
Chapter 4

Improved Nonmonotone Adaptive

Trust-region Method to solve

Generalized Nash Equilibrium

Problems

4.1 Introduction

Generalized Nash Equilibrium Problems (GNEPs) are non-cooperative games. In these

problems, every player’s strategy set may depend on the rival player’s strategies. Early

in the 1950s, Nash [12] introduced a concept of equilibrium for non-cooperative games

with N players, where each player’s payoff function may be dependent on the strategies

of other players, named Nash equilibrium. Arrow et al. [3] developed this concept and

extended it to the GNEPs, where both the set of feasible strategies and the payoff

function may be dependent on the strategies of other players. The last two decades

have seen GNEPs as a major area of research, which has several applications to the

real world in the areas of computer science, engineering, and economics, for instance,

the abstract economy model [3], a power allocation problem in telecommunications [4],



78 4.2. Motivation

energy problems [16], wireless communication [7], Economic models and transporta-

tion [79,80], cyber security [81], etc. Robinson [11] discussed the problem of evaluating

performance in combat models based on optimization and gave a number of mathemat-

ical formulations.

4.2 Motivation

The main challenge in solving GNEPs is that the solution sets are mostly local and

nonunique. Therefore, the standard Newtonian methods rarely converge very well.

Some reliable techniques have attractive global convergence properties as well, for ex-

ample, the augmented Lagrangian-type method [46] and the interior-point-type scheme

[47], but they are not locally fast convergent. To develop a method for GNEPs, which

is both locally and globally convergent, we apply some appropriate methods that also

work for nonunique solutions. There are some methods for optimization problems

that have locally and globally convergent properties under an error-bound condition;

see [31, 50]. These error bounds are dependent on the specific GNEP reformulation.

A well-known reformulation takes the KKT conditions of the players, concatenates all

KKT conditions, and reformulates them into a semismooth system with the help of

the Fischer-Burmeister complementarity function. Unfortunately, it is challenging to

find locally superlinearly convergent Newton-type methods for semismooth systems of

equations under an error-bound condition without any further assumptions [82].

To overcome these difficulties, Tong et al. [48] have proposed a monotone trust region

method for constrained optimization problems. This method is globally and quadrat-

ically convergent under the local error-bound assumption. Further, Galli et al. [49]

modified this method using a nonmonotone strategy and obtained a nice local conver-

gence as well as global convergence under mild error-bound conditions. We develop this

method using a new nonmonotone technique and adaptive trust region radius. Also,

with some mild error bound constraints [50], we use a smooth GNEP reformulation,
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and using the proposed method, we solve a dataset of 35 different GNEPs.

4.3 Contributions

Neatly novelty and contribution of this chapter are as follows:

• By using the Fischer-Burmeister C-function [42], we formulate a smooth merit

function for solving GNEPs under consideration.

• We use an improved nonmonotone term, which helps the INATR method for

faster local and global convergence compared to the NTR method [49], and MTR

method [48]. Due to its nonmonotone counterpart, the INATR method acquires

the local convergence properties. So, we prove the global convergence of the

INATR method.

• We take an adaptive trust region radius in place of an ordinary trust region radius

which improves the trust region method.

• Step-wise algorithm of the proposed improved nonmonotone adaptive trust region

(INATR) method is provided.

• Well-definedness and global convergence of the proposed method are given.

• Numerical performance comparison of INATR method with MTR [48] and NTR

[49] for solving GNEPs is given.

4.4 Trust-region framework

Here, we discuss the trust region method so that its generalization to an improved

nonmonotone adaptive trust region (INATR) method can be easy to state. In this

chapter, we consider the problem of finding a solution to the following constrained
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nonlinear system of equations:

ϕ(z) = 0

subject to z ∈ Ω

 , (4.1)

where Ω ⊆ Rn is a nonempty set, and ϕ : Rn → Rn is a given function.

