
Chapter 2

A Globally Convergent Improved

BFGS Method for Generalized

Nash Equilibrium Problems

2.1 Introduction

Generalized Nash Equilibrium Problem (GNEP) is a non-cooperative game in which

the strategy set of each player may depend on the strategies of the rival player. It was

first formally introduced by Debreu [2] as a social equilibrium in 1952, and later as an

abstract economy [3] in 1954. In the early 50’s, Nash [12, 13] introduced a notion of

equilibrium, called Nash equilibrium, for non-cooperative N -player games where the

payoff function of each player depends on the others’ strategies. Arrow and Debreu [3]

extended this notion to the generalized Nash equilibrium for games where both the

payoff function and the set of feasible strategies depend on others’ strategies. GNEPs

have been a major area of research during the last two decades, which have several real-

world applications in the areas of economics, computer science, and engineering, e.g.,

the abstract economy model [3], a power allocation problem in telecommunications [4],

a competition among countries that arises from the Kyoto protocol to reduce the air

18 2.2. Motivation

pollution [5], social science [14], energy problems [15–17], wireless communication [6,7],

cloud computing [8], electricity generation [9], etc. Robinson [10, 11] discussed the

problem of measuring the effectiveness in optimization-based combat models and gave

several mathematical formulations. All these applications have motivated the evolution

of the generalized Nash equilibrium concept and its use in complex games that now

require a deep understanding of theoretical and computational mathematics.

2.2 Motivation

The convergence and efficiency of the BFGS method have motivated many researchers

to study and improve the BFGS method [51–54]. In BFGS methods, a stationary

point may be easily missed if the step size is large, or a cycle may be generated among

several points if the step size is small. To overcome these drawbacks, Yuan et al. [55]

proposed the modified-weak Wolfe-Powell (MWWP) line search technique and used it

to prove the global convergence of the BFGS method for general functions. Yang et

al. [45] proposed an improved BFGS method using an MWWP line search technique

and showed a detailed numerical performance compared with the original BFGS method

using a weak Wolfe-Powell (WWP) line search technique. The numerical performance

[45] shows that the improved BFGS method with the MWWP line search technique

has better problem-solving capability than the standard BFGS algorithm based on the

WWP line search technique. Therefore, in this chapter, we propose to solve GNEPs

with an improved BFGS method using the Armijo-Goldstein and MWWP line search

techniques.

Facchinei et al. [1] analyzed GNEPs with shared constraints and proposed Newton-

type methods– semi-smooth Newton methods and Levenberg-Marquardt method to

solve them. The semi-smooth Newton method in [1] converges Q-quadratically, but

they have a drawback: they do not converge globally. Solving a system of linear (or

nonlinear) equations by the semi-smooth Newton method at each stage can be expensive

2.3. Contributions 19

if the number of unknowns is large and may not be justified when the initial guess is far

from a solution. This motivates us to develop an improved BFGS method that consumes

lesser computation costs (number of iterations and CPU time). Therefore, we aim to

solve GNEPs using an improved BFGS method such that it converges globally. To

minimize the computation costs, we use Armijo-type line search techniques, which are

cost-effective compared to the Wolfe-type line search techniques. Therefore, we solve

GNEPs by BFGS method using the two line search techniques: Armijo-Goldstein and

MWWP [45], and provide their numerical performances.

2.3 Contributions

In this chapter, we have proposed an improved BFGS method to solve GNEPs, which

is globally convergent. The novelty and contribution of this chapter are as follows:

• With the help of Fischer-Burmeister C-function [42], we formulate a smooth merit

function for solving GNEPs under consideration.

• Step-wise algorithms of the proposed BFGS methods, with MWWP and Armijo-

Goldstein rule, in the GNEP set-up are provided.

• Well-definedness and global convergence of the proposed two algorithms are given.

• Numerical performance of the studied methods on some academic and practical

GNEPs are provided.

2.4 Improved BFGS method

The BFGS method is known as an effective and favorable solver for finding a minimum

of a continuously differentiable function. A general structure of the commonly used

quasi-Newton method—BFGS technique– is given below.

20 2.4. Improved BFGS method

Consider an optimization problem

min
x∈Rn

f(x), where f is a differentiable real-valued function.

The main steps in the BFGS method are as follows.

1. Find a descent direction

Find a descent direction dk that solves the system Bkdk = −gk, where gk =

∇f(xk) is the gradient of f at xk, and Bk is an approximation of the Hessian

∇2f(xk).

2. Find a step-length

Find a step-length αk ∈ R along the descent direction dk. The step length can be

obtained using a line search technique: exact or inexact. The next iterative point

is obtained by

xk+1 = xk + αkdk.

3. Update of Hessian approximation matrix

Hessian approximation matrixBk+1 can be updated by the standard BFGS update

formula:

Bk+1 = Bk +
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
,

where sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk) = gk+1 − gk are such that

they satisfy the secant equation

Bk+1sk = yk.

4. Iteration continues until a stopping criterion is satisfied.

The convergence and efficiency of the BFGS method have motivated many re-

2.4. Improved BFGS method 21

searchers to study and improve the BFGS method [51–54]. In BFGS methods, a sta-

tionary point may be easily missed if the step size is large, or a cycle may be generated

among several points if the step size is small. To overcome these drawbacks, Yuan

et al. [55] proposed the modified-weak Wolfe-Powell (MWWP) line search technique

and used it to prove the global convergence of the BFGS method for general functions.

Yang et al. [45] proposed an improved BFGS method using an MWWP line search tech-

nique and showed a detailed numerical performance compared with the original BFGS

method using a weak Wolfe-Powell (WWP) line search technique. The numerical per-

formance [45] shows that the improved BFGS method with the MWWP line search

technique has better problem-solving capability than the standard BFGS algorithm

based on the WWP line search technique. Therefore, in this chapter, we propose to

solve GNEPs with an improved BFGS method using the Armijo-Goldstein and MWWP

line search techniques.

