Chapter 2

A Globally Convergent Improved
BFGS Method for Generalized

Nash Equilibrium Problems

2.1 Introduction

Generalized Nash Equilibrium Problem (GNEP) is a non-cooperative game in which
the strategy set of each player may depend on the strategies of the rival player. It was
first formally introduced by Debreu [2] as a social equilibrium in 1952, and later as an
abstract economy [3] in 1954. In the early 50’s, Nash [12,13] introduced a notion of
equilibrium, called Nash equilibrium, for non-cooperative N-player games where the
payoff function of each player depends on the others’ strategies. Arrow and Debreu [3]
extended this notion to the generalized Nash equilibrium for games where both the
payoff function and the set of feasible strategies depend on others’ strategies. GNEPs
have been a major area of research during the last two decades, which have several real-
world applications in the areas of economics, computer science, and engineering, e.g.,
the abstract economy model [3], a power allocation problem in telecommunications [4],

a competition among countries that arises from the Kyoto protocol to reduce the air
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pollution [5], social science [14], energy problems [15-17], wireless communication [6,7],
cloud computing [8], electricity generation [9], etc. Robinson [10, 11] discussed the
problem of measuring the effectiveness in optimization-based combat models and gave
several mathematical formulations. All these applications have motivated the evolution
of the generalized Nash equilibrium concept and its use in complex games that now

require a deep understanding of theoretical and computational mathematics.

2.2 Motivation

The convergence and efficiency of the BFGS method have motivated many researchers
to study and improve the BFGS method [51-54]. In BFGS methods, a stationary
point may be easily missed if the step size is large, or a cycle may be generated among
several points if the step size is small. To overcome these drawbacks, Yuan et al. [55]
proposed the modified-weak Wolfe-Powell (MWWP) line search technique and used it
to prove the global convergence of the BFGS method for general functions. Yang et
al. [45] proposed an improved BFGS method using an MWWP line search technique
and showed a detailed numerical performance compared with the original BFGS method
using a weak Wolfe-Powell (WWP) line search technique. The numerical performance
[45] shows that the improved BFGS method with the MWWP line search technique
has better problem-solving capability than the standard BFGS algorithm based on the
WWP line search technique. Therefore, in this chapter, we propose to solve GNEPs
with an improved BFGS method using the Armijo-Goldstein and MWWP line search
techniques.

Facchinei et al. [1] analyzed GNEPs with shared constraints and proposed Newton-
type methods— semi-smooth Newton methods and Levenberg-Marquardt method to
solve them. The semi-smooth Newton method in [1] converges Q-quadratically, but
they have a drawback: they do not converge globally. Solving a system of linear (or

nonlinear) equations by the semi-smooth Newton method at each stage can be expensive
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if the number of unknowns is large and may not be justified when the initial guess is far
from a solution. This motivates us to develop an improved BFGS method that consumes
lesser computation costs (number of iterations and CPU time). Therefore, we aim to
solve GNEPs using an improved BFGS method such that it converges globally. To
minimize the computation costs, we use Armijo-type line search techniques, which are
cost-effective compared to the Wolfe-type line search techniques. Therefore, we solve
GNEPs by BFGS method using the two line search techniques: Armijo-Goldstein and

MWWP [45], and provide their numerical performances.

2.3 Contributions

In this chapter, we have proposed an improved BFGS method to solve GNEPs, which

is globally convergent. The novelty and contribution of this chapter are as follows:

e With the help of Fischer-Burmeister C-function [42], we formulate a smooth merit

function for solving GNEPs under consideration.

e Step-wise algorithms of the proposed BFGS methods, with MWWP and Armijo-

Goldstein rule, in the GNEP set-up are provided.
e Well-definedness and global convergence of the proposed two algorithms are given.
e Numerical performance of the studied methods on some academic and practical

GNEPs are provided.

2.4 Improved BFGS method

The BFGS method is known as an effective and favorable solver for finding a minimum
of a continuously differentiable function. A general structure of the commonly used

quasi-Newton method—BFGS technique- is given below.



20 2.4. Improved BFGS method

Consider an optimization problem

m%gn f(z), where f is a differentiable real-valued function.
TeR™

The main steps in the BFGS method are as follows.

1. Find a descent direction
Find a descent direction dj that solves the system Bydy = —gp, where g =

V f(zy) is the gradient of f at xp, and By is an approximation of the Hessian

V2 f(xr).

2. Find a step-length
Find a step-length a; € R along the descent direction dj. The step length can be
obtained using a line search technique: exact or inexact. The next iterative point
is obtained by

Tie1 = Tk + Ozkdk.