We consider some assumptions which are supposed to hold for problem (4.1) to

obtain convergence (both local and global) of the introduced trust region method.

Assumptions:

1. ϕ ∈ C1 and ∇ϕ(z) is locally Lipschitzian.

2. The solution set Z∗ is nonempty.

3. Ω is a nonempty closed and convex set.

4. ∥ϕ(z)∥ gives a local error bound in the neighborhood of a solution z∗ ∈ Z∗.

Here, in notation ϕ ∈ C1, we mean that ϕ is a continuously differentiable function. To

illustrate the trust region method, we consider the following merit function

Ψ(z) = 1
2
∥ϕ(z)∥2, (4.2)

where ϕ ∈ C1, and therefore we have ∇Ψ(z) = ∇ϕ(z)⊤ϕ(z). Since the solution set Z∗

is nonempty, z∗ solves (4.1) if and only if z∗ is a solution of the optimization problem

min
z

Ψ(z) subject to z ∈ Ω. (4.3)

At the current iterate zk, the regularized trust-region subproblem is given by

min
d

1
2
∥ϕ(zk) +∇ϕ(zk)⊤d∥2 + 1

2
µk∥d∥2

subject to ∥d∥ ≤ ∆k,

(4.4)
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where ∆k is trust region radius, and µk is an appropriate constant that depends on the

iteration index k.

4.5 INATR method

This section presents an improved nonmonotone trust region method with an adaptive

trust region radius. To achieve global convergence, the trust region methods replace the

line search techniques and handle the difficulties due to ill-conditioned problems and

nonsmooth problems. The updated approach of the new trust region radius affects the

number of iterations as well as the convergence behavior of our algorithm. Therefore,

we update the trust region radius using a gradient and Hessian.

Shi et al. [83] have presented a new trust region radius using the gradient informa-

tion. They use a vector qk ∈ Rn such that qk satisfies the angle condition:

− ∇Ψ(zk)
⊤qk

∥∇Ψ(zk)∥∥qk∥
≥ ζ, (4.5)

where 0 < ζ < 1. Kamandi et al. [84] have improved the vector qk ∈ Rn by

qk =


−∇Ψ(zk), if k = 0 or −(∇Ψ(zk)

⊤dk−1)

∥∇Ψ(zk)∥∥dk−1∥
≤ ζ,

dk−1, if k > 0,

(4.6)

where 0 < ζ < 1 and the vector dk−1 is obtained from solving the subproblem (4.4). To

avoid getting a very small trust region radius, a scalar s′k ∈ R is determined by

s′k =


−∇Ψ(zk)

⊤qk
q⊤k Bkqk

∥qk∥, if k = 0,

max
(
−∇Ψ(zk)

⊤qk
q⊤k Bkqk

∥qk∥, γ∆k−1

)
, if k > 0,

(4.7)

where γ > 1, qk is calculated using (4.6) and Bk is the Hessian approximation matrix
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updated by BFGS update formula, given by

Bk+1 =


θkI −

θkdkd
⊤
k

d⊤k dk
+

yky
⊤
k

d⊤k yk
, if d⊤k yk > 0,

Bk −
Bkdkd

⊤
k Bk

d⊤k dk
+

y∗ky
∗
k
⊤

d⊤k y∗k
, otherwise.

(4.8)

Then, Bk+1 is always positive definite. Here, θk =
d⊤k yk
∥dk∥2

, yk = ∇Ψ(zk+1) − ∇Ψ(zk),

dk = zk+1 − zk, y
∗
k = yk + tkdk with tk ∈ [0, C], C > 0, a constant and tk is selected in

a manner that {tk} → 0.