The conventional BFGS update formula is

Bk+1 = Bk −
Bksksk

⊤Bk

sk⊤Bksk
+
ykyk

⊤

yk⊤sk
, (2.1)

where sk = zk+1 − zk and yk = ∇Φ(zk+1)−∇Φ(zk). The BFGS formula is updated by

Yuan et al. [56] is given by

Bk+1 = Bk −
Bksksk

⊤Bk

sk⊤Bksk
+
y∗ky

∗
k
⊤

y∗k
⊤sk

, (2.2)

where y∗k = yk + a∗ksk, a
∗
k = max{āk, 0}, sk = zk+1 − zk, yk = ∇Φ(zk+1)−∇Φ(zk) and

āk =
1
∥sk∥2

{
6[Φ(zk)− Φ(zk + αkdk)] + 3[∇Φ(zk) +∇Φ(zk + αkdk)]

⊤sk

}
. (2.3)

An important property of formula (2.2) is that Bk+1 remains positive definite as long

as y∗k
⊤sk > 0 (see [57]). The condition y∗k

⊤sk > 0 assured to hold if the step-size is

22 2.4. Improved BFGS method

determined by Wolfe-type line search technique (see [45]):

Φ(zk + αkdk) ≤ Φ(zk) + δ1αk∇Φ(zk)
⊤dk

∇Φ(zk + αkdk)
⊤dk ≥ δ2∇Φ(zk)

⊤dk,

 (2.4)

where δ1, δ2 are positive constants such that δ1 < δ2 < 1. Yuan et al. [55] have improved

the weak Wolfe-Powell (WWP) line search technique and studied the new line search

technique: Modified Weak Wolfe-Powell (MWWP) line search technique [55], which has

global convergence once used in a BFGS method. MWWP is formulated as follows:

Φ(zk + αkdk) ≤ Φ(zk) + cαk∇Φ(zk)
⊤dk + αk min

{
−c1∇Φ(zk)

⊤dk,
cαk∥dk∥2

2

}

∇Φ(zk + αkdk)
⊤dk ≥ c2∇Φ(zk)

⊤dk +min
{
−c1∇Φ(zk)

⊤dk, cαk∥dk∥2
}

 ,

(2.5)

where c ∈ (0, 1), αk > 0, c1 ∈ (0, c) and c2 ∈ (c, 1). For results based on this improved

line search, one can refer to [45,58].

In comparison to Wolfe-type line search techniques, the Armijo-Goldstein line search

techniques have a better speed of convergence and are better suited for quasi-Newton

methods. In this chapter, we use the Armijo-Goldstein line search technique to compute

the step length αk that is the largest value in the set {c̄ 2−i | c̄ ∈ [0,∞) is fixed, and i =

0, 1, 2, . . .} for which the inequalities

Φ(zk + αkdk) ≤ Φ(zk) + cαk∇Φ(zk)
⊤dk

Φ(zk + αkdk) ≥ Φ(zk) + (1− c)αk∇Φ(zk)
⊤dk

 (2.6)

are satisfied with c ∈ (0, 1
2
). However, the Armijo-Goldstein conditions do not ensure

y∗k
⊤sk > 0, and therefore Bk+1 is not necessarily positive definite even if Bk is positive

2.4. Improved BFGS method 23

definite. Hence, we write the BFGS update formula Bk with the following form

Bk+1 =

 Bk − Bksksk
⊤Bk

sk⊤Bksk
+

y∗ky
∗
k
⊤

y∗k
⊤sk

if
y∗k

⊤sk
∥sk∥2

≥ β∥∇Φ(zk)∥α,

Bk otherwise,
(2.7)

where β and α are positive constants.

Now, we consider the player convex GNEP. Thus, we have reformulated GNEP (1.7)

F (x, λ) =

 L(x, λ)

Φ(−g(x), λ)

 = 0. (2.8)

The reformulated system (2.8) becomes

F (x, λ) =

∇x1L1(x
1,x−1, λ1)

∇x2L1(x
2,x−2, λ2)

...

∇xNLN(x
N ,x−N , λN)

Φ(−g1(x1,x−1), λ1)

Φ(−g2(x2,x−2), λ2)
...

Φ(−gN(xN ,x−N), λN)

= 0. (2.9)

Here, we use a smooth complementarity function with the help of Fischer-Burmeister

C-function [42]. The Fischer-Burmeister function Ψ : R2 → R is defined by

Ψ(x, y) =
√
x2 + y2 − (x+ y),

which is a convex function but not differentiable at (0, 0). Thus, we take (see [59, 60])

24 2.4. Improved BFGS method

the complementarity function as

Φ(x, y) = Ψ(x, y)2, (2.10)

which is known to be differentiable everywhere, and its gradient is globally Lipschitz

continuous and semismooth [59]. A survey on several other merit functions and their

basic and desirable properties can be found in [60]. With the Φ(x, y) in (2.10), the

reformulated system (2.9) becomes a system of smooth equations. Since Φ is continu-

ously differentiable everywhere, the system (2.9) becomes a system of smooth equations

F (z) = 0. With the help of F (x, λ) : Rn+m → Rn+m in (2.9) and z = (x, λ) ∈ Rn+m,

consider the merit function

Φ(z) = 1
2
∥F (z)∥2. (2.11)

Here, Φ(z) is a square of the norm of a differentiable function. Therefore, Φ is a

differentiable function and we can write ∇Φ(zk) = ∇F (zk)⊤F (zk). We will solve the

smooth system

Φ(z) = 0 (2.12)

using BFGS method.

2.5. Improved BFGS methods to solve GNEPs 25

2.5 Improved BFGS methods to solve GNEPs

Algorithm 1 Improved BFGS method using Armijo-Goldstein line search technique
to solve the smooth system (2.12)

Step 0: Initialization

Take initial Hessian approximation matrix B0 = I(n+m)×(n+m), and any c ∈ (0, 0.5), c̄ ∈ [1,∞)

Choose z0 = (x0, λ0) ∈ Rn × Rm.

Take constants α > 0, β > 0, and set the iteration counter k = 0.

Provide the termination scalar ϵ > 0.

Step 1: Termination condition

If ∥∇Φ(zk)∥ < ϵ, then stop and output zk as an ϵ-precise solution to system (2.12).

Step 2: Descent direction

Find a solution dk ∈ Rn+m of the system

Bkd = −∇Φ(zk). (2.13)

Step 3: Step length

Find a step length αk = c̄ 2−ik using Armijo-Goldstein line search technique:

Choose ik, the smallest non-negative integer i such that

Φ(zk + c̄ 2−ikdk) ≤ Φ(zk) + cc̄ 2−ik∇Φ(zk)
⊤dk

Φ(zk + c̄ 2−ikdk) ≥ Φ(zk) + (1− c)c̄ 2−ik∇Φ(zk)
⊤dk

 (2.14)

Step 4: Intermediate computation

zk+1 = zk + αkdk, sk = zk+1 − zk and yk = ∇Φ(zk+1) − ∇Φ(zk). Compute āk by (2.3), a∗k = max{āk, 0} and y∗k =

yk + a∗ksk.

