) = ∅.

□

5.5.1 Unconstrained interval optimization problems

Theorem 5.7 (Extended First Gordan’s Theorem). Consider a vector An
v = (ai)n×1

in I(R)n. Then, exactly one of the following systems has a solution:

(i) y⊤ ⊙An
v ≺ 0 for some y = (yi)n×1 ∈ Rn,

(ii) 0n
v ∈ x⊙An

v for some x ∈ R, x > 0.

Proof: Let (i) be true. We prove that (ii) cannot be true. On contrary, if possible let

(ii) be also true.
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As (i) is true, we have

y⊤0 ⊙An
v ≺ 0 for some y0 ∈ Rn

or, x⊙ (y⊤0 ⊙An
v ) ≺ 0 for all x ∈ R, x > 0

or, y⊤0 ⊙ (x⊙An
v ) ≺ 0 for all x ∈ R, x > 0. (5.7)

As (ii) is also true, we have

0n
v ∈ x0 ⊙An

v for some x0 ∈ R, x0 > 0

or, 0 ∈ y⊤ ⊙ (x0 ⊙An
v ) for all y ∈ Rn. (5.8)

As (5.7) and (5.8) cannot hold together, we have a contradiction. Thus, if (i) is true,

(ii) cannot be true.

In order to prove the other case, let us assume that (i) is false. We prove that (ii) is

true. On contrary, let us assume that (ii) is false. Therefore,

0n
v /∈ x⊙An

v for all x ∈ R, x > 0

or, 0n
v /∈ An

v

or, ∃ i ∈ {1, 2, . . . , n} such that 0 /∈ ai (5.9)

or, ∃ i ∈ {1, 2, . . . , n} such that ai ≺ 0 or 0 ≺ ai.

Let us consider the sets J =
{
j : 0 ∈ aj, j ∈ {1, 2, . . . , n}

}
and K = {k : 0 /∈ ak, k ∈

{1, 2, . . . , n}}.

Evidently, by (5.9), K ̸= ∅. Also, J ∪K = {1, 2, . . . , n} and J ∩K = ∅.
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We now construct a vector y0 = (y01, y
0
2, . . . , y

0
n)
⊤ ∈ Rn by

y0i =


0 if i ∈ J

1 if i ∈ K and ai ≺ 0

−1 if i ∈ K and 0 ≺ ai.

With this y0 ∈ Rn, we note that

∑
k∈K

y0k ⊙ ak ⊕
∑
j∈J

y0j ⊙ aj ≺ 0

or, y⊤0 ⊙An
v ≺ 0. (5.10)

However, as (i) is false y⊤ ⊙ An
v ≺ 0 for no y ∈ Rn, which is contradictory to (5.10).

Thus, (ii) must be true. Hence, the result is followed. □

Theorem 5.8 If x0 is a local efficient solution of the IOP:

min
x∈Rn

FCk
v
(x),

where FCk
v
: Rn → I(R) is gH-differentiable at x0. Then, 0

n
v ∈ ∇FCk

v
(x0).

Proof: By Definition 5.7 and Theorem 5.3, if x0 is a local efficient solution, then

F̂ (x0) = ∅. Therefore, d⊤ ⊙∇FCk
v
(x0) ≺ 0 for no d ∈ Rn.

By Theorem 5.7 with An
v = ∇FCk

v
(x0), there exists x0 ∈ R, x0 > 0, such that

0n
v ∈ x0 ⊙∇FCk

v
(x0)

or, 0n
v ∈ ∇FCk

v
(x0).

□

Note 5.3 It is very worthy to note that the optimality condition on Theorem 5.8 is an
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inclusion relation 0n
v ∈ ∇FCk

v
(x0) instead of the perfect equality ∇FCk

v
(x0) = 0n

v . Note

that the optimality condition ∇FCk
v
(x0) = 0n

v is not only very restrictive, but also not

correct. For instance, consider the problem in Example 5.1. We observe that at the

efficient point x0 = (1, 1.5), ∇F(x0) = ([0, 0], [−2, 5]) ̸= 02
v, but 0

2
v ∈ ∇F(x0).

