
Chapter 3

An Inexact Newton Method to

Solve Generalized Nash Equilibrium

Problems

3.1 Introduction

Generalized Nash Equilibrium Problem (GNEP) is a noncooperative Nash equilibrium

problem in which the strategy set of each player may depend on the strategies of the

rival player. It was first formally introduced by Debreu [2] as a social equilibrium in

1952, and later as an abstract economy [3]. GNEPs have been an interesting area of

research during the last two decades, and it has several real-world applications in the ar-

eas of computer science, economics and engineering, for example, Arrow and Debreu [3]

proposed an abstract economy model, a power allocation problem in telecommunica-

tions [4], a competition among countries that arises from the Kyoto protocol to reduce

air pollution [5], etc. A few other application areas of GNEPs include wireless com-

munication [6,7], cloud computing [8], electricity generation [9], etc. As an application

of GNEPs, Robinson [10, 11] discussed several mathematical formulations to solve the

problem of measuring the effectiveness in optimization-based combat models.

48 3.2. Motivation

3.2 Motivation

In most of the methods, researchers have analyzed the case of player convex GNEPs

or jointly convex GNEPs. Facchinei et al. [1] considered the GNEPs with shared con-

straints and proposed Newton-type methods—semismooth Newton methods I and II

and Levenberg-Marquardt method—to solve it. The numerical methods in [1] converge

Q-quadratically, but they have local convergence properties. In this chapter, we de-

velop an algorithm by using a Newton-type method to find a solution for GNEPs that

converges globally. The choice of applying Newton-type method is due to the fact that

it converges much faster than other well-known optimization methods. However, the

conventional Newton method is not applicable to a nonsmooth system and does not

converge globally. In this study, we attempt to apply an inexact Newton method that

has a similar convergence rate as of Newton method and converges globally. Newton’s

methods are very attractive because they converge rapidly from any good initial guess.

However, solving a system of linear equations at each stage can be expensive if the

number of unknowns is large and may not be justified when the initial guess is far from

a solution. Therefore, we consider the class of inexact Newton methods which solve the

Newton equations approximately.

3.3 Contributions

The contribution of this study and the precise approach for applying the inexact Newton

method on GNEPs are as follows.

• We reformulate GNEPs into a nonsmooth system with the help of a semismooth

complementarity function. There are some Newtonian methods like semismooth

Newton method, Levenberg-Marquardt method [1], etc., to solve GNEPs, but for

the large-scale GNEPs, these methods can be expensive. Therefore, we use an

inexact Newton method and use some line search techniques which makes this

3.4. Inexact Newton method 49

method advantageous as compared to the previous Newtonian methods in the

sense of faster local and global convergence.

• We use the Armijo-Goldstein condition to find the step length, which has a better

convergence property as compared to Armijo condition and Wolfe condition (see

[66], pp. 36–41).

• We consider both types of GNEPs—player convex GNEP and jointly convex

GNEP—and solve them by using inexact Newton method. The convergence

analysis of the proposed algorithms is also given. In addition, we provide some

numerical examples to verify the convergence of Algorithms 3 and 4.

3.4 Inexact Newton method

Using the inexact Newton method, we will solve GNEP considering the two cases of

GNEP: PLayer convex GNEP and jointly convex GNEP.

3.4.1 Inexact Newton method of GNEP: player convex case

Theorem 3.1 [41] If the GNEP is player convex, then for each solution (x, λ) to the

system (1.5), the vector x̄ is a generalized Nash equilibrium point.

To solve the system (1.5), we reformulate it into a nonsmooth system of equations

using a complementarity function.

Definition 3.1 [42] A function ϕ : R2 → R is called a complementarity function if

ϕ(x, y) = 0 ⇔ (x, y) ≥ 0, xy = 0. (3.1)

50 3.4. Inexact Newton method

With the help of a complementarity function ϕ : Rm × Rm → Rm, defined by

ϕ(x, y) =

ϕ(x1, y1)

ϕ(x2, y2)

...

ϕ(xm, ym)

,

the system (1.5) can be reformulated as

 L(x, λ)

ϕ(−g(x), λ)

 = 0. (3.2)

With the ‘min’ complementarity function, i.e.,

ϕ(x, y) = min(x, y) =

min{x1, y1}

min{x2, y2}
...

min{xm, ym}

, (3.3)

the reformulated system (3.2) becomes

F (x, λ) = 0, (3.4)

where

F (x, λ) =

 L(x, λ)

min(−g(x), λ)

 . (3.5)

Since ‘min’ function is not everywhere differentiable, the system (3.4) is a system

of nonsmooth equations. We can use differentiable complementarity functions with the

3.4. Inexact Newton method 51

help of Fischer-Burmeister C-function [42], defined by

Φ(x, y) =
√
x2 + y2 − (x+ y),

which is convex and differentiable everywhere for (x, y) ̸= (0, 0). If we take the com-

plementarity function

ϕ(x, y) = Φ(x, y)2,

then the function ϕ is differentiable everywhere and the reformulated system (3.2) be-

comes a system of smooth equations. However, we know from several point of view that

the use of nondifferentiable function ϕ is practically important [42]. So, in this chapter,

we consider a semismooth (Definition 3.3) complementarity function ‘min(x, y)’.

Definition 3.2 [67] Let H : Rn → Rn be a locally Lipschitzian function and ΩH ⊆ Rn

be the set of points where H is differentiable. The limiting Jacobian of H at y ∈ Rn is

defined by

Jac H(y) =

{
V : V = lim

k→∞
JH(yk) for some {yk} ⊆ ΩH such that lim

k→∞
yk = y

}
,

where JH(yk) is the Jacobian of H at yk. For a given y ∈ Rn, the convex hull of the

set Jac H(y) is named as Clarke generalized Jacobian and is denoted by ∂H(y).

It is worthy to mention that every locally Lipschitzian function H : Rn → Rn is

differentiable almost everywhere (Rademacher’s Theorem [68]). Hence, the set ΩH in

Definition 3.2 is nonempty.

Definition 3.3 [69] Let H : Rn → Rn be a locally Lipschitz continuous mapping. If H

is directionally differentiable, and for any δy ∈ Rn and V ∈ ∂H(y + δy) with δy → 0,

H(y + δy)−H(y)− V (δy) = o(∥δy∥),

52 3.4. Inexact Newton method

then H is called semismooth at the point1 y ∈ Rn.

We note that for ϕ(x, y) = min{x, y}, the function F : Rm × Rm → Rm as defined

in (3.3) is a semismooth function (see [70]).