3. Update of Hessian approrimation matrix
Hessian approximation matrix By, can be updated by the standard BFGS update
formula:

Bys.stB r
Biir = By + kSkSy Dk YrYp

sT By.sy Sty
where s = xp1 — x and yr, = Vf(zry1) — Vf(xr) = grs1 — gx are such that

they satisfy the secant equation

Biy15r = Y.

4. Tteration continues until a stopping criterion is satisfied.

The convergence and efficiency of the BFGS method have motivated many re-
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searchers to study and improve the BFGS method [51-54]. In BFGS methods, a sta-
tionary point may be easily missed if the step size is large, or a cycle may be generated
among several points if the step size is small. To overcome these drawbacks, Yuan
et al. [55] proposed the modified-weak Wolfe-Powell (MWWP) line search technique
and used it to prove the global convergence of the BFGS method for general functions.
Yang et al. [45] proposed an improved BFGS method using an MWWP line search tech-
nique and showed a detailed numerical performance compared with the original BFGS
method using a weak Wolfe-Powell (WWP) line search technique. The numerical per-
formance [45] shows that the improved BFGS method with the MWWP line search
technique has better problem-solving capability than the standard BFGS algorithm
based on the WWP line search technique. Therefore, in this chapter, we propose to
solve GNEPs with an improved BFGS method using the Armijo-Goldstein and MWWP

line search techniques.

The conventional BFGS update formula is

Brsisk' By yryr
By = By, —

2.1
sk Bisg ykT5k7 ( )

where s = zp41 — 2 and yp = VP(2541) — VP(z;). The BFGS formula is updated by

Yuan et al. [56] is given by

BkSkSkTBk y*y*T
Byt = By — bk

, 2.2
SkTBkSk yZTSk ( )

where y = yi + ajsk, ap = max{a, 0}, s = 2py1 — 2, Yp = VO (2441) — VO(2;) and

iy = {6[(1)(%) — O (21 + apdy)] + 3[VO(2x) + VO (21 + Oékdk)]TSk} : (2.3)

An important property of formula (2.2) is that By, remains positive definite as long

as yi's; > 0 (see [57]). The condition y;'sp > 0 assured to hold if the step-size is
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determined by Wolfe-type line search technique (see [45]):

(I)(Zk + Oékdk) < @(Zk) + (5104kv(1)(2k)—rdk ( 4)
2.

V(I)(Zk + Oékdk)Tdk Z (SQV(I)(Zk)Tdk,

where dy, §5 are positive constants such that §; < do < 1. Yuan et al. [55] have improved
the weak Wolfe-Powell (WWP) line search technique and studied the new line search
technique: Modified Weak Wolfe-Powell (MWWP) line search technique [55], which has

global convergence once used in a BFGS method. MWWP is formulated as follows:

2
(2 + apdy,) < D(2;) + cap V() dy + aj min {—QVCD(Zk)Tdk; RNk HQdkH }

V(2 + andy) Tdy, > 2V P(2;) " dy + min {—01V<I>(zk)Tdk, cock||dk||2}
(2.5)
where ¢ € (0,1), ax > 0, ¢; € (0,¢) and ¢z € (¢, 1). For results based on this improved

line search, one can refer to [45,58].

In comparison to Wolfe-type line search techniques, the Armijo-Goldstein line search
techniques have a better speed of convergence and are better suited for quasi-Newton
methods. In this chapter, we use the Armijo-Goldstein line search technique to compute
the step length oy that is the largest value in the set {277 | ¢ € [0, 00) is fixed, and 7 =

0,1,2,...} for which the inequalities

CI)(Zk + akdk) S (I)(Zk) + cakV(I)(zk)Tdk (2 6)

are satisfied with ¢ € (0, %) However, the Armijo-Goldstein conditions do not ensure

y,stk > (, and therefore By is not necessarily positive definite even if By is positive
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definite. Hence, we write the BFGS update formula By with the following form

Bk o BSkSk | Bi + ykyk if yk Sk > 6 Vo 2k «
Biyy = sk ' Brsk Tskll? ” ( )H (27)

By otherwise,

where 8 and « are positive constants.

Now, we consider the player convex GNEP. Thus, we have reformulated GNEP (1.7)

- B L(z, \) B
(z,)) = = 0. (2.8)

®(—g(z), A)

The reformulated system (2.8) becomes

Vo Li(zt, 271 AL
Ve Li(2?, 272 \?)