Step 5: Hessian approximation

Calculate the Hessian approximation Bk+1 by (2.7), where Bk+1 satisfies the quasi-Newton relation (see [53]):

Bk+1(zk+1 − zk) = yk + a∗ksk.

Update zk+1 ← zk + 2−ikdk, k ← k + 1 and go to Step 1.

26 2.5. Improved BFGS methods to solve GNEPs

Algorithm 2 Improved BFGS method using MWWP line search technique to solve
the smooth system (2.12)

Step 0: Initialization

Take initial Hessian approximation matrix B0 = I(n+m)×(n+m), and any c ∈ (0, 0.5), c̄ ∈ [1,∞) c1 ∈ (0, c), c2 ∈ (c, 1).

Choose z0 = (x0, λ0) ∈ Rn × Rm.

Set the iteration counter k = 0.

Provide the termination scalar ϵ > 0.

Step 1: Termination condition

If ∥∇Φ(zk)∥ < ϵ, then stop and output zk as an ϵ-precise solution to system (2.12).

Step 2: Descent direction

Find a solution dk ∈ Rn+m of the system

Bkd = −∇Φ(zk). (2.15)

Step 3: Step length

Find a step length αk = c̄ 2−ik using MWWP line search technique:

Choose ik, the smallest non-negative integer i such that

Φ(zk + c̄ 2−ikdk) ≤ Φ(zk) + cc̄ 2−ik∇Φ(zk)
⊤dk + c̄ 2−ik

min

{
−c1∇Φ(zk)

⊤dk,
cc̄ 2−ik∥dk∥2

2

}

∇Φ(zk + c̄ 2−ikdk)
⊤dk ≥ c2∇Φ(zk)

⊤dk +min
{
−c1∇Φ(zk)

⊤dk, cc̄ 2−ik∥dk∥2
}

(2.16)

Step 4: Intermediate computation

zk+1 = zk + αkdk, sk = zk+1 − zk and yk = ∇Φ(zk+1) − ∇Φ(zk). Compute āk by (2.3), a∗k = max{āk, 0} and y∗k =

yk + a∗ksk.

Step 5: Hessian approximation

Calculate the Hessian approximation Bk+1 by (2.2), where Bk+1 satisfies the quasi-Newton relation (see [53]):

Bk+1(zk+1 − zk) = yk + a∗ksk.

Update zk+1 ← zk + 2−ikdk, k ← k + 1 and go to Step 1.

2.6. Convergence analysis 27

2.6 Convergence analysis

In the following section, we show the well-definedness of Algorithms 1 and 2 and es-

tablish their global convergence under the following assumption on the GNEP under

consideration.

Before reaching the main convergence result, we prove some subsidiary properties

of {Bk} that facilitate obtaining the main result.

Lemma 2.1 If the sequence {Bk} is obtained by (2.7), in Algorithm 1, then the matrix

Bk is positive definite for every k = 0, 1, 2,

Proof: Note that B0 = I(m+n)×(m+n) is positive definite. Let {zk} be the sequence

obtained by Algorithm 1, and the BFGS matrix is updated by (2.7), and Bk is a

positive definite matrix for some k > 0. We show that Bk+1 is positive definite. This

will complete the proof.

If
y∗k

⊤sk
∥sk∥2

≥ β∥∇Φ(zk)∥α, then evidently, y∗k
⊤sk > 0, and hence (see p.6 [55])

Bk+1 = Bk −
Bksksk

⊤Bk

sk⊤Bksk
+
y∗ky

∗
k
⊤

y∗k
⊤sk

is positive definite.

In the second case, as Bk+1 = Bk, Bk+1 is obviously positive definite.

□

Lemma 2.2 Let the sequence {Bk} is obtained by (2.2) in Algorithm 2. Then, the

matrix Bk is positive definite for every k = 0, 1, 2,

Proof: Note that B0 = I(m+n)×(m+n) is positive definite. Suppose that the matrix Bk

is a positive definite matrix for some k > 0. We prove that Bk+1 is positive definite.

To prove that Bk+1 is positive definite, we need to show that y∗k⊤sk > 0. Using (2.16),

28 2.6. Convergence analysis

Bkdk = −∇Φ(zk), Φk+1 = Φ(zk + c̄2−ikdk), Φk = Φ(zk), and we have

y∗k
⊤sk = (yk + a∗ksk)

⊤sk

= y⊤k sk + s⊤k a
∗
ksk

= ∇Φ⊤k+1sk −∇Φ⊤k sk + s⊤k a
∗
k
⊤sk

≥ c2∇Φ⊤k sk +min
{
−c1∇Φ⊤k sk, csk∥dk∥2

}
−∇Φ⊤k sk + s⊤k a

∗
k
⊤sk

= −(1− c2)∇Φ⊤k sk +min
{
−c1∇Φ⊤k sk, csk∥dk∥2

}
+ s⊤k a

∗
k
⊤sk

≥ −(1− c2)∇Φ⊤k sk > 0.

(Here, we have used min
{
−c1∇Φ⊤k sk, csk∥dk∥2

}
≥ 0 and−∇Φ⊤k dk = d⊤k Bkdk > 0, asBk

is positive definite matrix). Hence, Bk+1 is a positive definite matrix (see p.6 [55]). □

In Algorithm 1, the Hessian approximation Bk is updated by the BFGS update formula

(2.7). It is found (Lemma 2.1) that the Hessian approximation Bk in Algorithm 1 is

a symmetric and positive definite matrix for all k. The descent direction dk, obtained

from (2.13), and the step-length, calculated from (2.14), together imply that {Φ(zk)} is

a monotonic non-increasing sequence. Using (2.11), the sequence {Φ(zk)} is bounded

below. Hence {Φ(zk)} is a convergent sequence.