Definition 3.4 [69] Let H : Rn → Rn be semismooth at y ∈ Rn. If the elements of

the set Jac H(y) are nonsingular, then H is called strongly BD regular at y ∈ Rn. In

addition, if y ∈ Rn satisfies the system H(y) = 0, then y is called a strongly BD regular

solution of the system H(y) = 0.

We note that identification of a solution to the GNEP (1.1)–(1.2) is equivalent to

calculate the x-component of a zero of the function F (x, λ). In the next section, we

propose an algorithm to calculate the solution of the system

F (x, λ) = 0.

An important observation is that the mapping defined by (3.5) is semismooth, and

the square of norm of F in (3.5) is not differentiable. Define a merit function:

Ψ(z) =
1

2
∥F (z)∥2. (3.6)

Since, we have F : Rn+m → Rn+m in (3.5), a locally Lipschitz continuous mapping,

therefore Ψ : Rn+m → R in (3.6) is also a locally Lipschitz continuous mapping. From

Clarke [71,72], Ψ is differentiable almost everywhere in Rn+m. Let B be any nonempty,

open subset of Rn+m, and Ψ be Lipschitz of B. Then, for z ∈ B, define a set

Jac Ψ(z) = { lim
j→∞

∇Ψ(zj)| {zj} → z, and Ψ is differentiable at zj}. (3.7)

1Throughut the chapter, we use the notations ∥ · ∥ and ⟨·, ·⟩ to represent the usual Euclidean norm
and inner product in Rn, respectively.

3.4. Inexact Newton method 53

The convex hull of Jac Ψ(z) is called subdifferential of Ψ at z, and is denoted by ∂Ψ(z).

Thus,

∂Ψ(z) = Conv{gΨ(z) ∈ Rn+m | gΨ(z) = H(z)⊤F (z), H(z) ∈ Jac F (z)}.

3.4.2 Algorithm: Inexact Newton method for player convex GNEPs

Since the mapping in (3.5) is strongly semismooth, the reformulated system (3.4) is

nonsmooth. To find a solution of the system (3.4), we provide an inexact Newton

method [69,73] which is described below (Algorithm 3). The choices of the parameters

and notations that are used in the algorithm are as follows:

(1) We use the notations z = (x, λ), Ψ(z) = 1
2
∥F (z)∥2.

(2) We choose a forcing constant η0 ∈ (0, 1) and a bounded forcing sequence {ηk}

such that 0 < ηk ≤ ηmax < 1, where ηmax = max{ηk : k = 0, 1, 2, . . .}.

(3) For the residual vector rk, we take rk = ηkF (z
k) or rk = ηk

2
F (zk), so that rk

satisfies the inexactness condition

∥rk∥ = ∥Hkd+ F (zk)∥ ≤ ηk∥F (zk)∥.

The initial residual vector will be calculated by r0 = η0F (z
0).

(4) We choose an arbitrary constant c ∈ (0, 1), which we need for Armijo-Goldstein

condition to prevent the step length from being too small or too large. Precisely,

we choose the constant c as 10−4 or smaller.

54 3.4. Inexact Newton method

Algorithm 3 Computing zk such that ∥Ψ(zk)∥ < ϵ to solve (3.6)

Step 0 (Initialization step). Choose positive constants ρ > 0 and κ > 2.

Given precision scalar ϵ > 0.

Start with the initial point z0 ∈ Rn × Rm and set the iteration counter k = 0.

Step 1 (Terminating condition). If ∥F (zk)∥ < ϵ, then stop, and give the output as

zk, an ϵ-precision solution.

Step 2 (Main steps).

Substep 2.1: (Descent direction choice). Choose Hk ∈ Jac F (zk).

Find a vector dk ∈ Rn+m that satisfies the following systems (3.8) and (3.9):

Hkd = −F (zk) + rk with ∥rk∥ ≤ ηk∥F (zk)∥ (3.8)

and

⟨(Hk)⊤F (zk), dk⟩ ≤ −ρ∥dk∥κ. (3.9)

If no such dk exists, then set dk = −(Hk)⊤F (zk).

Substep 2.2: (Step length choice). Choose ik, the smallest nonnegative integer i that

satisfies the following pair of inequalities

Ψ(zk + 2−idk) ≤ Ψ(zk) + c2−i⟨(Hk)⊤F (zk), dk⟩ and

Ψ(zk + 2−idk) ≥ Ψ(zk) + (1− c)2−i⟨(Hk)⊤F (zk), dk⟩.

 (3.10)

Substep 2.3: (Increase the iteration counter k and update zk). Set zk+1 = zk + 2−ikdk.

Update k = k + 1.

Choose an ηk+1 ≥ 0 such that ηk+1 ≤ ηk and go to Step 1.

Definition 3.5 [66] Let {xk} be a sequence in Rn that converges to x̄. We say that

the convergence is Q-superlinear if limk→∞
∥xk+1−x̄∥
∥xk−x̄∥

= 0. The convergence is called

Q-quadratic if there exists a positive constant M and a positive integer p such that

3.4. Inexact Newton method 55

∥xk+1−x̄∥
∥xk−x̄∥2

≤M , for all k ≥ p.

Definition 3.6 [74] Suppose Ψ : Rn+m → R is locally Lipschitzian. Then, a direction

d ∈ Rn+m is descent direction for Ψ at a point z ∈ Rn+m, if d ∈ Rn+m satisfies

{⟨gΨ, d⟩ | gΨ ∈ ∂Ψ(z)} < 0.

Since, we have Ψ(zk) = 1
2
∥F (zk)∥2, and Ψ(zk) is locally Lipschitzian. Here, Ψ and

F (zk) are not differentiable functions, therefore, we have taken Hk ∈ Jac F (zk) such

that gΨ(zk) = Hk⊤F (zk) ∈ Jac Ψ(zk).

If dk satisfies (13) and (14), then,

⟨gΨ(zk), d
k⟩ = ⟨Hk⊤F (zk), dk⟩ ≤ ρ∥dk∥κ < 0 (for ρ > 0, κ > 2).

If we take dk = −Hk⊤F (zk) ,

⟨gΨ(zk), d
k⟩ = ⟨Hk⊤F (zk),−Hk⊤F (zk)⟩ < −∥Hk⊤F (zk)∥2 < 0.

Therefore, in both cases, dk is a descent direction.

The following theorem proves the global quadratic convergence for Algorithm 3.

Theorem 3.2 Let {zk} be the sequence generated by Algorithm 3. Assume that {ηk}

is a sequence such that 0 < ηk ≤ η0 < 1 for every k with an arbitrary η0 ∈ (0, 1). Then,

the following assertions are valid.