Vv Ly(zN, =N A\N)
(I)(_gl(xlv wil)v )‘1)
q)(_gz('rzv 11_2), )‘2)

|
I
<

F(z,\) (2.9)

(I)(_gN(J7Nv miN)7 /\N)

Here, we use a smooth complementarity function with the help of Fischer-Burmeister

C-function [42]. The Fischer-Burmeister function ¥ : R? — R is defined by

U(r,y) = Va2 +y? - (z +y),

which is a convex function but not differentiable at (0,0). Thus, we take (see [59,60])
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the complementarity function as
O(x,y) = U(z,y)% (2.10)

which is known to be differentiable everywhere, and its gradient is globally Lipschitz
continuous and semismooth [59]. A survey on several other merit functions and their
basic and desirable properties can be found in [60]. With the ®(z,y) in (2.10), the
reformulated system (2.9) becomes a system of smooth equations. Since ® is continu-
ously differentiable everywhere, the system (2.9) becomes a system of smooth equations
F(z) = 0. With the help of F(z,\) : R"* — R™™™ in (2.9) and z = (z,\) € R"™™,
consider the merit function

®(2) = 5 1F()" (2.11)

Here, ®(z) is a square of the norm of a differentiable function. Therefore, ® is a
differentiable function and we can write V®(2;) = VF ()" F(2). We will solve the

smooth system

B(z) =0 (2.12)

using BFGS method.
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2.5 Improved BFGS methods to solve GNEPs

Algorithm 1 Improved BFGS method using Armijo-Goldstein line search technique
to solve the smooth system (2.12)

Step 0: Initialization

Take initial Hessian approximation matrix Bo = I(n4m)x (ntm), and any c € (0,0.5), ¢ €[1,00)
Choose zg = (zg, Ao) € R™ X R™.
Take constants a > 0, 8 > 0, and set the iteration counter k£ = 0.

Provide the termination scalar € > 0.

Step 1: Termination condition

If |[V®(z1)|| < e, then stop and output z; as an e-precise solution to system (2.12).

Step 2: Descent direction

Find a solution dy € R™®T™ of the system

Bkd: —V@(Zk). (2.13)

Step 3: Step length

Find a step length aj = & 27 % using Armijo-Goldstein line search technique:

Choose if, the smallest non-negative integer ¢ such that

Bz 4 27 dy) < B(z) + 2 27k VDB(2) T dy
_ _ (2.14)
D(zp, +C 27k dy) > B(2) + (1 — ) 27k VD(2) " dy,

Step 4: Intermediate computation

Zp41 = 2k + apdy, Sp = 2py1 — 2k and yp = VO(2zp 1) — VO(2¢). Compute a by (2.3), aj = max{a,,0} and y; =

Yk + aj Sk-

Step 5: Hessian approximation

Calculate the Hessian approximation By1 by (2.7), where By satisfies the quasi-Newton relation (see [53]):

Biy1(2r41 — 2k) = Yr + af sk

Update zp41 < 2 + 27y, k + k+ 1 and go to Step 1.
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Algorithm 2 Improved BFGS method using MWWP line search technique to solve
the smooth system (2.12)

Step 0: Initialization

Take initial Hessian approximation matrix Bo = I(n4m)x (n+m), and any ¢ € (0,0.5), ¢ € [1,00) c1 € (0,¢), c2 € (¢, 1).
Choose zg = (z0, Ao) € R™ x R™.
Set the iteration counter k = 0.

Provide the termination scalar € > 0.

Step 1: Termination condition

If |[V®(z)|| < e, then stop and output z, as an e-precise solution to system (2.12).

Step 2: Descent direction

Find a solution dj € R**™ of the system

Brd = —V&(zp). (2.15)

Step 3: Step length
Find a step length o = € 27 % using MWWP line search technique:
Choose iy, the smallest non-negative integer ¢ such that

B(zp 427 dy) < B(zp) + 2 2 R VB(2) Tdy + & 27

¢ 27 % ||dg ||
min {—61V<I>(zk)Tdk, Cczkl} (2.16)
V(2 + 2 27k dy) Tdy, > caV®(2) T di, + min {7C1V¢’(zk)Tdk, e 27 ||dk||2}

Step 4: Intermediate computation

Zp41 = 2k + agdy, Sp = 2py1 — 2k and yp = VO(zpy1) — V®(2¢). Compute @y by (2.3), aj = max{ax,0} and y; =

Yk + afSk-

Step 5: Hessian approximation

Calculate the Hessian approximation Bgi1 by (2.2), where By satisfies the quasi-Newton relation (see [53]):
Bit1(2k41 — 2k) = Yk + a5k

Update zp11 + 2 + 27 %dy, k + k+ 1 and go to Step 1.
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2.6 Convergence analysis

In the following section, we show the well-definedness of Algorithms 1 and 2 and es-
tablish their global convergence under the following assumption on the GNEP under
consideration.

Before reaching the main convergence result, we prove some subsidiary properties

of {By} that facilitate obtaining the main result.