5.5.2 Interval optimization problem with inequality constraints

Theorem 5.9 (Extended Second Gordan’s Theorem). For a matrix with interval en-

tries A =
(
aij

)
m×n, where aij ∈ I(R), exactly one of the following systems has a

solution:

(i) A⊤ ⊙ y ≺ 0n
v for some y = (yi)m×1 ∈ Rm,

(ii) 0m
v ∈ A⊙ x for some nonzero x = (xi)n×1 ∈ Rn with all xi ≥ 0.

Proof: Let (i) be true. Then, we show that (ii) cannot be true. On the contrary, let

(ii) be true.

As (i) is true, we have

A⊤ ⊙ y0 ≺ 0n
v for some y0 = (y01, y

0
2, . . . , y

0
m)
⊤ ∈ Rm

or, x⊤ ⊙ (A⊤ ⊙ y0) ≺ 0 for all nonzero x = (xi)n×1 ∈ Rn, xi ≥ 0 (5.11)

or, (A⊙ x)⊤ ⊙ y0 ≺ 0 for all nonzero x = (xi)n×1 ∈ Rn, xi ≥ 0. (5.12)

If (ii) is also true, then for some nonzero x0 = (x0i )n×1 ∈ Rn with x0i ≥ 0 we have

0m
v ∈ A⊙ x0. (5.13)

Let w = A ⊙ x0 = (w1,w2, . . . ,wm)
⊤. Then, w ∈ I(R)m and (A ⊙ x0)

⊤ ⊙ y0 =∑m
i=1 y

0
i ⊙wi.
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From (5.13), we now have

0 ∈ wi for all i = 1, 2, . . . ,m

or, 0 ∈ y0i ⊙wi for all i = 1, 2, . . . ,m

or, 0 ∈ (A⊙ x0)
⊤ ⊙ y0. (5.14)

As (5.12) and (5.14) cannot hold together, we have a contradiction. Thus, if (i) is true,

(ii) cannot be true. In order to prove the other case, let us assume that (i) is false.

Then, we prove that (ii) must be true. As (i) is false,

A⊤ ⊙ y ≺ 0n
v for no y ∈ Rm. (5.15)

Let us assume, on contrary, that (ii) is also false. Then,

0m
v /∈ A⊙ x for all nonzero x = (xi)n×1 ∈ Rn with all xi ≥ 0

or, ∃ i ∈ {1, 2, . . . ,m} such that 0 /∈ wi (5.16)

or, ∃ i ∈ {1, 2, . . . ,m} such that wi ≺ 0 or 0 ≺ 0 ⪯ wi, (5.17)

where A⊙ x = (w1,w2, . . . ,wm)
⊤.

Let us consider the sets J =
{
j : 0 ∈ wj, j ∈ {1, 2, . . . ,m}

}
and K = {k : 0 /∈ wk, k ∈

{1, 2, . . . ,m}}.

Evidently, by (5.16), K ̸= ∅. Also, J ∪K = {1, 2, . . . , n} and J ∩K = ∅.

We now construct a vector y0 = (y01, y
0
2, . . . , y

0
m)
⊤ ∈ Rn by

y0i =


0 if i ∈ J

1 if i ∈ K and wi ≺ 0

−1 if i ∈ K and 0 ≺ wi.



5.5. Fritz John and Karush-Kuhn-Tucker optimality conditions 119

With this y0 ∈ Rm, we note that

∑
k∈K

y0k ⊙wk ⊕
∑
j∈J

y0j ⊙wj ≺ 0

or, y⊤0 ⊙ (A⊙ x) ≺ 0 for all nonzero x = (xi)n×1 ∈ Rn with all xi ≥ 0

or, x⊤ ⊙ (A⊤ ⊙ y0) ≺ 0 for all nonzero x = (xi)n×1 ∈ Rn with all xi ≥ 0. (5.18)

The inequality (5.18) can be true only when A⊤ ⊙ y0 ≺ 0. As (5.15) and (5.18) are

contradictory, our assumption was wrong and (ii) must be true. Hence, the result is

followed. □

Theorem 5.10 (Extended Fritz John condition). Let X be a nonempty open set in Rn;

FCk
v
: Rn → I(R) and Gi

Dp
v
: Rn → I(R) for i = 1, 2, . . . ,m be interval-valued functions.