The trust region radius is calculated by

∆k = tpmin{s′k,∆max}, (4.9)

where p is a nonnegative integer, ∆max > 0 is a constant, and t ∈ (0, 1). The com-

putational experiments show that iterative algorithms with proper nonmonotone tech-

niques provide stronger convergence behavior [85]. For Newton’s method, Grippo et

al. [86] have given a nonmonotone technique search technique such that Ψ(zk +αdk) ≤

Ψl(k) + τα∇Ψ(zk)
⊤dk, where scalar α is the largest value of the set {lk : l ∈ (0, 1), k =

0, 1, 2, . . .}, scalar τ ∈ (0, 1), and for a given positive integerM1, the nonmonotone term

Ψl(k) is given by

Ψl(k) = max
0≤j≤m(k)

{Ψ(zk−j)}, (4.10)

with m(0) = 0, and 0 ≤ m(k) ≤ min{m(k − 1) + 1,M1} for k ≥ 1. This nonmonotone

line search technique is used to improve the numerical performance of the proposed

method in this chapter. However, the nonmonotone term (4.10) has some disadvantages.

For example, a better functional value obtained at any iteration may be omitted, and

the numerical performance depends on the selection of the initially chosen number

M1 [87].

Ahookhosh et al. [87] proposed an improved nonmonotone term that is a convex
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combination of the functional value obtained in current iterate Ψk and the maximum

of functional values Ψl(k) obtained from some prior successful iterations. Therefore, the

new nonmonotone term Rk is given by

Rk = βkΨl(k) + (1− βk)Ψk, (4.11)

where βk ∈ [βmin, βmax], βmin ∈ [0, 1) and βmax ∈ [βmin, 1] are two prefixed constants

and Ψl(k) is given by (4.10).

In the proposed algorithm, at k-th iteration, the actual reduction is given by

Aredk = Rk −Ψ(zk + dk). (4.12)

Let us define a model function mk(dk) at k-th iteration by mk(dk) = 1
2
∥ϕ(zk) +

∇ϕ(zk)⊤dk∥2. Then, the predicted reduction is defined by

Predk = mk(0)−mk(dk)

= 1
2
∥ϕ(zk)∥2 − 1

2
∥ϕ(zk) +∇ϕ(zk)⊤dk∥2.

(4.13)

We use the actual and predicted reductions for computing the modified ratio rk. There-

fore, the modified ratio rk is given by

rk =
Aredk

Predk

=
Rk −Ψ(zk + dk)

mk(0)−mk(dk)
. (4.14)

We choose a parameter u ∈ (0, 1), and accept the trial step dk if rk ≥ u and increase the

trust-region radius ∆k; otherwise, we decrease the trust region radius ∆k by a constant

fraction and recompute dk.

Now, we will provide a brief algorithm to solve the main problem (4.3) using the INATR

method.
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Algorithm 5 Computing zk such that ∥Ψ(zk)∥ < ϵ to solve (4.1)

Step 0. (Initialization step).

Initially choose z0 ∈ Ω, B0 = In×n, R0 = Ψ(z0), and a positive integer M1.

Choose constants 0 < ζ < 1, u ∈ (0, 1), t ∈ (0, 1), γ0 > 0, βmin ∈ [0, 1), βmax ∈ [βmin, 1],

∆max > 0 and set iteration counter k = 0.

Step 1. (Terminating condition).

If ∥Ψ(zk)∥ < ϵ, then stop, and give the output as zk, an ϵ-precision solution to (4.1)

Step 2. (Main steps).

Step 2.1. (Computation of vectors required for trust region radius)

Compute vectors qk by (4.6), s′k by (4.7), and set p = 0 (p is used for (4.9))

Step 2.2. (Computation of trust region radius ∆k)

Compute the trust region radius ∆k by (4.9).

Step 2.3. (Computation of projected-gradient direction)

Compute d
G
k = −

∆k

∆max
γk∇Ψ(zk),

and d
G
k = PΩ[zk + d

G
k ] − zk,

(4.15)

where γk = min

{
1, ∆max

∥Ψ(zk)∥ ,
βΨ(zk)

∥Ψ(zk)∥2

}
.