Lemma 2.1 If the sequence { By} is obtained by (2.7), in Algorithm 1, then the matriz

By, is positive definite for every k =0,1,2,....

Proof: Note that By = I(nin)x(msn) is positive definite. Let {z;} be the sequence
obtained by Algorithm 1, and the BFGS matrix is updated by (2.7), and By is a
positive definite matrix for some £ > 0. We show that By, is positive definite. This

will complete the proof.

If Vi sk > B||V®(2:)]|%, then evidently, v sp > 0, and hence (see p.6 [55])

l[skll?

T T
Bisgpsy' By vy

s 1

Bk+1 = By, — TR
Sk LSk Y. Sk

is positive definite.

In the second case, as By.1 = By, Bry1 is obviously positive definite.

Lemma 2.2 Let the sequence {By} is obtained by (2.2) in Algorithm 2. Then, the

matriz By, is positive definite for every k =0,1,2,....

Proof: Note that By = I(m4n)x(m+n) 15 positive definite. Suppose that the matrix By,
is a positive definite matrix for some £ > 0. We prove that By, is positive definite.

To prove that By is positive definite, we need to show that y; Ts, > 0. Using (2.16),
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Brdy = =V ®(2), Py = ®(2 + 27%dy,), @1, = ®(21,), and we have

vi sk = (yk + apse) sk
= Y, S + Sp, A}k
=V, s — VPO s+ spai’ sy
> ¢, V@, s, + min {—clvfbgsk, csk||dk\|2} — VD, s, + 5, a) sy
= —(1 —¢)V®, 51 + min {—01V<I>gsk, cskHdkHQ} + spa) sy

> —(1— )V, 54 > 0.

(Here, we have used min {—01V<1>;3;€, csk||dk||2} > 0and —V®, d;, = d] Bydy, > 0, as By,

is positive definite matrix). Hence, By is a positive definite matrix (see p.6 [55]). O

In Algorithm 1, the Hessian approximation By is updated by the BFGS update formula
(2.7). It is found (Lemma 2.1) that the Hessian approximation By in Algorithm 1 is
a symmetric and positive definite matrix for all k. The descent direction dj, obtained
from (2.13), and the step-length, calculated from (2.14), together imply that {®(z;)} is
a monotonic non-increasing sequence. Using (2.11), the sequence {®(zx)} is bounded
below. Hence {®(zx)} is a convergent sequence.

From (2.14), we have

(I)(Zk) — q)(Zk +c 2_dek)

(I)(Zk) — (I)(Zk +c 2_dek)

< —C27*Vd(z,) dy, < 2.1
1—c = V() dy, < c (2.17)
Therefore, using
Jim {D(z¢) — Dz + ¢ 27%dy)} =0,
—00
we have
— lim ¢ 27" V®(2) " dp = — lim V&(z,) " s* = 0. (2.18)

k—o0 k—o0

By results (2.18) and Lemma 2.2 we prove convergence of Algorithms 1 and 2 in the
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next section.

In Algorithm 2, we have used Wolfe-type line search techniques. Due to this, the
Hessian approximation By, updated by BFGS update formula (2.2), in Algorithm 2 is
symmetric and positive definite matrix for all £ (Lemma 2.2). The descent direction
dy, obtained from (2.15), and the step-length, calculated from (2.16), together implies
that {®(z;)} is a monotonic non-increasing sequence. Also, using (2.11), {P(zx)} is

bounded, and hence {®(z;)} is a convergent sequence.

Assumption 1 1. Consider the level set

Q={zeR"™ | &(2) < P(2)} is bounded.

2. The function ® is continuously differentiable.

3. There exists a constant L > 0 for which
V&(z1) = VO(22)|| < L||z1 — 22|, for all z1, z5 € Q. (2.19)

Consider a sequence {z;} which is obtained by Algorithm 1. Then, the sequence

{®(2x)} is a monotonic non-increasing sequence, i.e.,
Therefore, the sequence {z;} is obtained by Algorithm 1 is lies in Q. Define the index

K:{k

where oo and [ are positive constants. Then, we can rewrite the Hessian approximation

set

TASS ﬁ|rv<1><zk>||a} , (2.20)

llsell®
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update formula (2.7) as

T k0% 1 . _
Bk _ Bgsgsk By + YrYp 7 lf k c K,

sk | Brsk yi sk

By1 = (2.21)

By, otherwise.
Now, it is essential to show that Algorithms 1 and 2 are well-defined. Notice that the
well-definedness of Algorithm 1 is dependent on the existence of a d for (2.13) and an
ir, for (2.14). In Theorem 2.1 and Theorem 2.2 below, we show the existence of both d
and 7, respectively.