Consider the IOP:

min FCk
v
(x),

s.t. Gi
Dp

v
(x) ⪯ 0, i = 1, 2, . . . ,m

x ∈ X.


(5.19)

For a feasible point x0, define I(x0) = {i : Gi
Dp

v
(x0) = 0}. Let FCk

v
and Gi

Dp
v
be gH-

differentiable at x0 for i ∈ I(x0) and gH-continuous for i /∈ I(x0). If x0 is a local

efficient point of (5.19), then there exist constants u0 and ui for i ∈ I(x0) such that



0n
v ∈

u0 ⊙∇FCk
v
(x0)⊕

∑
i∈I(x0)

ui ⊙∇Gi
Dp

v
(x0)

 ,

u0 ≥ 0, ui ≥ 0 for i ∈ I(x0),

(u0, uI) ̸=
(
0, 0|I(x0)|

v

)
,

where uI is the vector whose components are ui for i ∈ I(x0).

Further, if Gi
Dp

v
for all i /∈ I(x0) are also gH-differentiable at x0, then there exist
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constants u0, u1, u2, . . . , um such that



0n
v ∈

u0 ⊙∇FCk
v
(x0)⊕

m∑
i=1

ui ⊙∇Gi
Dp

v
(x0)

 ,

ui ⊙Gi
Dp

v
(x0) = 0, i = 1, 2, . . . ,m,

u0 ≥ 0, ui ≥ 0, i = 1, 2, . . . ,m,

(u0, u) ̸= (0, 0mv ) ,

where u is the vector (u1, u2, . . . , um).

Proof: Since x0 is a local efficient point of (5.19), by Theorem 5.6, we get

F̂ (x0) ∩ Ĝ(x0) = ∅

or, ∄ d ∈ Rn s.t. d⊤ ⊙∇FCk
v
(x0) ≺ 0 and d⊤ ⊙∇Gi

Dp
v
(x0) ≺ 0 ∀i ∈ I(x0). (5.20)

Let A be the matrix whose columns are ∇FCk
v
(x0) and ∇Gi

Dp
v
(x0), i ∈ I(x0), i.e.,

A =

[
∇FCk

v
(x0),

[
∇Gi

Dp
v
(x0)

]
i∈I(x0)

]
n×(1+|I(x0)|)

By (5.20), we see that

A⊤ ⊙ d ≺ 01+|I(x0)|
v for no d ∈ Rn. (5.21)

Therefore, by Theorem 5.9, there exists a nonzero p = (pi)|I(x0)+1|×1 ∈ R|I(x0)+1|, pi ≥ 0

such that 0n
v ∈ A⊙ p. Let the vector p be represented by

p =

u0
ui


i∈I(x0)

. (5.22)
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Substituting (5.22) in 0n
v ∈ A⊙ p, we get



0n
v ∈

u0 ⊙∇FCk
v
(x0)⊕

∑
i∈I

ui ⊙∇Gi
Dp

v
(x0)

 ,

u0, ui ≥ 0 for i ∈ I(x0),

(u0, uI) ̸= (0, 0, . . . , 0) .

This proves the first part of the theorem.

For i ∈ I(x0), G
i
Dp

v
(x0) = 0. Therefore, ui ⊙ Gi

Dp
v
(x0) = 0. If Gi

Dp
v
for all i /∈ I(x0)

are also gH-differentiable at x0, by setting ui = 0 for i /∈ I(x0) the second part of the

theorem is followed. □

Definition 5.10 (Linearly independent interval vectors). The set of m interval vectors

{(Xk
v )1, (X

k
v )2, . . . , (X

k
v )m} is said to be linearly independent if for m real numbers

c1, c2, . . . , cm:

0k
v ∈ c1⊙(Xk

v )1⊕c2⊙(Xk
v )2⊕· · ·⊕cm⊙(Xk

v )m if and only if c1 = 0, c2 = 0, . . . , cm = 0.