(i) For every accumulation point z of {zk}, 0 ∈ ∂Ψ(z).

(ii) For any strongly BD-regular solution z of the system F (z) = 0, if zk → z,

then the rate of convergence of the sequence {zk} is Q-superlinear provided ηk →

0, i.e., ∥rk∥ = o(∥F (zk)∥). Furthermore, if ηk = O(∥F (zk)∥), i.e., if ∥rk∥ =

O(∥F (zk)∥2), then the rate of convergence of the sequence {zk} is Q-quadratic.

56 3.4. Inexact Newton method

Proof: (i) Assume to the contrary that z is an accumulation point of {zk} and 0 ̸∈

∂Ψ(z).

Let Hk ∈ Jac F (zk). Then, gΨ(zk) = (Hk)⊤F (zk) ∈ Jac Ψ(zk). Hence, by Definition

3.2, the assumption 0 ̸∈ ∂Ψ(z) implies gΨ(z) ̸= 0.

Since z is a limit point of {zk}, there exists a set of indices K such that

{zk}k∈K → z =⇒ {Ψ(zk)}k∈K → Ψ(z) =⇒ {Ψ(zk)−Ψ(zk+1)}k∈K → 0.

We note from Algorithm 3 that the direction dk is given either by dk = −(Hk)⊤F (zk)

or by (3.8) and (3.9). In either case, as dk is a descent direction, we have

Ψ(zk) ≥ Ψ(zk+1), for all k = 0, 1, 2,

i.e., {Ψ(zk)} is a monotonic decreasing sequence. Thus, {Ψ(zk)} is a bounded sequence

since Ψ(zk) ≥ 0 for all k.

If dk = −(Hk)⊤F (zk) = −gΨ(zk), then g
T
Ψ(zk)

dk = −∥gΨ(zk)∥2, and hence

lim
k→∞

gTΨ(zk)d
k = −∥gΨ(z̄)∥2. (3.11)

Also, we have {gΨ(zk)}K → gΨ(z) ̸= 0, i.e., {dk}K → d = −gΨ(z) ̸= 0. From Armijo-

Goldstein condition (3.10), we get

Ψ(zk)−Ψ(zk + 2−ikdk)

1− c
≤ −2−ikg⊤Ψ(zk)d

k ≤ Ψ(zk)−Ψ(zk + 2−ikdk)

c
.

Therefore, by sandwich theorem, we obtain

{Ψ(zk)−Ψ(zk+1)}k∈K → 0 =⇒ {2−ikg⊤Ψ(zk)d
k}k∈K → 0. (3.12)

We will show that {2−ik}K is bounded away from 0. On the contrary, by subsequenc-

3.4. Inexact Newton method 57

ing, if necessary, we have {2−ik} → 0 so that at each step the step size is reduced at

least once. Therefore, from Armijo-Goldstein condition, there exists a number k0 ∈ K

such that

Ψ(zk + (2−(ik−1)/β)dk) > Ψ(zk) + c(2−(ik−1)/β)g⊤Ψ(zk)d
k,

for every k ≥ k0, k ∈ K, where β ∈ (0, 1).

Let αk =
2−(ik−1)

β
∥dk∥ and pk =

dk

∥dk∥ . Then,

Ψ(zk + αkpk)−Ψ(zk)

αk

> cg⊤Ψ(zk)pk. (3.13)

As k → ∞, we have {αk}k∈K → 0 and {pk}k∈K → p with ∥p∥ = 1 and {zk}K → z.

Thus, (3.13) gives

g⊤Ψ(z)p > cg⊤Ψ(z)p =⇒ (1− c)g⊤Ψ(z)p > 0 =⇒ g⊤Ψ(z)p > 0. (3.14)

However,

g⊤Ψ(zk)d
k = −∥gΨ(zk)∥2 ≤ 0, (3.15)

and
g⊤
Ψ(zk)

dk

∥dk∥
= g⊤Ψ(zk)pk = −

∥gΨ(zk)∥2

∥dk∥
. (3.16)

Thus, as k → ∞, we obtain from (3.16) that

g⊤Ψ(z)p = −
∥gΨ(z)∥2

∥d∥
≤ 0,

which contradicts (3.14). Therefore, {2−ik} is bounded away from 0, i.e., {2−ik}K →

α ̸= 0. Therefore, as k → ∞, (3.11) and (3.12) implies gΨ(z̄) = 0 Thus, our assumption

that z is a limit point of {zk} and 0 ̸∈ ∂Ψ(z) was wrong. Hence, 0 ∈ ∂Ψ(z) must be

valid.

58 3.4. Inexact Newton method

Now we prove that if the direction dk is given by (3.8) and (3.9), then for an

accumulation point z of {zk}, 0 ∈ ∂Ψ(z).

If the direction dk is given by (3.8) and (3.9), then

∥F (zk)− rk∥ = ∥Hkdk∥ ≤ ∥Hk∥∥dk∥, (3.17)

which implies that

=⇒ ∥dk∥ ≥ ∥F (zk)− rk∥
∥Hk∥

. (3.18)

Here, ∥Hk∥ ≠ 0. Otherwise, (3.17) implies

F (zk)− rk = 0. (3.19)

Since ηk ≤ η < 1, we have

∥rk∥ ≤ ηk∥F (zk)∥ < ∥F (zk)∥.

Hence, (3.19) is possible only if F (zk) = 0. Thus, zk will be a stationary point, which

leads to a contradiction to our assumption.

Further, we will show that the direction dk satisfies

0 < γ1 ≤ ∥dk∥ ≤ γ2, with 0 < γ1 ≤ γ2 <∞.

If for some subsequence K̄, {∥dk∥}k∈K̄ → 0, then (3.18) implies ∥F (zk) − rk∥ → 0

because ∥Hk∥ is bounded on the bounded sequence {zk} by the known properties of

generalized Jacobian [75]. But we have

∥F (zk)− rk∥ ≥ ∥F (zk)∥ − ∥rk∥ ≥ ∥F (zk)∥ − ηk∥F (zk∥ = (1− ηk)∥F (zk)∥.

3.4. Inexact Newton method 59

Thus, {∥F (zk)− rk∥} → 0 =⇒ ∥F (zk)∥ = 0, which contradicts that z is a stationary

point.