From (2.14), we have

Φ(zk)− Φ(zk + c̄ 2−ikdk)

1− c
≤ −c̄ 2−ik∇Φ(zk)

⊤dk ≤
Φ(zk)− Φ(zk + c̄ 2−ikdk)

c
. (2.17)

Therefore, using

lim
k→∞

{Φ(zk)− Φ(zk + c̄ 2−ikdk)} = 0,

we have

− lim
k→∞

c̄ 2−ik∇Φ(zk)
⊤dk = − lim

k→∞
∇Φ(zk)

⊤sk = 0. (2.18)

By results (2.18) and Lemma 2.2 we prove convergence of Algorithms 1 and 2 in the

2.6. Convergence analysis 29

next section.

In Algorithm 2, we have used Wolfe-type line search techniques. Due to this, the

Hessian approximation Bk, updated by BFGS update formula (2.2), in Algorithm 2 is

symmetric and positive definite matrix for all k (Lemma 2.2). The descent direction

dk, obtained from (2.15), and the step-length, calculated from (2.16), together implies

that {Φ(zk)} is a monotonic non-increasing sequence. Also, using (2.11), {Φ(zk)} is

bounded, and hence {Φ(zk)} is a convergent sequence.

Assumption 1 1. Consider the level set

Ω = {z ∈ Rn+m | Φ(z) ≤ Φ(z0)} is bounded.

2. The function Φ is continuously differentiable.

3. There exists a constant L > 0 for which

∇Φ(z1)−∇Φ(z2)∥ ≤ L∥z1 − z2∥, for all z1, z2 ∈ Ω. (2.19)

Consider a sequence {zk} which is obtained by Algorithm 1. Then, the sequence

{Φ(zk)} is a monotonic non-increasing sequence, i.e.,

Φ(z0) ≥ Φ(z1) ≥ Φ(z2) ≥ · · · .

Therefore, the sequence {zk} is obtained by Algorithm 1 is lies in Ω. Define the index

set

K̄ =

{
k

∣∣∣∣ y∗k⊤sk
∥sk∥2

≥ β∥∇Φ(zk)∥α
}
, (2.20)

where α and β are positive constants. Then, we can rewrite the Hessian approximation

30 2.6. Convergence analysis

update formula (2.7) as

Bk+1 =

 Bk − Bksksk
⊤Bk

sk⊤Bksk
+

y∗ky
∗
k
⊤

y∗k
⊤sk

, if k ∈ K̄,

Bk, otherwise.
(2.21)

Now, it is essential to show that Algorithms 1 and 2 are well-defined. Notice that the

well-definedness of Algorithm 1 is dependent on the existence of a d for (2.13) and an

ik for (2.14). In Theorem 2.1 and Theorem 2.2 below, we show the existence of both d

and ik, respectively.

In the similar way of the proofs of Theorem 2.1 and Theorem 2.2, the well-definedness

of Algorithm 2 is followed. Note that if sequence {zk} is obtained by Algorithm 2, and

the Hessian approximation matrix Bk is updated by (2.21), then using Lemma 2.2, the

matrix Bk is always positive definite. Therefore, the system (2.15) always has a unique

solution dk. Also, under Assumption 1, the system (2.16) is well-defined (see [61]).

Thus, we can see that Algorithms 1 and 2 are well-defined.

Theorem 2.1 Assume that Assumption 1 holds for Φ(z). Consider a sequence {zk}

which is obtained by Algorithm 1. Let the Hessian approximation matrix Bk be updated

by (2.7). Then, there exists dk such that (2.13) is true.

Proof: Given sequence, {zk} is obtained by Algorithm 1, and the Hessian approxima-

tion matrix Bk is updated by (2.7). Therefore, if the matrix Bk is positive definite,

the matrix Bk+1 is also positive definite for every k = 0, 1, 2, . . . (see Lemma 2.1).

Therefore, by Assumption 1 for Φ(z), the system (2.13) has a unique solution

dk = −B−1k ∇Φ(zk).

□

2.6. Convergence analysis 31

Theorem 2.2 Assume that Φ(z) is continuously differentiable and bounded below. If

∇Φ(zk)
⊤dk < 0, then there exists an α∗ > 0 such that

Φ(zk + α∗dk) ≤ Φ(zk) + cα∗∇Φ(zk)
⊤dk

and Φ(zk + α∗dk) ≥ Φ(zk) + (1− c)α∗∇Φ(zk)
⊤dk,

 (2.22)

where c ∈ (0, 0.5).

Proof: We denote Φk = Φ(zk) and Φk+1 = Φ(zk + αdk). By the hypothesis, Φk and

Φk+1 are bounded below, c ∈ (0, 0.5) and ∇Φ⊤k dk < 0. For α > 0, define

ψ1(α) = Φ(zk + αdk)− Φ(zk)− cα∇Φ(zk)
⊤dk

and ψ2(α) = Φ(zk + αdk)− Φ(zk)− (1− c)α∇Φ(zk)
⊤dk.

Also, we have

lim
α→∞+

ψ1(α) = lim
α→∞+

ψ2(α) = +∞ and ψ1(0) = ψ2(0) = 0. (2.23)

Note that both of ψ1(α) and ψ2(α) are continuous and

ψ2(α) = ψ1(α)− (1− 2c)α∇Φ⊤k dk. (2.24)

For all sufficiently small positive α, we get

ψ1(α) = Φ(zk + αdk)− Φ(zk)− cα∇Φ(zk)
⊤dk

= Φk + α∇Φ⊤k dk + o(α)− Φk − cα∇Φ⊤k dk

= (1− c)α∇Φ⊤k dk + o(α) < 0.

32 2.6. Convergence analysis

Also, we have

ψ2(α) = Φ(zk + αdk)− Φ(zk)− (1− c)α∇Φ(zk)
⊤dk

= cα∇Φ⊤k dk + o(α) < 0.

Thus, for α → 0+, we have ψ1(α) < 0 and ψ2(α) < 0.

Therefore, using (2.23), there exist constants ρ1 > 0 and ρ2 > 0 for which ψ1(ρ1) = 0

and ψ2(ρ2) = 0. Taking ρ1 and ρ2 to be the infimum positive root of ψ1 and ψ2,

respectively, we can assume that there is no zero of ψ1(α) in (0, ρ1) and no zero of

ψ2(α) in (0, ρ2).