In the similar way of the proofs of Theorem 2.1 and Theorem 2.2, the well-definedness
of Algorithm 2 is followed. Note that if sequence {z;} is obtained by Algorithm 2, and
the Hessian approximation matrix By is updated by (2.21), then using Lemma 2.2, the
matrix By is always positive definite. Therefore, the system (2.15) always has a unique
solution dj. Also, under Assumption 1, the system (2.16) is well-defined (see [61]).

Thus, we can see that Algorithms 1 and 2 are well-defined.

Theorem 2.1 Assume that Assumption 1 holds for ®(z). Consider a sequence {z}
which is obtained by Algorithm 1. Let the Hessian approzimation matriz By be updated

by (2.7). Then, there exists dj, such that (2.13) is true.

Proof: Given sequence, {z;} is obtained by Algorithm 1, and the Hessian approxima-
tion matrix By is updated by (2.7). Therefore, if the matrix By is positive definite,
the matrix By, is also positive definite for every k& = 0,1,2,... (see Lemma 2.1).

Therefore, by Assumption 1 for ®(z), the system (2.13) has a unique solution

dy = =B, 'V®(z).
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Theorem 2.2 Assume that ®(z) is continuously differentiable and bounded below. If

V& (z,)"dy, < 0, then there exists an o > 0 such that

(I)(Zk —+ a*dk) < @(Zk) + COé*V(I)(Zk)Tdk
(2.22)

and ®(z, + a*dy) > ®(z;,) + (1 — ¢)a* V() dy,

where ¢ € (0,0.5).

Proof: We denote &, = ®(z;) and Py = P(zp + ady). By the hypothesis, 5 and
®441 are bounded below, ¢ € (0,0.5) and V®] d; < 0. For o > 0, define

V1(a) = ®(z + ady) — ®(z1,) — caVO(z,) " dy

and 15(a) = ®(z + ady) — P(z) — (1 — )aVP(z)  dy.
Also, we have

lim_g1(a) = Tim ¢s(a) = +00 and ¢1(0) = 15(0) = 0. (2.23)

a—00+

Note that both of 1;(a) and 12(a) are continuous and
Vo) = 1 (a) — (1 —2c)aVe, dy. (2.24)
For all sufficiently small positive a, we get

Y1(a) = ®(z + ady) — P(z1,) — caVd(z)  dy
= &), +aVd, dy, + o(a) — &), — caV ] dy,

= (1 —¢)aV®, d; + o(a) < 0.
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Also, we have

Pa(a) = (2, + ady) — ®(z1,) — (1 — )aVP(z) " dy

= caV®, dy + o(a) < 0.

Thus, for @ — 04, we have 9;(a) < 0 and ¥q(a) < 0.
Therefore, using (2.23), there exist constants p; > 0 and py > 0 for which ¢;(p;) =0
and Yo(pe) = 0. Taking p; and py to be the infimum positive root of ; and 1)y,

respectively, we can assume that there is no zero of ¥ («a) in (0, p;) and no zero of
Ua(a) in (0, p2).

Let @ be the global minimizer of ¢ () in [0, p1]. The minimum value cannot occur
at the endpoints because ¥;(0) = 0 and ¥ (p;) = 0, and there exists a € (0, p;] that
satisfies 11 () < 0. Therefore, there exists at least one local minimizer o* € (0, p;)

such that 11 (a*) < 0, and ¥ («) < 0 for every a € (0, p;). Then,

P1(a®) = Bz + a*dy) — P(z) — ca*VO(z,) "dy, < 0

— (I)(Zk + Oé*dk) < q)(Zk> + ca*V@(zk)Tdk.

Next, we prove that p; > py. Using ¥s(p2) = 0, we have

Ua(pa) = 1(p2) — (1 —2¢)pa VO dj = 0

g 2/}1<)02) = (1 — QC)pQV(I);dk < 0.

Therefore, py € (0, p1), p2 < p1. If we choose a* = py + € where € > 0 is such a quantity

a* ¢ (0, p2) and a* < p1), then ¢ (a*) < 0 and ¥y(a*) > 0. Therefore,

Pi(a®) = Bz + a*dy) — P(z) — ca*VO(z,) "dy, < 0

— (2, + o dy) < P(z) + ca* VD (2,) dy,
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and

Vo) = Bz + a*dy) — P(2) — (1 — €)a*VP(z) "di > 0

—> Bz +a’dp) > P(z) + (1 — )" VP(z)  dy.

Thus, there exists a constant a* € [pa, p;] that satisfies (2.22).