Step 2.4. (Computation of projected trust region direction)

Compute the trust region direction dTR
k by solving (4.4). Then, compute the projected direction

d
TR
k = PΩ[zk + d

TR
k ] − zk.

Step 2.5. (Computation of optimal combined direction)

Compute a convex combination of the projected trust region direction and the projected-gradient direction by

dk = t
∗
d
G
k + (1 − t

∗
)d

TR
k ,

where 0 < t∗ < 1 is obtained by solving the problem

min
t∈[0,1]

1
2

∥∥∥ϕ(zk) + ∇ϕ(zk)
⊤
(td

G
k + (1 − t)d

TR
k )

∥∥∥
Step 2.6. ( Acceptance and rejection of trial step dk)

Compute actual reduction by (4.12) and predicted reduction by (4.13) to compute rk by (4.14). If rk < u, then set

p = p + 1, and go to Step 2.2.

Step 2.7. (Increase the iteration counter k and update zk).

Set zk+1 = zk + dk. Update Bk+1 by (4.8), choose βk ∈ [βmin, βmax]. Set k = k + 1, and go to Step 1.
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In Algorithm 5, the loop between Step 2.2. and Step 2.6. is known as the inner cycle.

It is called an unsuccessful iteration if rk < u. In the acceptance and rejection of dk,

the parameter u in Step 2.6. plays a crucial role. We implicitly assume throughout our

convergence analysis that after finitely many iterations, the termination criterion (Step

1.) does not hold. Therefore, in our theoretical analysis of Algorithm 5, we suppose

that none of the iterates zk is an exact stationary point, so that PΩ[zk−∇Ψ(zk)]−zk ̸= 0

for all k.

Note that the sequence {zk} produced by Algorithm 5 contained in feasible set Ω.

Also, from [48], we can see that Algorithm 5 with rk from (4.14) is well-defined, i.e., the

number of inner iterations between (Step 2.2.) and (Step 2.6.) is finite for every outer

iteration k.

4.6 Convergence Analysis

In this section, we prove the convergence of Algorithm 5. To prove the convergence, we

first present the following lemmas and propositions.

Lemma 4.1 Let {zk} be a sequence, which is generated by Algorithm 5. Then, the

sequence of nonmonotone terms {Ψl(k)} is a monotonic decreasing sequence.

Proof: The proof is the same as Lemma 4 in [87]. □

Lemma 4.2 Following inequality

∇Ψ(zk)
⊤d

G

k (∆) ≤ −
(

∆
∆maxγk

)∥∥∥dGk (∆max)
∥∥∥2 (4.16)

holds under the consideration of Algorithm 5.

Proof: The proof is the same as Lemma 1 in [49]. □

The following proposition establishes a relation between predicted reduction and pro-

jected gradient direction, which is used to prove the convergence of Algorithm 5.
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Proposition 4.1 Let {zk} be a sequence generated by the Algorithm 5. Let z∗ be an

accumulation point of a subsequence {zk}k∈K. If z∗ is not a stationary point, then there

exists an index k′ > 0 and ∆max > 0 such that the following inequality

−t∇Ψ(zk)
⊤d

G

k (∆) ≤ Predk(∆) (4.17)

holds for all ∆ ∈ (0,∆max), and for all k ∈ K with k ≥ k′.

Proof: We start the proof from the following useful observation. From the assumption

1, it is easy to see that there exists a constant c1 such that

∥∇ϕ(zk)∥ ≤ c1 for all k ∈ K. (4.18)

Note that for all k ∈ K,

∥∇ϕ(zk)⊤d
G

k (∆)∥ = ∥∇ϕ(zk)⊤(PΩ[zk + dGk ]− zk)∥ from (4.15)

≤ ∥∇ϕ(zk)∥∥(zk + dGk )− zk∥

≤ ∆γk
∆max

∥∇ϕ(zk)∥∥∇Ψ(zk))∥ from (4.15)

≤ c1∆ using definition of γk in Step 2.3. and (4.18). (4.19)

It is given that z∗ is not a stationary point. Therefore, we have a positive number γ∗

such that

γ∗ = lim
k∈K,k→∞

γk = min
{
1, ∆max

∥∇Ψ(z∗)∥ ,
βΨ(z∗)
∥∇Ψ(z∗)∥2

}
.