Let ᾱ be the global minimizer of ψ1(α) in [0, ρ1]. The minimum value cannot occur

at the endpoints because ψ1(0) = 0 and ψ1(ρ1) = 0, and there exists α ∈ (0, ρ1] that

satisfies ψ1(α) < 0. Therefore, there exists at least one local minimizer α∗ ∈ (0, ρ1)

such that ψ1(α
∗) < 0, and ψ1(α) < 0 for every α ∈ (0, ρ1). Then,

ψ1(α
∗) = Φ(zk + α∗dk)− Φ(zk)− cα∗∇Φ(zk)

⊤dk < 0

=⇒ Φ(zk + α∗dk) < Φ(zk) + cα∗∇Φ(zk)
⊤dk.

Next, we prove that ρ1 > ρ2. Using ψ2(ρ2) = 0, we have

ψ2(ρ2) = ψ1(ρ2)− (1− 2c)ρ2∇Φ⊤k dk = 0

=⇒ ψ1(ρ2) = (1− 2c)ρ2∇Φ⊤k dk < 0.

Therefore, ρ2 ∈ (0, ρ1), ρ2 < ρ1. If we choose α
∗ = ρ2+ ϵ where ϵ > 0 is such a quantity

α∗ /∈ (0, ρ2) and α
∗ < ρ1), then ψ1(α

∗) < 0 and ψ2(α
∗) > 0. Therefore,

ψ1(α
∗) = Φ(zk + α∗dk)− Φ(zk)− cα∗∇Φ(zk)

⊤dk < 0

=⇒ Φ(zk + α∗dk) < Φ(zk) + cα∗∇Φ(zk)
⊤dk,

2.6. Convergence analysis 33

and

ψ2(α
∗) = Φ(zk + α∗dk)− Φ(zk)− (1− c)α∗∇Φ(zk)

⊤dk > 0

=⇒ Φ(zk + α∗dk) > Φ(zk) + (1− c)α∗∇Φ(zk)
⊤dk.

Thus, there exists a constant α∗ ∈ [ρ2, ρ1] that satisfies (2.22).

□

Using Theorem 2.1 and Theorem 2.2, we note that for every iteration k in Algorithm

1, there exist dk and αk that satisfy (2.13) and (2.14), respectively.

Theorem 2.3 Let Assumption 1 holds for Φ. Let {zk} is obtained by Algorithm 1. If

there are positive constants β1, β2, β3 > 0 for which the relations

∥Bksk∥ ≤ β1∥sk∥ and β2∥sk∥2 ≤ s⊤k Bksk ≤ β3∥sk∥2 (2.25)

follow for infinitely many k, then

lim inf
k→∞

∥∇Φ(zk)∥ = 0. (2.26)

Proof: Since we have sk = zk+1 − zk = αkdk, one can notice that (2.25) follows when

sk is replaced with dk, i.e.,

Bksk = Bkαkdk = αkBkdk,

and ∥Bksk∥ ≤ β1∥sk∥

=⇒ ∥αkBkdk∥ ≤ β1∥αkdk∥

=⇒ |αk|∥Bkdk∥ ≤ β1|αk|∥dk∥

=⇒ ∥Bkdk∥ ≤ β1∥dk∥.

(2.27)

34 2.6. Convergence analysis

Also,

s⊤k Bksk = α2
kd
⊤
k Bkdk and ∥sk∥2 = α2

k∥dk∥2.

From (2.25), we have

β2α
2
k∥dk∥2 ≤ α2

kd
⊤
k Bkdk ≤ β3α

2
k∥dk∥2, (2.28)

=⇒ β2∥dk∥2 ≤ d⊤k Bkdk ≤ β3∥dk∥2. (2.29)

Thus, dk satisfies (2.25). Let K be the set of indices k’s such that (2.25) holds. There-

fore, Bkdk = −∇Φ(zk) and (2.25) implies

∥∇Φ(zk)∥ ≤ β1∥dk∥

and

β2∥dk∥2 ≤ d⊤k Bkdk ≤ ∥dk∥∥Bkdk∥ = ∥dk∥∥∇Φ(zk)∥

i.e., β2∥dk∥ ≤ ∥∇Φ(zk)∥.

Thus,

β2∥dk∥ ≤ ∥∇Φ(zk)∥ ≤ β1∥dk∥. (2.30)

The step length αk is the largest value in the set
{
c̄ 2−ik

∣∣ c̄ ∈ [1,∞) is fixed, and i = 0, 1, . . .
}

such that ik satisfies (2.14). Therefore, from Armijo rule (2.14) we have

Φ(zk + c̄ 2−(ik−1)dk) > Φ(zk) + cc̄ 2−(ik−1)∇Φ(zk)
⊤dk. (2.31)

2.6. Convergence analysis 35

By mean-value theorem, there is a θk ∈ (0, 1) for which Φ(zk + c̄ 2−(ik−1)dk)− Φ(zk)

= c̄ 2−(ik−1)∇Φ(zk + θkc̄ 2
−(ik−1)dk)

⊤dk

= c̄ 2−(ik−1)[∇Φ(zk)
⊤dk + (∇Φ(zk + θkc̄ 2

−(ik−1)dk)−∇Φ(zk))
⊤
dk]

≤ c̄ 2−(ik−1)[∇Φ(zk)
⊤dk + ∥∇Φ(zk + θkc̄ 2

−(ik−1)dk)−∇Φ(zk)∥∥dk∥]

≤ c̄ 2−(ik−1)[∇Φ(zk)
⊤dk + L∥θkc̄ 2−(ik−1)dk∥∥dk∥]

≤ c̄ 2−(ik−1)∇Φ(zk)
⊤dk + Lc̄ 22−2(ik−1)∥dk∥2, (2.32)

where L > 0 is the Lipschitz constant, and the second last inequality is obtained using

(2.19). Using (2.32) in (2.31), for any k ∈ K,

c̄ 2−(ik−1)∇Φ(zk)
⊤dk + Lc̄ 22−2(ik−1)∥dk∥2 > cc̄ 2−(ik−1)∇Φ(zk)

⊤dk

=⇒ 2−(ik) >
−(1− c)∇Φ(zk)

⊤dk
2c̄ L∥dk∥2

=
(1− c)d⊤k Bkdk
2c̄ L∥dk∥2

=⇒ 2−(ik) ≥ (1− c)

2c̄
β2L

−1 > 0. (2.33)

The last inequality in (2.33) is obtained using (2.25). It is clear from the inequality

(2.33) that the step-length {c̄ 2−ik}k∈K is bounded away from zero.