Theorem 5.11 (Extended Karush-Kuhn-Tucker necessary optimality condition). Let

X be a nonempty open set in Rn and FCk
v
: Rn → I(R) and Gi

Dp
v
: Rn → I(R),

i = 1, 2, . . . ,m, be interval-valued functions. Suppose x0 be a feasible point of the IOP:


min FCk

v
(x)

s.t. Gi
Dp

v
(x) ⪯ 0 i = 1, 2, . . . ,m

x ∈ X.

Define I(x0) = {i : Gi
Dp

v
(x0) = 0}. Let

(i) FCk
v
and Gi

Dp
v
be gH-differentiable at x0 for all i ∈ I(x0),

(ii) Gi
Dp

v
be gH-continuous for all i /∈ I(x0), and
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(iii) the collection of interval vectors {∇Gi
Dp

v
(x0) : i ∈ I(x0)} is linearly independent.

If x0 is a local efficient solution, then there exist constants ui for all i ∈ I(x0) such that


0n
v ∈

∇FCk
v
(x0)⊕

∑
i∈I

ui ⊙∇Gi
Dp

v
(x0)

 ,

ui ≥ 0 for all i ∈ I(x0).

If Gi
Dp

v
for i /∈ I(x0) are also gH-differentiable at x0, then there exist constants u1, u2,

. . . , um such that



0n
v ∈

∇FCk
v
(x0)⊕

m∑
i=1

ui ⊙∇Gi
Dp

v
(x0)

 ,

ui ⊙Gi
Dp

v
(x0) = 0, i = 1, 2, . . . ,m,

ui ≥ 0, i = 1, 2, . . . ,m.

Proof: By Theorem 5.10, there exist real constants u0 and u′i for all i ∈ I(x0), not all

zeros, such that

0n
v ∈

u0 ⊙∇FCk
v
(x0)⊕

∑
i∈I

u′i ⊙∇Gi
Dp

v
(x0)


u0 ≥ 0, u′i ≥ 0 for all i ∈ I(x0).


Then, we must have u0 > 0. Since otherwise, the set {∇Gi

Dp
v
(x0) : i ∈ I(x0)} will

become not linearly independent.

Define ui = u′i/u0. Then, ui ≥ 0 for all i ∈ I(x0) and 0n
v ∈

(
∇FCk

v
(x0)⊕

∑
i∈I ui ⊙∇Gi

Dp
v
(x0)

)
.

For i ∈ I(x0), G
i
Dp

v
(x0) = 0. Therefore, 0 ∈ uiG

i
Dp

v
(x0). If the functions Gi

Dp
v
for

i /∈ I(x0) are also gH-differentiable at x0, then by setting ui = 0 for i /∈ I(x0), the

latter part of the theorem is followed. □

Example 5.2 In this example, we verify the extended Fritz John condition (Theorem
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5.10) and the extended Karush-Kuhn-Tucker necessary optimality condition (Theorem

5.11) on the following IOP at the feasible point x0 = (0, 2) ∈ R2:

min FC4
v
(x1, x2) = [−3, 0]⊙ x21 ⊕ [0, 1]⊙ x32 ⊕ [−2,−1]⊙ x22 ⊕ [1, 2]⊙ (x21x2)

s.t. G1
D3

v
(x1, x2) = [−2, 3]⊙ x1 ⊕ [−2,−1]⊙ x2 ⊖gH [−4,−2] ⪯ 0

G2
D3

v
(x1, x2) = [1, 2]⊙ x21 ⊕ [−5,−3]⊙ x2 ⊖gH [−1, 0] ⪯ 0.

Here, the functions FC4
v
, G1

C3
v
and G2

C3
v
are gH-differentiable on R2.