Thus, using (4.15) and γ∗ > 0, we have

∥dGk (∆max)∥ → ∥PΩ[z
∗ − γ∗∇Ψ(z∗)]− z∗∥ > 0 as k → ∞.
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Hence, there exist a constant c2 > 0 and an index k′ > 0 such that

∥dGk (∆max)∥ ≥ c2 for all k ∈ K, k ≥ k′. (4.20)

Consider

∆′ = min
{
∆max,

(1−t)c22
c21∆max

}
. (4.21)

Now we prove (4.17). From (4.13), we have

Predk(∆) = mk(0)−mk(dk)

= 1
2
∥ϕ(zk)∥2 − 1

2
∥ϕ(zk) +∇ϕ(zk)⊤dk(∆)∥2

≥ 1
2
∥ϕ(zk)∥2 − 1

2
∥ϕ(zk) +∇ϕ(zk)⊤d

G

k (∆)∥2

= 1
2
∥ϕ(zk)∥2 − 1

2
∥ϕ(zk)∥2 −∇Ψ(zk)

⊤d
G

k (∆)− 1
2
∥∇ϕ(zk)⊤d

G

k (∆)∥2

= −∇Ψ(zk)
⊤d

G

k (∆)− 1
2
∥∇ϕ(zk)⊤d

G

k (∆)∥2

= −t∇Ψ(zk)
⊤d

G

k (∆)− (1− t)∇Ψ(zk)
⊤d

G

k (∆)− 1
2
∥∇ϕ(zk)⊤d

G

k (∆)∥2

≥ −t∇Ψ(zk)
⊤d

G

k (∆) + (1− t)
(

∆
∆maxγk

)∥∥∥dGk (∆max)
∥∥∥2 − 1

2
c21∆

2

using Lemma 4.2 and (4.19)

≥ −t∇Ψ(zk)
⊤d

G

k (∆) + c21∆∆′ − 1
2
c21∆

2 using (4.20), (4.21) and 0 < γk ≤ 1

≥ −t∇Ψ(zk)
⊤d

G

k (∆) because ∆ ≤ ∆′,

which is the required inequality. □

Now, using Lemma 4.1 and Proposition 4.1, we will prove the convergence of Algorithm

5, which is as follows.

Theorem 4.1 Suppose {zk} is the sequence generated by the Algorithm 5. Then, every

accumulation point of {zk} is a stationary point for Ψ.

Proof: Let z∗ be an accumulation point of {zk} and let limk∈K,k→∞ zk = z∗ be a

convergent subsequence. We shall use contradiction to prove this theorem. Assume that
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z∗ is not a stationary point. Then, using the calculation made in proof of Proposition

4.1, we have a positive number γ∗ such that

γ∗ = lim
k∈K,k→∞

γk = min
{
1, ∆max

∥∇Ψ(z∗)∥ ,
βΨ(z∗)
∥∇Ψ(z∗)∥2

}

and there exist an index k′ > 0 and a constant c3 > 0 such that

∥dGk (∆max)∥ ≥ c3 for all k ∈ K, k ≥ k′. (4.22)

Further, with the help of Proposition 4.1, there exist k′ and ∆max such that (4.17) is

satisfied. Moreover, using (4.9), for k ∈ K, k ≥ k′ and a positive constant c,∆∗k > c∆.

It means that ∆∗k has a lower bound for sufficiently large k ∈ K.

Since z∗ is not a stationary point, therefore rk ≥ u for all k ∈ K, k ≥ k′. Thus, from

(4.14), we have

Rk −Ψ(zk + dk) ≥ u(mk(0)−mk(dk)). (4.23)

Using (4.11), we have

Rk = βkΨl(k) + (1− βk)Ψk ≤ βkΨl(k) + (1− βk)Ψl(k) = Ψl(k).