On the other hand, ∥dk∥ cannot be unbounded because gΨ(zk) is bounded and by

using (3.9), we have the following for κ > 2:

ρ∥dk∥κ ≤ −g⊤Ψ(zk)d
k <∞,

which implies that there exist γ1, γ2 with 0 < γ1 ≤ γ2 such that

0 < γ1 ≤ ∥dk∥ ≤ γ2. (3.20)

Since (3.10) holds at each iteration and {Ψ(zk)} is a bounded and monotonic decreasing

sequence, we have Ψ(zk) − Ψ(zk+1) → 0. Therefore, from Armijo-Goldstein condition

(3.10), we have

Ψ(zk)−Ψ(zk + 2−ikdk)

1− c
≤ −2−ikg⊤Ψ(zk)d

k ≤ Ψ(zk)−Ψ(zk + 2−ikdk)

c
.

By using sandwich theorem, we obtain

{2−ikg⊤Ψ(zk)d
k}k∈K → 0. (3.21)

We will show that {2−ik}K is bounded away from 0. On the contrary, by subse-

quencing, if necessary, we have {2−ik} → 0, so that at each step the step size is reduced

at least once. Therefore, from Armijo-Goldstein condition, there exists k0 ∈ K such

that

Ψ(zk + (2−(ik−1)/β)dk) > Ψ(zk) + c(2−(ik−1)/β)g⊤Ψ(zk)d
k,

for every k ≥ k0, k ∈ K, where β ∈ (0, 1).

60 3.4. Inexact Newton method

Let αk =
2−(ik−1)

β
∥dk∥ and pk =

dk

∥dk∥ . Therefore,

Ψ(zk + αkpk)−Ψ(zk)

αk

> cg⊤Ψ(zk)pk. (3.22)

Taking k → ∞, we have {αk}k∈K → 0 and {pk}k∈K → p with ∥p∥ = 1. Thus, from

(3.22), we get

g⊤Ψ(z)p > cg⊤Ψ(z)p =⇒ (1− c)g⊤Ψ(z)p > 0 =⇒ g⊤Ψ(z)p > 0. (3.23)

But from (3.9), for κ > 2, we have

g⊤Ψ(zk)d
k ≤ −ρ∥dk∥κ

which implies that

g⊤Ψ(zk)

dk

∥dk∥
≤ −ρ∥d

k∥κ

∥dk∥
,

that is,

g⊤Ψ(zk)pk ≤ −ρ∥dk∥κ−1, for every k.

As k → ∞, we have {pk}k∈K → p with ∥p∥ = 1 and {zk} → z. Therefore,

∇Ψ(z)⊤p ≤ −ρ∥d∥κ−1 ≤ 0,

which contradicts (3.23). Thus, our assumption that {2−ik}k∈K → 0 was wrong. There-

fore, {2−ik}K is bounded away from 0, i.e., for some α > 0,

{2−ik} → α, for every k = 1, 2, (3.24)

Thus, with the help of (3.20) and (3.24), for k → ∞, we get from (3.21) that gΨ(z) = 0.

Thus, for every accumulation point z of {zk}, 0 ∈ ∂Ψ(z).

3.4. Inexact Newton method 61

(ii) Under the hypothesis, we first prove the existence of dk that satisfies the system

(3.8)–(3.9).

By strong BD-regularity assumption on z̄, we notice that Hk, being an element of

Jac F (zk), nonsingular for every k ∈ N (by Proposition 2.6 in [75]). Therefore, the

system (3.8) admits a solution in the sense that ∥rk∥ ≤ ηk∥F (zk)∥.

We show that a solution dk of (3.8) satisfies the following condition for some positive

real ρ and κ > 2:

g⊤Ψ(zk)d
k ≤ −ρ∥dk∥κ. (3.25)

Since zk converges to a BD-regular solution z of F (z) = 0, from the boundedness

property of the generalized Jacobian on bounded sets, there exist m,M > 0 such that

m∥v∥ ≤ ∥Hkv∥ ≤M∥v∥, for every k ∈ N, v ∈ Rn+m. (3.26)

By using (3.26), we can write

m∥dk∥ ≤ ∥Hkdk∥ = ∥F (zk)− rk∥ ≤M∥dk∥, for every k ∈ N, dk ∈ Rn+m. (3.27)

Since ηk → 0, we have ∥rk∥ = o(∥F (zk)∥); which gives

m

2
∥dk∥ ≤ ∥F (zk)∥ ≤ 2M∥dk∥, for every sufficiently large k ∈ N, v ∈ Rn. (3.28)

62 3.4. Inexact Newton method

As gΨ(zk) = Hk⊤F (zk), from (3.8) and (3.28), we get

g⊤Ψ(zk)d
k = (Hk⊤F (zk))⊤dk

= F (zk)⊤(−F (zk) + rk)

= −∥F (zk)∥2 + F (zk)⊤rk

≤ −m
2

4
∥dk∥2 + o(∥F (zk)∥2)

= −m
2

4
∥dk∥2 + o(∥dk∥2)

≤ −m
2

8
∥dk∥2, for all k sufficiently large.

Thus, dk satisfies (3.25) for any positive ρ and κ = 2. However, by (3.8) and the

assumption ηk → 0, we obtain ∥dk∥ → 0. Therefore, (3.25), and hence (3.9) is true for

any κ > 2 and any positive real ρ.

To complete the proof, it only remains to show that the step size determined by

Armijo-Goldstein conditions is eventually 1, i.e., eventually ik = 0. Then, the rate of

convergence follows immediately from Theorem 3.2 [73]. We will show that ik = 0 is

eventually accepted by the Armijo-Goldstein condition (3.10). For this, we will show

that there exist constants β and γ with 0 < β ≤ γ such that

Ψ(zk) + (1− c)g⊤Ψ(zk)d
k ≤ βΨ(zk)

and γΨ(zk) ≤ Ψ(zk) + cg⊤Ψ(zk)d
k

with βΨ(zk) ≤ Ψ(zk + dk) ≤ γΨ(zk).

Since we have gΨ(zk) = Hk⊤F (zk), Hk being matrix from (3.8), dk satisfies (3.8) with

∥rk∥ ≤ ηk∥F (zk)∥. Using Cauchy-Schwarz-inequality, we have

Ψ(zk) + cg⊤Ψ(zk)d
k = Ψ(zk) + c(Hk⊤F (zk))⊤dk

= Ψ(zk) + cF (zk)⊤(−F (zk) + rk)

3.4. Inexact Newton method 63

= Ψ(zk)− c∥F (zk)∥2 + cF (zk)⊤rk

≥ Ψ(zk)− 2cΨ(zk)− c∥F (zk)∥∥rk∥

≥ Ψ(zk)− 2cΨ(zk)− cηk∥F (zk)∥2

= Ψ(zk)− 2cΨ(zk)− 2cηkΨ(zk)

= (1− 2c− 2cηk)Ψ(zk).