At x0, we note that G1
D3

v
(x0) = 0 and G2

D3
v
(x0) = [−11,−6]. Hence, I(x0) = {1}.

We observe that

∇FC4
v
(x0) =

(
D1FC5

v
(0, 2), D2FC5

v
(0, 2)

)⊤
=
(
0, [−8, 8]

)⊤
and

∇G1
D3

v
(x0) =

(
D1G

1
D3

v
(0, 2), D2G

1
D3

v
(0, 2)

)⊤
=
(
[−2, 3], [−2,−1]

)⊤
.

Taking u0 = 2, u1 = 1 and u2 = 0 we see that conclusions of the Theorem 5.10 is true.

Taking u0 = 1, u1 = 1 and u2 = 0 we see that conclusions of the Theorem 5.11 holds

true.

Theorem 5.12 (Extended Karush-Kuhn-Tucker sufficient optimality condition). Let

X be a nonempty open convex set in Rn; FCk
v
: X → I(R) and Gi

Dp
v
: X → I(R),

i = 1, 2, . . . ,m, be interval-valued gH-differentiable convex functions on X. Suppose x0

be a feasible point of the IOP:


min FCk

v
(x)

s.t. Gi
Dp

v
(x) ⪯ 0, i = 1, 2, . . . ,m

x ∈ X.
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If there exist real constants u1, u2, . . . , um for which



0n
v ∈

∇FCk
v
(x0)⊕

m∑
i=1

ui ⊙∇Gi
Dp

v
(x0)

 ,

ui ⊙Gi
Dp

v
(x0) = 0, i = 1, 2, . . . ,m.

ui ≥ 0, i = 1, 2, . . . ,m.

then x0 is an efficient point of the IOP.

Proof: By the hypothesis, for every x ∈ X satisfyingGi
Dp

v
(x) ⪯ 0 for all i = 1, 2, . . . ,m,

we have

0n
v ∈

∇FCk
v
(x0)⊕

n∑
i=1

ui ⊙∇Gi
Dp

v
(x0)

⊤ (x− x0)

= ∇FCk
v
(x0)

⊤(x− x0)⊕
m∑
i=1

ui ⊙∇Gi
Dp

v
(x0)

⊤(x− x0)

⪯
(
FCk

v
(x)⊕ (−1)⊙ FCk

v
(x0)

)
⊕

m∑
i=1

ui ⊙
(
Gi

Dp
v
(x)⊕ (−1)⊙Gi

Dp
v
(x0)

)
,

by Theorem 5.2

⪯ FCk
v
(x)⊕ (−1)⊙ FCk

v
(x0).

Thus, for every x ∈ X,

either 0n
v ∈ FCk

v
(x)⊕ (−1)⊙ FCk

v
(x0) or 0n

v ⪯ FCk
v
(x)⊕ (−1)⊙ FCk

v
(x0).

In either case, x0 is an efficient point of the considered IOP. Hence, the result is fol-

lowed. □
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5.5.3 Comparison with existing KKT conditions for IOPs

In this section, we make a comparison of the proposed KKT optimality condition with

the existing ones. The comparison is based on

(i) the use of the lower function F and the upper function F ,

(ii) the use of gH-derivative, and

(iii) appearance (inclusion or equation) of the optimality condition.

To the best of the knowledge of the authors the existing articles on KKT theory for

IOPs are [97], [99], [111], [112] and [100].

In developing KKT theory for IOPs, the articles [97], [99], [111] and [112], used the

idea of H-derivative for interval-valued functions. However, the notion of H-derivative

is very restrictive for interval-valued functions since H-derivative may not exist for very

simple interval-valued functions (for details, see Subsection 2.2 of [100]). For instance,

the function F (x) = (1− x5)⊙ [−3, 1] does not have H-derivative at x = 0.