Therefore, from (4.23), Ψl(k)−Ψ(zk+dk) ≥ u(mk(0)−mk(dk)). Let k = l(k)−1. Then,

we have

Ψl(l(k)−1) −Ψl(k) ≥ u(ml(k)−1(0)−ml(k)−1(dl(k)−1)

= uPredl(k)−1(∆
∗
l(k)−1)

≥ −u
(
t∇Ψ(zl(k)−1)

⊤d
G

l(k)−1(∆
∗
l(k)−1)

)
using (4.17)

≥ ut
(

∆∗

∆maxγl(k)−1

)∥∥∥dGl(k)−1(∆max)
∥∥∥2 using (4.16)

≥ 0. (4.24)
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Now we have Ψ(zk) ≤ Ψl(k), and Ψ(zk) is bounded from below. Also, from Lemma 4.1,

{Ψl(k)} is a decreasing sequence. Therefore, we have

|Ψl(l(k)−1) −Ψl(k)| → 0 as k → ∞.

It implies, from (4.24), that
∥∥∥dGl(k)−1(∆max)

∥∥∥2 → 0 as k → ∞, which is a contradiction.

Hence, the proof is completed.

□

4.7 Application to generalized Nash equilibrium problems

Consider the player convex GNEP as described in Chapter 1. Therefore, we have the

reformulated system (1.8) for player convex GNEP.

Therefore, for computing the solution to the original problem (1.2), we concentrate

on solving (1.5). To solve system (1.5), we reformulate (1.5) into a smooth system of

equations using Hadamard product (componentwise product). Using the slack variables

s ∈ Rm
+ and Hadamard product (soλ)i = siλi for i = 1, 2, . . . ,m, we have

F (z) =


L(x, λ)

g(x) + s

soλ

 such that z = (x, s, λ) ∈ Ω = Rn × Rm
+ × Rm

+ , (4.25)

which is a box-constrained system of equations. Suppose that the corresponding solu-

tion set

{z ∈ Ω : F (z) = 0} (4.26)

is nonempty. We first define a merit function to solve the system (4.25). Consider

the merit function ψ(z) = 1
2
∥F (z)∥2. Then, the system (4.25) will be reduced into a
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constrained optimization problem similar to optimization problem (4.3):

min
z∈Ω

ψ(z), (4.27)

where Ω = Rn×Rm
+ ×Rm

+ . Therefore, the problem (4.27) can be solved using Algorithm

5.

4.8 Numerical results

In this section, we provide some numerical examples of generalized Nash equilibrium

problems and performance measures of Algorithm 5 to analyze the efficiency of the

INATR method 5. Galli et al. [49] have given a detailed comparison of “A nonmonotone

trust region method” with original monotone trust region method and a solver for non-

linear, box-constrained systems of equations in [49]. Then, numerical performances

in [49] indicate that the NTR method [49] outperforms the other numerical methods

compared in [49]. Here, we analyze the numerical performance of our approach using a

larger collection of examples. We have compared the following three algorithms:

1. Algorithm 5 (INATR),

2. MTR method by Tong et al. [48], and

3. NTR method by Galli et al. [49].

MTR, NTR, and INATR have been coded in MATLAB software (version: 9.12.0.2009381

(R2022a)) on a CPU of i5-10th generation. During the compilation of algorithms, we

use a stopping condition ∥∇Ψ(zk)∥ < ϵ, with ϵ = 10−4. Other algorithmic parameter

values are as follows:

• ζ = 10−2, t = 0.3, u = 0.0001, γ = 2, β = 0.99,

• In subproblem (4.4), we use µ = Cmin(∥ϕ(zk)∥2, 1), C = 0.0001,
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• α = C/2, β0 = 0.5, B0 = In×n,

• Termination condition ϵ = 10−4,

• ∆min = 0.0001, ∆max = max(1000, ∥(initial point)∥), ∆0 = 5,

• To obtain nonmonotone term, we use M1 = 20,

• For the improved nonmonotone term Rk, parameter βk is updated by

βk =


1
2
β0, if k = 1,

1
2
(βk−1 + βk−2), if k ≥ 2,

(4.28)

• ρ1 = 0.0001, ρ2 = 0.75, σ = 0.5.