Thus, there exists a constant γ > 0 such that

Ψ(zk) + cg⊤Ψ(zk)d
k ≥ γΨ(zk), (3.29)

for all k sufficiently large, as c ∈ (0, 0.5) and ηk → 0. Also, by using Proposition 2.6 [73],

we have

γΨ(zk) ≥ Ψ(zk + dk) (3.30)

for all sufficiently large k. We further have

Ψ(zk) + (1− c)g⊤Ψ(zk)d
k = Ψ(zk)− (1− c)∥F (zk)∥2 + (1− c)F (zk)⊤rk

≤ Ψ(zk)− (1− c)∥F (zk)∥2 + (1− c)∥F (zk)∥∥rk∥

≤ Ψ(zk)− (1− c)2Ψ(zk) + 2ηk(1− c)Ψ(zk)

= (2c− 1 + 2ηk − 2ηkc)Ψ(zk).

For sufficiently large k, ηk → 0 and (2c − 1 + 2ηk − 2cηk) → (2c − 1) = β ∈ (−1, 0).

Thus, for sufficiently large k, we have β ∈ (−1, 0) and

Ψ(zk) + (1− c)g⊤Ψ(zk)d
k ≤ βΨ(zk). (3.31)

However, we already have Ψ(zk + dk) = 1
2
∥F (zk + dk)∥2 ≥ 0. Therefore, for sufficiently

64 3.4. Inexact Newton method

large k, we have

βΨ(zk) ≤ Ψ(zk + dk). (3.32)

By using (3.30) and (3.32), we obtain

βΨ(zk) ≤ Ψ(zk + dk) ≤ γΨ(zk). (3.33)

Hence,

Ψ(zk) + (1− c)g⊤Ψ(zk)d
k ≤ Ψ(zk + dk) ≤ Ψ(zk) + cg⊤Ψ(zk)d

k.

Thus, we can see that Armijo-Goldstein condition is eventually satisfied by ik = 0, i.e.,

αk = 1. By using (3.28), we get

∥rk∥
∥dk∥

≤ 2M
∥rk∥

∥F (zk)∥
→ 0, as ∥rk∥ = o(∥F (zk)∥).

Hence,

∥rk∥
∥dk∥

=
∥Hkdk + F (zk)∥

∥dk∥
→ 0, for k sufficiently large.

Therefore, by using Theorem 2 and Corollary 2 in [76], the sequence {zk} converges to

z Q-superlinearly.

Furthermore, if ηk = O(∥F (zk)∥), i.e., ∥rk∥ = O(∥F (zk)∥2), then we can write

∥rk∥
∥dk∥2

≤ 4M2 ∥rk∥
∥F (zk)∥2

<∞, as ∥rk∥ = O(∥F (zk)∥2).

Thus,

∥rk∥
∥dk∥2

=
∥Hkdk + F (zk)∥

∥dk∥2
<∞, for sufficiently large k.

Therefore, by Proposition 2.3 and Theorem 2.5 in [73], the sequence {zk} converges to

z Q-quadratically, which completes the proof. □

3.4. Inexact Newton method 65

3.4.3 Inexact Newton method of GNEP: jointly convex case

In this section, we consider the jointly convex GNEP defined in Definition 1.3 with

feasible set (??).

Therefore, we have objective function θv(x
v,x−v) of (1.1) is convex in xv, and the set

Xv(x
−v) is closed and convex for every v, v = 1, 2, . . . , N . Accumulating the strategy

sets of all the players, we get the strategy set for the GNEP as

X :=
N∏
v=1

Xv(x
−v).

With the help of a complementarity function ϕ as defined in (1.6), the system (1.5)

for the GNEP in Definition 1.3 can be reformulated into the following system

G(x, λ, µ) =

L(x, λ, µ)

ϕ(−s(x), λ)

ϕ(−h1(x1), µ1)

...

ϕ(−hv(xv), µv)

...

ϕ(−hN(xN), µN)

= 0, (3.34)

where µ =

µ1

µ2

...

µN

, L(x, λ, µ) =

∇x1L1(x
1,x−1, λ, µ)

∇x2L1(x
2,x−2, λ, . . . , µ)

...

∇xNLN(x
N ,x−N , λ, µ)

and

Lv(x
v, x−v, λ, µ) = θv(x

v,x−v) + λs(xv,x−v) + h(xv)µv, v = 1, 2, . . . , N.

In this chapter, we use the ‘min’ function as the complementarity function ϕ.

66 3.4. Inexact Newton method

To find a solution to the GNEP with the strategy set Xv(x
−v) as defined in (??)

under the jointly convex case is equivalent to calculating the x-component of a zero

of the function G(z) with z = (x, λ, µ). As the function G : Rn × Rm0 × Rm →

Rn ×Rm0 ×Rm in (3.34) is a semismooth function (see [70]), in the following, we solve

the nonsmooth system (3.34) by an inexact Newton method.

Define a merit function:

Ψ(z) =
1

2
∥G(z)∥2. (3.35)

Since, we have G : Rn+m0+m → Rn+m0+m in (3.5), a locally Lipschitz continuous map-

ping, therefore Ψ : Rn+m0+m → R in (3.6) is also a locally Lipschitz continuous mapping.

From Clarke [71, 72], Ψ is differentiable almost everywhere in Rn+m0+m. Let B be any

nonempty, open subset of Rn+m0+m, and Ψ be Lipschitz of B. Then, for z ∈ B, define

a set

Jac Ψ(z) = { lim
j→∞

∇Ψ(zj)| {zj} → z, and Ψ is differentiable at zj}. (3.36)

The convex hull of Jac Ψ(z) is subdifferential of Ψ at z, and is denoted by ∂Ψ(z). Thus,

∂Ψ(z) = Conv{gΨ(z) ∈ Rn+m | gΨ(z) = H(z)⊤F (z), H(z) ∈ Jac F (z)}.

3.4.4 Algorithm: Inexact Newton method for jointly convex GNEPs

In the following algorithm, we provide a stepwise procedure to apply the inexact New-

ton method to solve the GNEP. The essence of notations and parameters used in the

algorithm is identical to that in Subsection 3.4.2.

3.4. Inexact Newton method 67

Algorithm 4 Computing zk such that ∥Ψ(zk)∥ < ϵ to solve (3.35)

Step 0. (Initialization step). Choose the constants ρ > 0 and κ > 2.

Take an initial value z0 ∈ Rn × Rm0 × Rm.

Given precision scalar ϵ > 0.

Set the iteration counter k = 0.

Step 1. (Terminating condition). If ∥G(zk)∥ < ϵ, then give the output zk as an

ϵ-precision solution and stop.

Step 2. (Main steps).