Using Theorem 2.1 and Theorem 2.2, we note that for every iteration k in Algorithm

1, there exist dj, and «ay that satisfy (2.13) and (2.14), respectively.

Theorem 2.3 Let Assumption 1 holds for ®. Let {z.} is obtained by Algorithm 1. If

there are positive constants (1, B2, B3 > 0 for which the relations
| Bisill < Bullskll and Bol|sil|” < sq Brsi < Bsl|sil|’ (2.25)
follow for infinitely many k, then
lilggg}f IV®(z)| = 0. (2.26)

Proof: Since we have sy = 241 — 2, = agdy, one can notice that (2.25) follows when

s is replaced with d, i.e.,

Bysi = Bragdy, = agBydy,
and || Bysi|| < Bi|skll
= [low Brdi|| < B1[|ovdi]] (2.27)
= |ov||| Brdy|| < Balaw]||d

= || Brdi|| < Bul|d]|-
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Also,

S;—Bksk = Oéid;—Bkdk and ||Sk||2 = Oéz||dk||2

From (2.25), we have

Boo||di|* < agdy Brdy, < Bsoi||dil)?, (2.28)

= Bolldi||” < dj Brdi < fs]|di||>. (2.29)

Thus, dj, satisfies (2.25). Let K be the set of indices k’s such that (2.25) holds. There-
fore, Brdy = —V®(z;) and (2.25) implies

V(2| < Bulldi|
and

Bolldi||* < dy Brdy, < ||di|||| Brdi|| = || dic|l|| VR (21|

Le., Bo|dill < [[VE(z0)-

Thus,
Bolldill < IVR(zk)|| < Bulldil|- (2.30)

The step length ay is the largest value in the set {é 27 ‘ ¢ €1,00) is fixed, and i = 0,1, .. }

such that iy satisfies (2.14). Therefore, from Armijo rule (2.14) we have

D(zp + 2270 Vd) > B(2) + ce 27 VVD(2,) Tdy. (2.31)
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By mean-value theorem, there is a ), € (0, 1) for which ®(z; + ¢ 27 Vd,) — d(2)

=cC 2_(Zk_1)V(I>(zk + (9].35 2_(ik_1)dk)—rdk

— 27OV () Ty + (VB2 + Op 27+ D)) — VD(2)) ]

IA

¢ 27 VIV (2) Ty + || V(2 + e 27 Vi) — V() ||| di ]

IA

¢ 27DV D(2) dy + Ll|6ke 27 Vdy ]| di]

IN

c 2’(ik’1)v¢(zk)Tdk + Le 2272(%71)Hdk|’27 (2.32)

where L > 0 is the Lipschitz constant, and the second last inequality is obtained using

(2.19). Using (2.32) in (2.31), for any k € K,

¢ 2 IVD(2) Ty, + Le 22720V |dy||* > ce 27DV D () T dy
—(1=)V®(2)dp (1 — c)d} Bydy
2¢ L||dy? ~2¢ L|dk|]?

. 1—
— 270 > %Bﬂﬁl > 0. (2.33)
&

= 270 >

The last inequality in (2.33) is obtained using (2.25). It is clear from the inequality

(2.33) that the step-length {¢ 27%},cf is bounded away from zero.

Therefore, from (2.13) and (2.18), we have d' Byd, = —V®(2;,) dp — 0 as k — oo,
k € K. Using (2.30) and (2.25), we get

liminf |[V®(z)]| = 0.
k—o0

To establish the main theorem, we use the below result.
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Lemma 2.3 (See [62]) Let By be updated by the BFGS formula

Kk | T
B B
Bist = By + YeYe DrSkSk Dk

T T
Yy Sk s, Bysy

Suppose By is symmetric and positive definite and there are positive constants m < M

such that for all k > 0,y; and sy follow the inequalities

* 1 *|2
id: 8]; >m and Hyﬁﬁ” < M. (2.34)
ienl Ui Sk

Then, there exist constants (1, B, B3 > 0 such that for any positive integer t, (2.25)

satisfy for at least [t/2] values of k € {1,2,...,t}.

Theorem 2.4 Let Assumption 1 holds and {z} is obtained by Algorithm 1, then

liminf ||V®(z)]| =0 (2.35)
k—ro0

Proof: By Theorem 2.3, we show that there are infinitely many indices k which follows

(2.25).

If K in (2.20) is a finite set, then By remains constant after a finite number of iterations.
As By, is symmetric and positive definite for every k., it is clear that there are constants
B1, B2, B3 > 0 for which (2.25) follows for infinitely many k. Therefore, using Theorem
2.3, we get

ligr_l)glf IV®(z)]| = 0.