A dataset of 35 different GNEPs [47] has been tested using each of three methods:

INATR, NTR, and MTR. We use fmincon (built-in function of Matlab) for solving the

subproblem (4.4) to maintain consistency in each of the three algorithms. To present

the performance of the methods, we use the performance profiles given by Dolan et

al. [88]. We use some parameters in measuring the performance profiles: Let ns be the

number of solvers, and np represent the number of test problems. Let S be the set of

all algorithms, and P be the set of test problems considered here. We are interested

in using computation time as a performance measure. Therefore, for every problem p

and solver s, we use t′p,s as the CPU time consumed by solver s to solve problem p.

Therefore, the performance ratio is given as

r′p,s =
t′p,s

min{t′p,s : s ∈ S}
.

It is clear that for all problems p and solvers s, r′p,s ≥ 1. Therefore, the performance
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profile for every solver s is given by

Ps(ζ) =
cardinality of set {p ∈ P : r′p,s ≤ ζ}

np

.

Thus, for the solver, s ∈ S, the ratio Ps(ζ) is the probability that a performance ratio

r′p,s is within a factor ζ ∈ R of the best possible ratio. We have given performance

profiles based on CPU-time in Figure 4.1 and based on the number of iterations in

Figure 4.2. The method with the highest percentage of problems solved within a time

that was within the best time factor zeta is represented by the top curve.
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Figure 4.1: Performance profile based on CPU-time

From Fig. 4.1, it is clear that the best-performing method is the INATR method,

while the worst-performing method is the MTR method out of all three methods based
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Figure 4.2: Performance profile based on number of iterations

on the CPU time. Also, from Fig. 4.2, it is clear that the INATR method performs

better than the rest of the three methods based on the number of iterations.

4.8.1 Some illustrative examples

Example 4.1 Consider the following GNEP that has two players and one shared con-

straint:

min
x1

x21 +
8
3
x1x2 − 34x1

subject to x1 + x2 ≤ 15,

0 ≤ x1 ≤ 10,

and

min
x2

x22 +
5
4
x1x2 − 97

4
x2

subject to x1 + x2 ≤ 15,

0 ≤ x2 ≤ 10.

This game was introduced by Harker [63]. For this problem, Algorithm 5 converges

to x1 = 5, x2 = 9 starting from any feasible point. We have compared the two algo-
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rithms: INATR and NTR [49]. We have specified some regions for starting points. We

have randomly taken 100 points from each specified region and presented the minimum,

median, and maximum of the number of iterations and CPU time consumed by the two

algorithms: INATR and NTR. In the comparison Table 4.1, we can see that the pro-

posed Algorithm 5 performs better than NTR [49]. Also, we have given a graph showing

the convergence of Problem 4.1 starting from a specific initial point in Figure 4.3.
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Figure 4.3: Convergence of INATR method for Problem 4.1

Example 4.2 Kesselman et al. [65] have introduced a model of internet switching,

where selfish users have produced the traffic. The model deals with the behaviour of

users sharing the limited ability of the first in, first out buffer. Every user’s utility

depends on their congestion level and transmission rate. To be more precise, we assume

that the buffer capacity is B and the total number of users is N . The user v controls
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Table 4.1: Performances of INATR and NTR methods on Problem 4.2

Region
of

initial point

INATR method NTR method
Iteration number Computation time Iteration number Computation time