Substep 2.1: (Descent direction choice). Choose an Hk ∈ Jac Ψ(zk), where Ψ(z) =

1
2
∥G(z)∥2.

Find a vector dk ∈ Rn+m0+m that satisfies the following conditions

Hkd = −G(zk) + rk and ∥rk∥ ≤ ηk∥G(zk)∥ (3.37)

and

⟨(Hk)⊤G(zk), dk⟩ ≤ −ρ∥dk∥κ. (3.38)

If dk does not exist with the above conditions, set dk = −(Hk)⊤G(zk).

Step 2.2: (Step length choice). Choose ik, the smallest nonnegative integer i that

satisfies the following pair of inequalities

Ψ(zk + 2−idk) ≤ Ψ(zk) + c2−i⟨(Hk)⊤G(zk), dk⟩ and

Ψ(zk + 2−idk) ≥ Ψ(zk) + (1− c)2−i⟨(Hk)⊤G(zk), dk⟩.

 (3.39)

Step 2.3: (Increase the iteration counter k and update zk). Set zk+1 = zk + 2−ikdk.

Set k = k + 1.

Choose an ηk+1 ≥ 0 such that ηk+1 ≤ ηk and go to Step 1.

The following theorem proves the global quadratic convergence of Algorithm 4.

68 3.5. Numerical results

Theorem 3.3 Let {zk} be the sequence generated by Algorithm 4. Assume that the

forcing sequence {ηk} with ηk ≥ ∥rk∥
∥G(zk)∥ is a sequence of positive numbers such that

ηk ≤ η < 1 for every k. Then,

(i) for every accumulation point z of {zk}, 0 ∈ ∂Ψ(z), and

(ii) for any strongly BD-regular solution z of the system G(z) = 0, if zk → z, then the

rate of convergence of this sequence {zk} is Q-superlinear, if ηk → 0. Furthermore,

if ηk = O(∥G(zk)∥), then the rate of convergence of this sequence {zk} is Q-

quadratic.

Proof: The proof is analogous to that of Theorem 3.2. □

3.5 Numerical results

In this section, we solve a few examples by applying Algorithms 3 and 4. The nu-

merical computations are performed in Matlab (version 2018b). The performances of

Algorithms 3 and 4 are compared with the semismooth Newton method II in [1]. We

give the comparison only with the semismooth Newton method [1] due to the known

fact that semismooth Newton method performs better than other existing methods for

GNEPs (see [1]). In the following results, the nonzero ξ e− a stands for ξ × 10−a.

Problem 3.1 Consider the following game with two players:

min
x

(x− 1)2

subject to x+ y ≤ 1

 and

min
y

(
y − 1

2

)2
subject to x+ y ≤ 1.

This problem was considered by Facchinei et al. [1], and has infinitely many solutions.

Its solutions are given by (α, 1 − α), α ∈ [0.5, 1]. It is observed that for this problem,

Algorithm 3 converges to the point (α, 1 − α) for an α ∈ [0.5, 1] in 2 to 4 iterations

starting from any feasible point, which shows much faster convergence than that of the

semismooth Newton method II [1] (see Table 3.1).

3.5. Numerical results 69

In Table 3.1, we draw a comparision of the performances of Algorithm 3 and the

semismooth Newton method II [1].

This problem has many generalized Nash equilibria, for example, (0.2, 0.3), (0, 0),

(0.1, 0.2), etc. The different initial value (starting point) gives different GNE points. In

this problem, if we choose the initial point as a feasible point, then both the numerical

schemes (Algorithm 3 and the semismooth Newton method II [1]) converge in almost

same number of iterations. However, if we take an infeasible point as the initial point,

Algorithm 3 converges rapidly in 2 to 4 number of iterations, while semismooth Newton

method II [1] takes a higher number of iterations.

We have also given the graphical view in Figures 3.1 and 3.2 on how both the numer-

ical schemes converge starting from the same initial point (2, 4). We see that inexact

Newton method converges in 3 iterations, while the semismooth Newton method II takes

28 iterations to converge to the same GNE point (1, 0).

Table 3.1: Comparison of the performances of Algorithm 3 and the semismooth New-
ton method II [1] on Problem 3.1

Starting point Tol. Solution No. of iterations No. of

(x0, y0, λ0, µ0) (ϵ) (x, y, λ, µ) in inexact-Newton method Computation iterations Computation
3 time in Newton time

(sec.) method II [1] (sec.)

(0.2, 0.3, 0.5, 0.6) e− 8 (0.775, 0.225, 0.45, 0.55) 2 4.593 2 3.346
(0, 0, 0, 0) e− 8 (0.75, 0.25, 0.5, 0.5) 2 4.581 2 3.427
(0.1, 0.2, 0.6, 0.9) e− 8 (0.8125, 0.1875, 0.375, 0.625) 2 4.490 2 4.425
(0.6, 0.9, 0.3, 0.9) e− 8 (0.9, 0.1, 0.2, 0.8) 2 4.594 2 3.909
(0.6, 0.3, 0.5, 0.6) e− 8 (0.775, 0.225, 0.45, 0.55) 2 5.024 2 3.406
(10, 20, 12, 3) e− 8 (0.5, 0.5, 1, 1.0e− 10) 3 5.615 30 16.182
(90, 80, 60, 40) e− 8 (0.75, 0.25, 0.5, 0.5) 3 5.824 31 16.396
(90, 80, 60, 2) e− 8 (0.5, 0.5, 1, 5.344e− 10) 3 6.127 33 17.383
(2, 4, 3, 6) e− 8 (1,−1.328e− 11, 2.5e− 11, 1) 3 5.600 28 17.115
(9, 8, 6, 4) e− 8 (0.5, 0.5, 1, 6.25e− 11) 3 5.615 27 14.595
(10, 20, 30, 40) e− 8 (1,−9.57e− 11, 1.844e− 10, 1) 3 5.705 30 15.816
(20, 60, 140, 320) e− 8 (1,−2.124e− 12, 3.162e− 12, 1) 3 5.860 35 18.517
(200, 350, 620, 655) e− 8 (1,−2.125e− 10,−3.653e− 19, 1) 4 6.535 32 16.907

70 3.5. Numerical results

-4 -2 0 2 4 6

-6

-4

-2

0

2

4
Initial value

Final value

(1, 7.5e-11)

(5, 4)(2, 4)

(-3, -5)

Figure 3.1: Graphical view of the movement of the iterative points generated by the
proposed inexact Newton method for Problem 3.1 with the initial point (2, 4): it takes
3 iterations to converge

-3 -2 -1 0 1 2

-6

-5

-4

-3

-2

-1

0

1

2

3

4

Final value

Initial value (2,4)

(-3,-5)

(1, -7.451e-09)

Figure 3.2: Graphical view of the movement of the iterative points generated by the
semismooth Newton method II [1] for Problem 3.1 with the initial point (2, 4): it takes
28 iterations to converge

Problem 3.2 Consider the following game with two players and one shared constraint:

3.5. Numerical results 71

min
x1

1
2
x21 − x1x2

subject to x1 + x2 ≥ 1, x1 ≥ 0

 and

min
x2

x22 + x1x2

subject to x1 + x2 ≥ 1, x2 ≥ 0.