Therefore, from (2.13) and (2.18), we have d⊤Bkdk = −∇Φ(zk)
⊤dk → 0 as k → ∞,

k ∈ K. Using (2.30) and (2.25), we get

lim inf
k→∞

∥∇Φ(zk)∥ = 0.

□

To establish the main theorem, we use the below result.

36 2.6. Convergence analysis

Lemma 2.3 (See [62]) Let Bk be updated by the BFGS formula

Bk+1 = Bk +
y∗ky

∗
k
⊤

y∗k
⊤sk

− Bksks
⊤
k Bk

s⊤k Bksk
.

Suppose B0 is symmetric and positive definite and there are positive constants m ≤M

such that for all k ≥ 0, y∗k and sk follow the inequalities

y∗k
⊤sk

∥sk∥2
≥ m and

∥y∗k∥2

y∗k
⊤sk

≤M. (2.34)

Then, there exist constants β1, β2, β3 > 0 such that for any positive integer t, (2.25)

satisfy for at least [t/2] values of k ∈ {1, 2, . . . , t}.

Theorem 2.4 Let Assumption 1 holds and {zk} is obtained by Algorithm 1, then

lim inf
k→∞

∥∇Φ(zk)∥ = 0 (2.35)

Proof: By Theorem 2.3, we show that there are infinitely many indices k which follows

(2.25).

If K̄ in (2.20) is a finite set, then Bk remains constant after a finite number of iterations.

As Bk is symmetric and positive definite for every k, it is clear that there are constants

β1, β2, β3 > 0 for which (2.25) follows for infinitely many k. Therefore, using Theorem

2.3, we get

lim inf
k→∞

∥∇Φ(zk)∥ = 0.

Assume the case when K̄ is an infinite set. To prove the result for this case, we

assume the contrary that (2.35) is not true, i.e., there exists a constant δ > 0 for which

2.6. Convergence analysis 37

∥∇Φ(zk)∥ > δ, for each k ∈ K̄. Therefore, using (2.20), we get

y∗k
⊤sk

∥sk∥2
≥ βδα = m, (2.36)

i.e., y∗k
⊤sk ≥ βδα∥sk∥2 for every k ∈ K̄. (2.37)

From Assumption 1, we have

∥yk∥2 ≤ ∥sk∥2, for every z1, z2 ∈ Ω.

From (2.14),

− c∇Φ(zk)
⊤sk ≤ Φ(zk)− Φ(zk + sk) ≤ −(1− c)∇Φ(zk)

⊤sk < ∇Φ(zk)
⊤sk. (2.38)

Now,

āk =
6(Φ(zk)− Φ(zk + sk)) + 3(∇Φ(zk) +∇Φ(zk + sk))

⊤sk
∥sk∥2

≤ 6(−∇Φ(zk)
⊤sk) + 3(2∇Φ(zk) +∇Φ(zk + sk)−∇Φ(zk))

⊤sk
∥sk∥2

≤ 3(∇Φ(zk + sk)−∇Φ(zk))
⊤sk

∥sk∥2
.

Therefore, using (2.19), we have

|āk| ≤
3∥(∇Φ(zk + sk)−∇Φ(zk))

⊤sk∥
∥sk∥2

≤ 3L∥sk∥2

∥sk∥2
= 3L. (2.39)

When āk ≤ 0, y∗k = yk. Then, we have ∥y∗k∥ = ∥yk∥ ≤ L∥sk∥ and

∥y∗k∥2

y∗k
⊤sk

≤ L∥sk∥2

βδα∥sk∥2
=

L

βδα
=M1. (2.40)

When āk > 0, y∗k = yk+āksk. Then, we have ∥y∗k∥ ≤ ∥yk∥+|āk|∥sk∥ ≤ L∥sk∥+3L∥sk∥ =

38 2.7. Numerical Results

4L∥sk∥ and

∥y∗k∥2

y∗k
⊤sk

≤ 16L2∥sk∥2

βδα∥sk∥2
=

16L2

βδα
=M2. (2.41)

Applying Lemma 2.3 with (2.36) and (2.40), (2.41) to the matrix sequence {Bk}k∈K̄ ,

then there are constants β1, β2, β3 > 0 for which (2.25) holds for infinitely many k.

Therefore, using Theorem 2.3, we have

lim inf
k→∞

∥∇Φ(zk)∥ = 0,

which contradicts our assumption that there exists a constant δ > 0 such that ∥∇Φ(zk)∥ >

δ, for each k.

Therefore, in the case where K̄ is an infinite set, we have

lim inf
k→∞

∥∇Φ(zk)∥ = 0,

which completes the proof. □

Theorem 2.5 If Assumption 1 holds and {zk} is obtained by Algorithm 2, then

lim inf
k→∞

∥∇Φ(zk)∥ = 0 (2.42)

Proof: The proof is analogous to that of Theorem 2.4. □

2.7 Numerical Results

In the following section, we solve five generalized Nash equilibrium problems using

Algorithms 1 and 2. Yang et al. [45] reported a numerical comparison of the BFGS

method with MWWP and WWP line search techniques. Here, we provide numerical

performances of the BFGS method with Armijo-Goldstein (Algorithm 1) and MWWP

rules (Algorithm 2) in the GNEP set-up.

2.7. Numerical Results 39

In identifying numerical performances, Algorithms 1 and 2 are coded in MATLAB

software (version: 9.12.0.2009381 (R2022a)) on a CPU of i5-10th generation. During

the compilation of algorithms, we use a stopping condition ∥∇Φ(zk)∥ < ϵ = 10−8.

Other algorithmic parameter values are as follows:

• for choosing the step-length αk, we take c̄ = 100,

• c = 0.01, c1 =
c
3
, θ = 1− c,

• β = 10−8, and

• for the Step 4 in Algorithm 1, in applying (2.7), we take

α =

 0.01, if ∥∇Φ(zk)∥ ≥ 1

3, otherwise.

The parameters β and α are used only in the caution BFGS-update matrix (2.1) in

Algorithm 1. In our experiments, algorithms stop whenever ∥∇Φ(zk)∥ < ϵ or the non-

negative integer i > 200 in step-length αk.

In the comparison tables, we have specified some regions for starting points. We

have randomly taken 300 starting points from each of the specified regions and pre-

sented the minimum, median, and maximum of the number of iterations and CPU time

consumed by Algorithms 1 and 2.