Further, the KKT theory for IOPs in [97], [99], [111] and [112] depends on existence

of the derivative of the lower and upper functions, F and F , respectively, of a given

interval-valued function F (x) = [F (x), F (x)]. This assumptions is also very difficult

to follow even for very simple functions. For instance, F (x1, x2) and F (x1, x2) for the

function FC2
v
(x1, x2) = [−1, 1] ⊙ x2 ⊕ [0, 2] ⊙ x2 are not differentiable (for details, see

Example 1 of [113]).

Additionally, in [97], [99], [111], [101] and [112] the KKT condition

0n
v =

∇FCk
v
(x0)⊕

m∑
i=1

ui ⊙∇Gi
Dp

v
(x0)

 (5.23)

is very restrictive as there is hardly a few interval-valued functions which follow this

condition.

Several other deficiencies of the approaches of [97] and [99] and [111] and [112] are
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reported by Chalco-Cano et al. [100]. However, in [100] the objective function F (x)

is taken in the form of [F (x), F (x)]. This is also not a mild assumption and it is not

always an easy task to find the expressions of F (x) and F (x) even for very simple

interval-valued function. For instance, consider the function

F (x1, x2) =
[−1, 2]⊙ sinx1 + [−2, 1]⊙ x2
[−1, 2]⊙ cosx2 + [−2, 1]⊙ x1

.

Besides, the KKT condition in [100] also appear alike to (5.23). This is also very

restrictive and very rare functions have gH-derivative exactly the ‘zero’ vector.

However, note that the studied KKT condition in this chapter

0n
v ∈

∇FCk
v
(x0)⊕

m∑
i=1

ui ⊙∇Gi
Dp

v
(x0)

 (5.24)

is very flexible as it appears with the inclusion relation instead of perfectly equal the to

zero vector. Also this chapter uses gH-derivative of interval-valued functions which is

the most general (see [100,105,113]) definition of derivative for interval-valued functions.

5.6 Application to Support Vector Machines

SVMs are generally used in solving classification problems. Here we consider a binary

classification problem. For a given data set D = {(xi, yi) : xi ∈ Rn, yi ∈ {−1, 1}, i =

1, 2, . . . ,m}, the problem of classifying data using SVMs is equivalent to the following

optimization problem:

min
w,b

F (w, b) = 1
2
∥w∥2

s.t. yi(w
⊤xi + b) ≥ 1, i = 1, 2, . . . ,m,

 (5.25)

where w ∈ Rn is the weight vector and b ∈ R is the bias. The constraints represent

the condition that the data points lie on either side of the separating hyperplanes
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w⊤x+ b = ±1.

In many classification problems, the data set may not be precise and thus involves

uncertainty. This may be due to errors in measurement, implementation, etc. For

example, let us assume we want to predict whether it will rain tomorrow or not. The

data we may require are the wind speed, humidity levels, temperature, etc. These

variables usually have values in intervals like 10–13 km/hr wind speed, 40− 50 percent

humidity, 30−35oC temperature, etc. The standard SVM formulation is not applicable

for such data as it is interval-valued, whereas the problem (5.25) requires real-valued

data. Thus, we adjust the SVM problem for the interval-valued data set

{
(Xi, yi) : Xi ∈ I(R)n, yi ∈ {−1, 1}, i = 1, 2, . . . ,m

}
by

min
w,b

F (w, b) = 1
2
∥w∥2

s.t. Gi
Dn

v
(w, b) = [1, 1]⊖gH yi ⊙

(
w⊤ ⊙Xi ⊕ b

)
⪯ 0, i = 1, 2, . . . ,m.

 (5.26)

We notice that the functions F (w) and Gi
Dn

v
are gH-differentiable and convex. The

gH-gradients of these functions are

∇F (w, b) =
(
D1F (w, b), D2F (w, b)

)⊤
= (w, 0)⊤

and ∇Gi
Dn

v
(w, b) =

(
D1G

i
Dn

v
(w, b), D2G

i
Dn

v
(w, b)

)⊤
= (−yi ⊙Xi,−yi)⊤,

where D1 and D2 are the gH-partial derivatives with respect to w and b, respectively.