Assume the case when K is an infinite set. To prove the result for this case, we

assume the contrary that (2.35) is not true, i.e., there exists a constant 6 > 0 for which
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[V®(24)|| > 9, for each k € K. Therefore, using (2.20), we get

*x 1
Yi Sk o
T > (0% = m, (2.36)
Isx]?
ie., yi s, > BO%|sk|? for every k € K. (2.37)

From Assumption 1, we have

lyill? < ||sill?, for every 21,22 € Q.

From (2.14),

— V() 'sp < P(2p) — P2+ 51) < —(1 =) VO(21) s < VO(21) "5 (2.38)

Now,

G(Q(Zk) — @(Zk + Sk)) + S(VCI)(ZJC) + V(I)(Zk + Sk))TSk

A =

&[>
- e
3(V<I>(zk —I— Sk) — VCI)(Zk))TSk '

skl
Therefore, using (2.19), we have

B[(VP(zk + s1) — VO(2)) "sill _ BLIIskl® _

|ag| < < = 3L. (2.39)
[EAlE 512
When a; <0, yj = y. Then, we have ||y;|| = |lyx|| < Ll|sk| and
* |2 L 2 L
il® . Dlsl® _ L _ 210

i sk~ Boellsell? T Bor

When a;, > 0, yj = yr+agsk. Then, we have |ly;|| < |lyxll+|ax|||sk|| < Li|skl|+3L] skl =
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AL||sg|| and
12 16> 21617
||y$|| < ||5k||2 _ — M. (2.41)
ye sk~ B0 |skll poe

Applying Lemma 2.3 with (2.36) and (2.40), (2.41) to the matrix sequence {By}rcis

then there are constants 3, 52, 83 > 0 for which (2.25) holds for infinitely many k.

Therefore, using Theorem 2.3, we have
liminf |V®(z)|| =0,
k—o0

which contradicts our assumption that there exists a constant § > 0 such that ||V®(z)| >
0, for each k.

Therefore, in the case where K is an infinite set, we have
liminf [|[V®(z )| = 0,
k—o00

which completes the proof. (]

Theorem 2.5 If Assumption 1 holds and {z} is obtained by Algorithm 2, then
liminf ||V®(z)|| =0 (2.42)
k—o0

Proof: The proof is analogous to that of Theorem 2.4. O

2.7 Numerical Results

In the following section, we solve five generalized Nash equilibrium problems using
Algorithms 1 and 2. Yang et al. [45] reported a numerical comparison of the BFGS
method with MWWP and WWP line search techniques. Here, we provide numerical
performances of the BFGS method with Armijo-Goldstein (Algorithm 1) and MWWP
rules (Algorithm 2) in the GNEP set-up.
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In identifying numerical performances, Algorithms 1 and 2 are coded in MATLAB
software (version: 9.12.0.2009381 (R2022a)) on a CPU of i5-10th generation. During
the compilation of algorithms, we use a stopping condition |[V®(z3)]] < ¢ = 1075,

Other algorithmic parameter values are as follows:

for choosing the step-length ay, we take ¢ = 100,

0=1-—c,

c=0.01, c; =g,

e 3=107% and

for the Step 4 in Algorithm 1, in applying (2.7), we take

0.01, if |[Vd(z)] > 1

3, otherwise.

The parameters § and « are used only in the caution BFGS-update matrix (2.1) in
Algorithm 1. In our experiments, algorithms stop whenever ||[V®(z;)|| < € or the non-

negative integer ¢ > 200 in step-length ay.

In the comparison tables, we have specified some regions for starting points. We
have randomly taken 300 starting points from each of the specified regions and pre-
sented the minimum, median, and maximum of the number of iterations and CPU time

consumed by Algorithms 1 and 2.

Problem 2.1 Consider the following game with two players:
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min (z; — 1)? min (25 — %)2
“ and 2
subject to x1 + x5 < 1 subject to x1 + 1o < 1.

This problem was considered by Facchinei et al. [1]. This problem has infinitely many

solutions, which are

S=1{(51-5)|5¢e[0.51]}

This GNEP has many equilibria: (0.2,0.3), (0.50,0.49),(0.61,0.38), (0.56,0.43), etc.
A numerical comparison of the performance of Algorithms 1 and 2 on this problem is

given in Table 2.1.