This problem has been introduced by Rosen [64]. In this problem, there are two

constraints h1(x1) = −x1 and h2(x2) = −x2 that depend only on the variables of a

single player, and there is one shared constraint s(x1, x2) = 1− x1 − x2. A KKT point

for this problem is x1 = 1, x2 = 0, λ1 = 0, λ2 = 0, µ = 1.

Starting with any feasible point (x01, x
0
2, λ

0
1, λ

0
2, µ

0), Algorithm 4 converges to (1, 0, 0, 0, 1).

For an initial point that is sufficiently close to (1, 0, 0, 0, 1), both the numerical schemes

— semismooth [1] and Algorithm 4 — converge rapidly taking almost same number of

iterations, 2 or 3. However, if we take an initial point that is much away from the

solution point (1, 0, 0, 0, 1), then Algorithm 4 converges in approximately 10 to 20 iter-

ations, while semismooth-Newton method [1] takes much higher number of iterations to

converge. This algorithm converges for any initial point and converges to x1 = 1 and

x2 = 1.713e− 9. In Table 3.2, we draw a comparison of the performances of Algorithm

4 and semismooth Newton method II.

A graphical view on how both the numerical schemes converge starting from the

same initial point (20, 40) is shown in Figures 3.3 and 3.4. We see that inexact Newton

method converges in 10 iterations, while the semismooth Newton method II takes 51

iterations to converge to the GNE point (1, 0).

Problem 3.3 Consider the following GNEP that has two players and one shared con-

straint s(x) = x1 + x2 − 15:

min
x1

x21 +
8
3
x1x2 − 34x1

subject to x1 + x2 ≥ 15, 0 ≤ x1 ≤ 10

and

min
x2

x22 +
5
4
x1x2 − 97

4
x2

subject to x1 + x2 ≤ 15, 0 ≤ x2 ≤ 10.

This game was introduced by Harker [63]. For this problem, Algorithm 4 converges

to x1 = 5, x2 = 9 starting from any feasible point. Numerical results for different

starting points have been shown in the following Table 3.3. From Table 3.3, we see that

72 3.5. Numerical results

Table 3.2: Comparison of the performances of Algorithm 4 and the semismooth New-
ton method II [1] on Problem 3.2

Starting point Tol. Solution No. of No. of

(x0
1, x

0
2, λ

0
1, λ

0
2, µ

0) (ϵ) (x1, x2, λ1, λ2, µ) iterations in iterations in
Algorithm 3 semismooth

Computation Newton Computation
time(sec.) method II [1] time(sec.)

(4, 2, 1, 2, 1) e− 8 (1.0, 1.0e− 20, 5.0e− 21, 1.0e− 20, 1.0) 2 7.198 2 6.118
(0, 0, 0, 0, 0) e− 8 (1.0, 0, 0, 0, 1.0) 1 5.065 2 4.572
(125, 235, 102, 30, 355) e− 8 (1.0, 1.175e− 18, 5.1e− 19, 1.5e− 19, 1.0) 2 7.158 2 5.649
(20, 36, 5, 2, 3) e− 8 (1.0, 1.8e− 19, 2.5e− 20, 1.0e− 20, 1.0) 2 7.340 2 5.604
(100, 200, 2, 3, 5) e− 8 (1, 5.926e− 23, 5.926e− 25, 8.889e− 25, 1) 2 9.147 2 5.740
(20, 40, 24, 54, 21) e− 8 (1, 3.316e− 14, 0, 6.395e− 14, 1) 10 23.855 51 69.470
(100, 300, 352, 652, 129) e− 8 (1, 5.329e− 15, 0, 0, 1) 13 30.376 59 78.746
(120, 30, 224, 153, 100) e− 8 (1, 0, 0, 0, 1) 10 23.551 57 79.689
(100, 20, 110, 230, 108) e− 8 (1, 0, 0, 0, 1) 13 31.333 57 83.299

0 5 10 15 20

0

10

20

30

40

50

Initial value

Final value

Figure 3.3: Graphical view of the movement of the iterative points generated by
Algorithm 4 for Problem 3.2 with the initial point (20, 40): it takes 10 iterations to
converge

for quite a few initial points, the semismooth Newton method II does not converge, but

Algorithm 4 converges in just 5 to 6 iterations.

The graphical comparison of the numerical schema—Algorithm 4 and semismooth-

Newton method [1] is shown in Figures 3.5 and 3.6.

Problem 3.4 (Amodel of internet switching with selfish users). Kesselman et al. [65]

proposed this model in 2005. It analyzes the problem of internet switching, where the

3.5. Numerical results 73

0 5 10 15 20

0

10

20

30

40

50

Final value

Initial value

Figure 3.4: Graphical view of the movement of the iterative points generated by the
semismooth Newton method II [1] for Problem 3.2 with the initial point (20, 40): it
takes 51 iterations to converge

Table 3.3: Comparison of the performances of Algorithm 4 and the semismooth New-
ton method II [1] on Problem 3.3

Starting point Tol. Solution No. of No. of

(x0
1, x

0
2, λ

0
11, (ϵ) (x1, x2, λ11, λ12, λ21, λ22, µ) iterations Computation iterations in Computation

λ0
12, λ

0
21, λ

0
22, µ

0) in time(sec.) semismooth time(sec.)
Algorithm 3 Newton

method II [1]

(0, 0, 0, 0, 0, 0, 0) e− 8 (5, 9, 0, 0, 0, 0, 0) 1 10.940 1 7.103
(1, 2, 3, 5, 2, 1, 9) e− 8 (5, 9, 3.125e− 17, 3.125e− 12, 3 25.891 3 11.089

3.125e− 22, 1.562e− 22, 3.906e− 12)
(2, 5, 4, 2, 6, 5, 2) e− 8 (5, 9, 6.698e− 16, 6.698e− 21, 3 25.816 3 11.047