According to Theorem 5.11, for an efficient point (w∗, b∗) of (5.26) there exist nonneg-
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ative scalars u1, u2, . . . , um such that

0n+1
v ∈

(w∗, 0)⊤ ⊕
m∑
i=1

ui ⊙ (−yi ⊙Xi,−yi)⊤
 (5.27)

and 0 = ui ⊙Gi
Dn

v
(w∗, b∗), i = 1, 2, . . . ,m. (5.28)

The condition (5.27) can be simplified as

0n
v ∈

[w∗, w∗]⊕
m∑
i=1

(−uiyi)⊙Xi


and

m∑
i=1

uiyi = 0.

The data points Xi for which ui ̸= 0 are called support vectors. By (5.28), we observe

that corresponding to any ui > 0, we have Gi
Dn

v
(w∗, b∗) = 0. Thus, corresponding to

w∗, the value of the bias b∗ is such a quantity that Gi
Dn

v
(w∗, b∗) = 0 for all of those

i ∈ {1, 2, . . . ,m} for which ui > 0.

Hence, as the functions F (w, b) and Gi
Dn

v
(w, b) are gH-differentiable and convex, by

Theorems 5.11 and 5.12, the set of conditions solving which we obtain the efficient

solutions of the SVM IOP (5.26) are

0n
v ∈

[w,w]⊕
m∑
i=1

(−uiyi)⊙Xi

 ,

m∑
i=1

uiyi = 0

and 0 = ui ⊙Gi
Dn

v
(w, b), i = 1, 2, . . . ,m.


(5.29)

Corresponding to any of the value of w that satisfies (5.29), we define the set of possible

values of the bias by ⋂
i: ui>0

{
b : Gi

Dn
v
(w, b) = 0

}
. (5.30)



5.6. Application to Support Vector Machines 129

Using any solution w̄ and b̄ of (5.29) and (5.30), a classifying hyperplane and the SVM

classifier function are given by:

w̄⊤X + b̄ = 0 and s∗(X) = sign
(
w̄⊤X + b̄

)
.

Example 5.3 Consider the interval data set

X1 =

[
[3, 4], [1, 2]

]
, y1 = 1, X2 =

[
[4, 5], [2, 3]

]
, y2 = 1,

X3 =

[
[5, 6], [1, 2]

]
, y3 = 1, X4 =

[
[0, 1], [1, 2]

]
, y4 = −1,

X5 =

[
[1, 2], [2, 3]

]
, y5 = −1, X6 =

[
[0, 2], [3, 4]

]
, y6 = −1.

For this data set we find a classifying hyperplane with the help of the IOP SVM (5.26).

In order to find a classifying hyperplane, we need to find a possible solution (w, b) of

(5.29) along with the corresponding ui’s.

We observe that for (u1, u2, u3, u4, u5, u6) = (1, 0, 0, 0, 1, 0) we have
∑6

i=1 uiyi = 0.

For these values of ui’s, the first condition in (5.29) reduces to

0n
v ∈

(
[w,w]⊕ (−1)⊙X1 ⊕X5

)
or, [w,w] ∈ (−1)⊙ ((−1)⊙X1 ⊕X5)

or, w ∈ ([1, 3], [−2, 0]). (5.31)

Denoting w = (w1, w2) ∈ R2, the condition (5.31) reduces to

1 ≤ w1 ≤ 3 and − 2 ≤ w2 ≤ 0. (5.32)

Let us choose w∗1 = 1 and w∗2 = −2. Corresponding to this w∗ = (w∗1, w
∗
2) = (1,−2),

from (5.30) and the third condition in (5.29), the set of possible values of the bias b is
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given by

⋂
i=1,5

{
b ∈ R : Gi

D2
v
(w∗, b) = 0

}
=
{
b ∈ R : G1

D2
v
(w∗, b) = 0

}⋂{
b ∈ R : G5

D2
v
(w∗, b) = 0

}
= {b ∈ R : b ∈ [−2, 1]} ∩ {b ∈ R : b ∈ [−6,−1]}

= {b ∈ R : −2 ≤ b ≤ −1}.