Problem 2.1 Consider the following game with two players:

40 2.7. Numerical Results

min
x1

(x1 − 1)2

subject to x1 + x2 ≤ 1

 and

min
x2

(
x2 − 1

2

)2
subject to x1 + x2 ≤ 1.

This problem was considered by Facchinei et al. [1]. This problem has infinitely many

solutions, which are

S = {(s̄, 1− s̄) | s̄ ∈ [0.5, 1]}.

This GNEP has many equilibria: (0.2, 0.3), (0.50, 0.49),(0.61, 0.38), (0.56, 0.43), etc.

A numerical comparison of the performance of Algorithms 1 and 2 on this problem is

given in Table 2.1.

Table 2.1: Performances of Algorithm 1 and Algorithm 2 on Problem 2.1

Region
of

initial point

Algorithm 1 Algorithm 2
Iteration number Computation time Iteration number Computation time

Min Median Max Min Median Max Min Median Max Min Median Max
∥x0∥ ≤ 1 33 35 40 9.8155611 11.5301793 12.9420471 33 39.5 44 10.0071156 11.9353416 15.1988879
1 < ∥x0∥ ≤ 5 33 43 64 9.9780662 12.8930529 19.1935193 35 45 71 10.5464406 13.5859148 25.2763049
5 < ∥x0∥ ≤ 15 46 59 71 14.0252074 17.8076591 21.5618371 51 67 90 15.3653121 20.1413819 29.9882825
15 < ∥x0∥ ≤ 50 60 74 80 18.1086301 21.1665489 23.1277177 61 68 84 21.4922147 25.0860578 32.3190021
50 < ∥x0∥ ≤ 100 62 71 81 18.6511131 24.4064391 29.0292234 68 80 85 22.3850595 24.0805074 35.9274275

In the numerical comparison, we have taken initial points randomly from each of the

specified regions and verified the global convergence of the method. Also, we have com-

pared the minimum, median, and maximum of the consumed number of iterations and

computation costs in each specified region by solving GNEPs by both Algorithms 1 and

2. Though the Problem 2.1 is not a large-scale problem, we can see a difference in com-

putation costs consumed by both Algorithms 1 and 2. If the initial points are near the

origin, both algorithms 1 and 2 perform mostly similar and consume almost the same

computation costs. However, when the initial points are far from the origin, we can see

a difference in computation costs consumed by both algorithms. Note that Algorithm 1

takes lesser CPU time compared to Algorithm 2.

2.7. Numerical Results 41

Problem 2.2 Consider the following GNEP that has two players and one shared con-

straint s(x) = x1 + x2 − 15 ≤ 0:

min
x1

x21 +
8
3
x1x2 − 34x1

subject to x1 + x2 ≤ 15, 0 ≤ x1 ≤ 10

and

min
x2

x22 +
5
4
x1x2 − 97

4
x2

subject to x1 + x2 ≤ 15, 0 ≤ x2 ≤ 10.

This game was introduced by Harker [63]. This GNEP has an infinite number of solu-

tions. Using random multi-starting values, we found that Algorithm 1 converges globally.

We have compared the computation costs in solving GNEPs by Algorithms 1 and 2 in

Table 2.2.

Table 2.2: Performances of Algorithm 1 and Algorithm 2 on Problem 2.2

Region

of

initial point

Algorithm 1 Algorithm 2

Iteration number Computation time Iteration number Computation time

Min Median Max Min Median Max Min Median Max Min Median Max

∥x0∥ ≤ 1 46 55 62 367.8947949 430.0820592 481.6043705 35 59 70 410.8706878 691.6027966 822.7638993

1 < ∥x0∥ ≤ 5 42 60.5 72 331.6576986 472.4338520 562.6860231 53 58 73 621.8719814 682.5887432 846.2415418

5 < ∥x0∥ ≤ 15 49 65 85 384.0940428 508.4177229 666.8262221 61 80 95 729.9097584 947.6941509 1115.2065741

15 < ∥x0∥ ≤ 50 70 78 95 551.4164915 613.2027723 748.5838472 56 71 89 670.0887578 845.1442606 1057.3772041

50 < ∥x0∥ ≤ 100 95 104 123 765.6869913 834.1185455 984.4251712 81 95 98 946.8039653 1150.9772041 1300.8525742

We can see that both Algorithms 1 and 2 converge globally, but we can see a big

difference in the minimum, median, and maximum of consumed CPU time by both

algorithms. Clearly, Algorithm 1 takes lesser computation costs compared to Algorithm

2 in each specified region for the initial point. Also, in numerical comparison, we can

observe that Algorithm 1 takes lesser CPU time compared to Algorithm 2.

Problem 2.3 The following problem depicts a game with two players and single shared

constraint:

42 2.7. Numerical Results

min
x1

1
2
x21 − x1x2

subject to x1 + x2 ≥ 1,

x1 ≥ 0

and

min
x2

x22 + x1x2

subject to x1 + x2 ≥ 1,

x2 ≥ 0.

This problem has been introduced by Rosen [64]. In this problem, there are two con-

straints h1(x1) = −x1 and h2(x2) = −x2 that depends only on the variables of a single

player, and there is one shared constraint s(x1, x2) = 1− x1 − x2. The performance of

Algorithms 1 and 2 is depicted in Table 2.3.

Table 2.3: Performances of Algorithm 1 and Algorithm 2 on Problem 2.3

Region
of

initial point

Algorithm 1 Algorithm 2
Iteration number Computation time Iteration number Computation time

Min Median Max Min Median Max Min Median Max Min Median Max
∥x0∥ ≤ 1 30 35 43 190.7484509 233.5142974 280.0147215 35 40.5 46 279.2283089 364.9990586 380.3896140
1 < ∥x0∥ ≤ 5 35 43.5 46 211.6401868 263.1287694 277.8278983 37 42.5 47 288.3394868 382.7355782 406.0382182
5 < ∥x0∥ ≤ 15 34 46 50 206.7644701 279.6569243 305.4529313 36 45 47 324.7146608 407.6843183 430.5627083
15 < ∥x0∥ ≤ 50 45 50.5 61 276.7633172 311.7309502 373.2828701 50 59.5 86 460.2240536 544.4629340 772.6540426
50 < ∥x0∥ ≤ 100 47 58 64 286.6669676 354.7094388 391.3671929 49 62 69 452.0246391 560.8488727 636.3005903

Here, we observe that both Algorithms 1 and 2 take almost the same number of iterations

but have a big difference in their consumed CPU time. We have provided regions where

we have randomly taken initial points. We can see that Algorithm 1 is cost-effective

compared to Algorithm 2.