Min Median Max Min Median Max Min Median Max Min Median Max
∥x0∥ ≤ 1 42 59 70 260.78 299.88 341.60 315 378 493 2849.67 3107.01 4052.93
1 < ∥x0∥ ≤ 5 85 119 150 478.27 614.43 772.31 307 382 450 2503.14 3155.58 3770.24
5 < ∥x0∥ ≤ 15 4 5.5 6 20.09 25.41 27.82 4 5 7 19.90 25.69 30.20
15 < ∥x0∥ ≤ 50 93 121 181 490.41 626.18 935.54 298 377 431 2397.78 2958.76 3406.41
50 < ∥x0∥ ≤ 100 95 104 123 765.68 834.11 984.42 781 852 958 7038.80 7686.25 8631.36

the amount of his “packets” in the buffer, denoted by xv ∈ [0,∞). The utility function

for the player v (v = 1, 2, 3, . . . , N) is given by

θv(x
v, x−v) = − xv

x1 + x2 + · · ·+ xN

(
1− x1 + x2 + · · ·+ xN

B

)
, (xv, x−v) ∈ RN

(4.29)

and the constraints are x1 + x2 + · · · + xN ≤ B and xv ≥ lv, where lv ≥ 0. Kesselman

et al. [65] have shown that the model (4.29) has a unique solution x̄v = B(N − 1)/N2,

v = 1, 2, . . . , N .

In this model, we take N = 20, i.e., 20 players, lv = 0.01, for each v = 1, 2, . . . , N and

B = 1 for numerical computation. The problem has a total of 20 variables, and the

system (4.2) pertaining to solving this GNEP involves 41 variables. The GNEP problem

(4.29) for twenty players has a unique solution x̄v = 0.05, for each v = 1, 2, . . . , N .

In employing Algorithms 5 and NTR [49] on this problem, we randomly take the initial

points from the region indicated in Table 4.2. The numerical performance of Algorithms

INATR and NTR on this GNEP is provided in Table 4.2, which clearly indicates that the

INATR method is cost-efficient compared to NTR corresponding to each specified region

for initial points. Also, we have given a graph showing the convergence of Problem 4.2,

starting from a specific initial point in Figure 4.4.
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Figure 4.4: Convergence INATR method for Problem 4.1

Table 4.2: Performances of INATR method and NTR-method on Problem 4.2

Region
of

initial point

INATR method NTR method
Iteration number Computation time Iteration number Computation time

Min Median Max Min Median Max Min Median Max Min Median Max
∥x0∥ ≤ 1 2 3 5 5.61 6.99 10.36 2 3 5 22.01 23.68 25.83
1 < ∥x0∥ ≤ 5 13 16 27 48.73 52.95 62.40 15 18 27 52.69 59.98 82.17
5 < ∥x0∥ ≤ 15 13 15 21 43.59 50.84 92.67 13 20 22 44.09 68.61 105.83
15 < ∥x0∥ ≤ 50 14 22 30 48.82 95.77 128.40 15 25 69 55.27 83.82 204.17
50 < ∥x0∥ ≤ 100 17 18 22 58.77 64.17 71.73 18 25 67 57.11 108.62 198.27

4.9 Conclusion

In this chapter, we have proposed an INATR method (Algorithm 5) for constrained

optimization problems and have shown its application to solve GNEPs (Section 4.7).

In this method, we have computed an adaptive trust region radius ((4.5)-(4.9)) using

gradient and Hessian matrix information. It affects the convergence of the algorithm
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as well as the number of iterations. Also, we have used a new nonmonotone technique

(4.11), a convex combination of the functional value obtained in the current iteration

and the maximum of the functional values obtained from some prior successful itera-

tions. Subsequently, we have given a global convergence (Theorem 4.1) of the proposed

algorithm. Further, we have solved a dataset of 35 GNEPs using the INATR method

and have provided a comparison of the performance profiles of the INATR method with

the existing two methods: NTR and MTR.

***********