Thus corresponding to w∗1 = 1 and w∗2 = −2 the set of classifying hyperplanes is given

by

w∗1x1 + w∗2x2 + b = 0, −2 ≤ b ≤ −1

i.e., x1 − 2x2 + b = 0,−2 ≤ b ≤ −1.

For any choice of b in [−2,−1], note that the value of the objective function F is

identical (and it is 5
2
).

5.6.1 Comparison with existing solutions to interval uncertainty in SVM

5.6.1.1 Robust optimization

In robust optimization approach, the uncertain parameters are assumed to take their

worst case values and the constraints are to be satisfied for all the possible values for

the uncertain parameters. Ben-Tal et al. [114] have applied robust optimization to solve

interval uncertainty in SVM. The input data having interval uncertainty is given by the

uncertainty set

Xu =
{
Xi ∈ I(R)n : Xi = Xnom

i + σi, ∥σi∥∞ ≤ κ, i = 1, 2, . . . ,m
}
, (5.33)
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where κ is a positive constant. This means that each input pointXi lies inside the ∥.∥∞-

ball of radius κ centred at the nominal data Xnom
i , where for p = (p1, p2, . . . , pn) ∈ Rn,

∥p∥∞ = max{|p1|, |p2|, . . . , |pn|}.

The data set used for binary classification is represented as D = {(Xi, yi) : Xi ∈

Xu, yi ∈ {−1, 1}, i = 1, 2, . . . ,m}. Using robust optimization, in [114] the constraints

given in classical SVM formulation in the problem (5.25) is reduced to

yi(w
⊤Xnom

i + b) ≥ ρi∥w∥1, i = 1, 2, . . . ,m,

where ∥w∥1 =
∑n

i=1 |wi| and ρi = ∥σi∥∞.

The robust maximum margin classifier is thus obtained by (see in [114]) solving the

so-called robust counterpart

min
w,b

∥w∥1,

s.t. yi(w
⊤Xnom

i + b) ≥ ρi, i = 1, 2, . . . ,m.

 (5.34)

Applying (5.34) on the data set given in Example 5.3, we get the optimal classifying

line as 2x1 − 4
3
x2 − 5

3
= 0. We notice that this line lies inside the set of lines derived in

Example 5.3 using interval optimization (w∗1 = 2 ∈ [1, 3], ≤ w∗2 = −4
3
∈ [−2, 0], b∗ =

−5
3
∈ [−2,−1]). Thus, robust optimization technique provides a single solution by

solving the worst case possibility for the uncertain parameters and ignores all other

possibilities of the solution.

However, the proposed approach characterizes and obtain the complete solution set

of the IOP SVM problem.

5.6.1.2 Optimization using boundary functions

In [115], the application of SVMs in regression is considered where the data set has

interval uncertainty. The authors have used the classical SVM formulation and applied
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duality results directly to an interval optimization problem. For the interval vectors,

they have taken the upper or lower bound whichever maximizes their objective function.

This ignores the overall set of values and takes only the best case scenario. Here a

natural question arises: if the data set is uncertain, how can the solution be certain?

It is noteworthy that the proposed approach does not reduce the optimization problem

for the interval-data to the best or worst case analysis. Rather, it carries the interval

uncertainty till the end of the final decision.

5.7 Conclusion

In this chapter, we have considered the problem of interval optimization for constrained

IOPs with the aim of characterizing the efficient solution from a geometrical viewpoint.

We have proposed extensions to Gordon’s Theorems of the alternatives for an interval-

valued system of inequalities and used it to derive the Fritz John conditions for IOPs.

We also derived an extension to KKT conditions for IOPs and thereby proposed the

optimality conditions for both constrained and unconstrained IOPs. These proposed

optimality conditions have been applied to binary classification problem using SVMs

for interval-valued dataset and a comparison has been drawn with existing methods.

We have identified a set of efficient solutions for the formulated SVM problem using

proposed extended KKT conditions.

***********