3.349e− 16, 1.674e− 20, 1.004e− 11)
(0.25, 0.36, 0.65, e− 8 (5, 9, 2.315e− 11, 5.787e− 17, 2 16.590 2 9.004
0.1, 0.25, 0.36, 0.45) 1.447e− 16, 2.083e− 16, 2.604e− 16)
(6, 5, 0, 0, 0, 0, 0) e− 8 (5, 9, 0, 0, 0, 0, 0) 1 7.778 1 7.128
(2, 5, 4, 6, 9, 7, 5) e− 8 (5, 9, 1.953e− 18, 3.906e− 13, 4 30.386 Not converging ∞

3.906e− 18, 5.127e− 18, 5.859e− 13)
(12, 2, 3, 4, 1, 2, 2) e− 8 (5, 9, 4.102e− 20, 1.172e− 19, 4 30.579 Not converging ∞

1.367e− 20, 6.042e− 11, 2.954e− 20)
(3, 6, 7, 1, 4, 3, 1) e− 8 (5, 9, 5.0e− 10, 8.75e− 10, 4 26.253 Not converging ∞

5.0e− 19, 3.75e− 19, 4.375e− 10)
(8, 6, 9, 2, 8, 3, 1) e− 8 (5, 9, 1.953e− 18, 1.952e− 13, 5 30.018 Not converging ∞

1.953e− 18, 3.052e− 18, 5.371e− 13)
(9, 4, 8, 7, 3, 2, 8) e− 8 (5, 9, 1.172e− 12, 2.246e− 12, 5 30.429 Not converging ∞

2.93e− 18, 1.953e− 18, 2.209e− 12)

traffic is generated by selfish users. In this model, the routers have First-In-First-Out

buffers of bounded capacity with the drop-tail policy. The utility of each user depends

on its transmission rate and the congestion level. In this model, there are N users and

74 3.5. Numerical results

2 3 4 5 6 7 8 9 10

5

6

7

8

9

10

11

Initial value

Final value

Figure 3.5: Graphical view of the movement of the iterative points generated by
Algorithm 4 for Problem 3.3 with the initial point (2, 5): it takes 4 iterations to converge

-6 -4 -2 0 2 4 6 8

105

-6

-5

-4

-3

-2

-1

0

1

2

3

4

105

(2, 5)

Initial value

After 150 iterations

Figure 3.6: Graphical view of the movement of the iterative points generated by the
semismooth Newton method II [1] for Problem 3.3 with the initial point (2, 5): it does
not converge

the buffer capacity B. Each user v controls the amount of his packets in the buffer,

denoted by xv ∈ [0,∞). If the minimal amount of data for Player v is lv, the problem

3.6. Conclusion 75

associated to vth player is

min
xv

xv
B

− xv∑N
v=1 xv

subject to
N∑
v=1

xv ≤ B, xv ≥ lv.

For this game with four players (v = 4), Table 3.4 shows the performance of Algorithm

4 where the minimial amount of data (lv > 0) for the players are lv = 0.01 for all

v = 1, 2, 3, 4 and B = 1. Algorithm 4 converges to the GNE point x1 = 0.1875, x2 =

0.1875, x3 = 0.1875, x4 = 0.1875 for any initial point in 4 and 5 iterations. Also, it is

observed that both numerical techniques–Algorithm 4 and Semismooth newton method

II [1]–take almost same number of iterations.

Table 3.5 shows the performance for 10 players and lv = 0.01 for every v =

1, 2, . . . , 10 and B = 1, Algorithm 4 converges to an equilibrium point starting from

any feasible point in 8 iterations.

Table 3.4: Performance of Algorithm 4 on Problem 3.4 with 4 players

Starting points Tol. (ϵ) Solutions Number of
(x0

1, x
0
2, x

0
3, x

0
4) (x1, x2, x3, x4) iterations

(0.09091, 0.04892, 0.2006, 0.08469) e− 8 (0.1875, 0.1875, 0.1875, 0.1875) 5
(0.2367, 0.1278, 0.1274, 0.09105) e− 8 (0.1875, 0.1875, 0.1875, 0.1875) 4
(0.1413, 0.08112, 0.1887, 0.05535) e− 8 (0.1875, 0.1875, 0.1875, 0.1875) 5
(0.02947, 0.2331, 0.1962, 0.1268) e− 8 (0.1875, 0.1875, 0.1875, 0.1875) 4

3.6 Conclusion

In this chapter, an inexact Newton method to solve generalized Nash equilibrium prob-

lems is proposed for both the cases of player convex GNEP and jointly convex GNEP.

In the proposed approach, we have reformulated GNEP into a nonsmooth system of

76 3.6. Conclusion

Table 3.5: Performance of Algorithm 4 on Problem 3.4 with 10 players

Starting points Tol. (ϵ) Solutions Number of
(x0

1, x
0
2, x

0
3, x

0
4, x

0
5, x

0
6, x

0
7, x

0
8, x

0
9, x

0
10) (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) iterations

(0.0134, 0.0116, 0.0179, 0.0131, 0.0153, (0.09, 0.09, 0.09, 0.09, 0.09,
0.0117, 0.0160, 0.0126, 0.0165, 0.0169) e− 8 0.09, 0.09, 0.09, 0.09, 0.09) 8
(0.0108, 0.0109, 0.0101, 0.0109, 0.0106, (0.09, 0.09, 0.09, 0.09, 0.09,
0.0101, 0.0103, 0.0106, 0.0110, 0.0110) e− 8 0.09, 0.09, 0.09, 0.09, 0.09) 8
(0.0100, 0.0109, 0.0109, 0.0107, 0.0108, (0.09, 0.09, 0.09, 0.09, 0.09,
0.0107, 0.0104, 0.0107, 0.0101, 0.0107) e− 8 0.09, 0.09, 0.09, 0.09, 0.09) 8
(0.0108, 0.0108, 0.0102, 0.0105, 0.0104, (0.09, 0.09, 0.09, 0.09, 0.09,
0.0106, 0.0107, 0.0108, 0.0103, 0.0107) e− 8 0.09, 0.09, 0.09, 0.09, 0.09) 8

equations and then solved it by the inexact Newton method. Under some mild condi-

tions (see Theorems 3.2 and 3.3), the numerical Algorithms 3 and 4 globally converges

Q-quadratically, which is a faster rate of convergence for such equilibrium problems.

The numerical Algorithms 3 and 4 have been tested on various problems found in spe-

cialized literature on GNEPs (see [41, 63–65]). Previously, GNEP was solved by other

conventional methods, such as smoothing Newton method [77], a feasible direction in-

terior point method [78], etc., but it has been reported that the proposed numerical

scheme converges faster than semismooth Newton method II and hence than all the

existing method (see [1]).