Problem 2.4 This problem is an internet switching model which was proposed by

Kesselman et al. [65], where the traffic is generated by selfish users. The model de-

picts the behavior of users sharing the first-in-first-out buffer with bounded capacity.

The utility of each user depends on its transmission rate and congestion level. Specif-

ically, we consider that there are N users, and the buffer capacity is B. The user v

controls the amount of his “packets” in the buffer, denoted by xv ∈ [0,∞). The utility

2.7. Numerical Results 43

function for the player v (v = 1, 2, 3, . . . , N) is given by

θv(x
v,x−v) = − xv

x1 + x2 + · · ·+ xN

(
1− x1 + x2 + · · ·+ xN

B

)
, (xv,x−v) ∈ RN

(2.43)

and the constraints are

x1 + x2 + · · ·+ xN ≤ B and xv ≥ lv,

where lv ≥ 0. Kesselman et al. [65] have shown that model (2.43) has a unique solution

x̄v = B(N − 1)/N2, v = 1, 2, . . . , N .

We take N = 4 players, l1 = 0.01, l2 = 0.01, l3 = 0.01, l4 = 0.01 and B = 1 for

numerical computation. The problem has a total of 4 variables, and the system (2.12)

pertaining to solve this GNEP involves nine variables. The GNEP problem (2.43) for

four players has a unique solution x̄1 = x̄2 = x̄3 = x̄4 = 0.1875.

In employing Algorithms 1 and 2 on this problem, we randomly took the initial points

from the region indicated in Table 2.4. For some initial points, it converges to x̄1 =

x̄2 = x̄3 = x̄4 = 0.20. The numerical performance of Algorithms 1 and 2 on this GNEP

is provided in Table 2.4, which depicts that Algorithms 1 is cost-efficient compared to

Algorithm 2 corresponding to each specified region for initial points.

Table 2.4: Performances of Algorithm 1 and Algorithm 2 on Problem 2.4

Region

of

initial point

Algorithm 1 Algorithm 2

Iteration number Computation time Iteration number Computation time

Min Median Max Min Median Max Min Median Max Min Median Max

∥x0∥ ≤ 0.2 110 130.5 135 60.8716676 69.9992739 80.7818287 120 143 170 78.5046025 82.9273549 105.4812018

0.2 < ∥x0∥ ≤ 0.4 91 109.5 128 48.3546525 57.6142135 67.3743387 102 125 140 58.7771746 71.6256916 84.7519417

0.4 < ∥x0∥ ≤ 0.6 60 81.5 87 32.7544586 43.5582642 46.6964562 70 91.5 96 45.1349918 60.5001818 81.0909437

0.6 < ∥x0∥ ≤ 0.8 50 76 88 27.1916965 40.7106048 47.1182006 61 83.5 101 45.7480215 60.4065841 81.3667261

0.8 < ∥x0∥ ≤ 1 89 106.5 121 48.0518683 57.2676848 70.8017430 98 111 147 72.8384523 81.3266689 101.3417314

Problem 2.5 The following problem is another version of the internet switching model

44 2.7. Numerical Results

proposed by Kesselman et al. [65]. In this problem, there are N = 3 players. The

variables corresponding to player v is xv ∈ R. The objective function of Player v is

given by

θv(x
v,x−v) = − xv

x1 + x2 + x3

(
1− x1 + x2 + x3

B

)
, (xv,x−v) ∈ R3, (2.44)

where B is the buffer capacity. The constraints for the Player 1 are

0.3 ≤ x1 ≤ 0.5,

and for the remaining players

x1 + x2 + x3 ≤ B, and xv ≥ 0.01.

Here, we have taken the parameter B = 1 and solved this problem using both Algorithms

1 and 2. The system (2.12) has a total 8 variables. The GNEP problem (2.44) for 3

players has a unique solution x̄1 = 0.2999 and x̄2 = x̄3 = 0.2055. The numerical

performance of both Algorithms 1 and 2 on this GNEP is shown in Table 2.5. Table 2.5

shows that Algorithm 1 takes lesser computation time and iteration numbers compared

to Algorithm 2.

Table 2.5: Performances of Algorithm 1 and Algorithm 2 on Problem 2.5

Region
of

initial point

Algorithm 1 Algorithm 2
Iteration number Computation time Iteration number Computation time

Min Median Max Min Median Max Min Median Max Min Median Max
∥x0∥ ≤ 0.2 142 145.5 180 60.5156996 69.8729060 75.1300861 146 187.5 200 75.4941229 95.8196587 110.6429374
0.2 < ∥x0∥ ≤ 0.4 134 142.5 126 54.5175096 57.8729938 70.8400814 140 155 186 65.1114390 89.4622365 96.7129967
0.4 < ∥x0∥ ≤ 0.6 90 94 126 36.6010346 38.1234327 51.1466707 98 114 150 45.6356939 59.8191949 71.2675442
0.6 < ∥x0∥ ≤ 0.8 82 125.5 146 33.2986903 51.0556914 59.3054762 92 139.5 175 47.4608546 64.4523775 91.8372476
0.8 < ∥x0∥ ≤ 1 109 130 161 44.2290509 52.8775267 65.5032156 120 137.5 181 54.4723432 68.4284650 95.1546866

2.8. Conclusion 45

2.8 Conclusion

In this chapter, we have solved GNEPs by an improved BFGS using the two line search

techniques: The Armijo-Goldstein line search technique (see Algorithm 1) and MWWP

line search technique (see Algorithm 2). We have reformulated GNEPs into a smooth

system of equations (2.12), and by incorporating the merit function (2.11), we have

solved GNEPs by improved BFGS method using two line search techniques. The BFGS

method using MWWP line search technique converges globally and works well compared

to other quasi-Newton methods (see a detailed comparison in [45]). However, we have

used the Armijo-Goldstein line search technique to minimize computation costs. The

improved BFGS method equipped with Armijo-Goldstein line search technique takes

lesser computation costs than the MWWP-line search technique. We have solved five

numerical problems using Algorithms 1 and 2, and have given a numerical comparison

of both algorithms.