Table 2.1: Performances of Algorithm 1 and Algorithm 2 on Problem 2.1

Region Algorithm 1 Algorithm 2 ‘
of Tteration number Computation time Iteration number Computation time ‘
initial point Min | Median | Max | Min Median Max Min | Median | Max | Min Median Max

lzo]l <1 33 |35 40 9.8155611 | 11.5301793 | 12.9420471 | 33 | 39.5 44 10.0071156 | 11.9353416 | 15.1988879
1< |z £5 33 |43 64 9.9780662 | 12.8930529 | 19.1935193 | 35 | 45 71 10.5464406 | 13.5859148 | 25.2763049
5 < |laoll £15 46 | 59 71 14.0252074 | 17.8076591 | 21.5618371 | 51 | 67 90 15.3653121 | 20.1413819 | 29.9882825
15 < ||zl <50 |60 |74 80 18.1086301 | 21.1665489 | 23.1277177 | 61 | 68 84 21.4922147 | 25.0860578 | 32.3190021
50 < [lao]l <100 | 62 | 71 81 18.6511131 | 24.4064391 | 29.0292234 | 68 | 80 85 22.3850595 | 24.0805074 | 35.9274275

In the numerical comparison, we have taken initial points randomly from each of the
specified regions and verified the global convergence of the method. Also, we have com-
pared the minimum, median, and mazimum of the consumed number of iterations and
computation costs in each specified region by solving GNEPs by both Algorithms 1 and
2. Though the Problem 2.1 is not a large-scale problem, we can see a difference in com-
putation costs consumed by both Algorithms 1 and 2. If the initial points are near the
origin, both algorithms 1 and 2 perform mostly similar and consume almost the same
computation costs. However, when the initial points are far from the origin, we can see
a difference in computation costs consumed by both algorithms. Note that Algorithm 1

takes lesser CPU time compared to Algorithm 2.
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Problem 2.2 Consider the following GNEP that has two players and one shared con-

straint s(x) = x1 + xo — 15 < 0:

min 2} + 3a125 — 3424 and min 23 + Sa120 — L,y
1 2
subject to x1 + 19 < 15, 0 <21 <10 subject to x1 + xo < 15, 0 < 29 < 10.

This game was introduced by Harker [63]. This GNEP has an infinite number of solu-
tions. Using random multi-starting values, we found that Algorithm 1 converges globally.

We have compared the computation costs in solving GNEPs by Algorithms 1 and 2 in
Table 2.2.

Table 2.2: Performances of Algorithm 1 and Algorithm 2 on Problem 2.2

Region Algorithm 1 Algorithm 2
of Iteration number Computation time Iteration number Computation time
initial point Min | Median | Max | Min Median Max Min | Median | Max | Min Median Max
lzol| <1 46 | 55 62 367.8947949 | 430.0820592 | 481.6043705 | 35 | 59 70 410.8706878 | 691.6027966 | 822.7638993
1< [lzol <5 421 60.5 72 331.6576986 | 472.4338520 | 562.6860231 | 53 | 58 73 621.8719814 | 682.5887432 | 846.2415418
5 < ||lzol| <15 49 |65 85 384.0940428 | 508.4177229 | 666.8262221 | 61 | 80 95 729.9097584 | 947.6941509 | 1115.2065741
15 < |lzol] <50 |70 | 78 95 551.4164915 | 613.2027723 | 748.5838472 | 56 | 71 89 670.0887578 | 845.1442606 | 1057.3772041
50 < [Jzol| <100 | 95 | 104 123 | 765.6869913 | 834.1185455 | 984.4251712 | 81 95 98 946.8039653 | 1150.9772041 | 1300.8525742

We can see that both Algorithms 1 and 2 converge globally, but we can see a big
difference in the minimum, median, and mazimum of consumed CPU time by both
algorithms. Clearly, Algorithm 1 takes lesser computation costs compared to Algorithm
2 in each specified region for the initial point. Also, in numerical comparison, we can

observe that Algorithm 1 takes lesser CPU time compared to Algorithm 2.

Problem 2.3 The following problem depicts a game with two players and single shared

constraint:
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3\ (
min %x% — X1To min x% + 2179
1 T2
subject to x1 + x9 > 1, and subject to x1 + w9 > 1,
T Z 0 i) Z 0.
J \

This problem has been introduced by Rosen [64]. In this problem, there are two con-
straints hy(z1) = —x1 and hyo(z) = —xo that depends only on the variables of a single
player, and there is one shared constraint s(xy,x2) = 1 — x1 — x9. The performance of

Algorithms 1 and 2 is depicted in Table 2.35.

Table 2.3: Performances of Algorithm 1 and Algorithm 2 on Problem 2.3

Region Algorithm 1 Algorithm 2 ‘
of Iteration number Computation time Iteration number Computation time ‘
initial point Min | Median | Max | Min Median Max Min | Median | Max | Min Median Max

lwol <1 30 |35 43 190.7484509 | 233.5142974 | 280.0147215 | 35 | 40.5 46 279.2283089 | 364.9990586 | 380.3896140
1 <zl <5 35 | 435 46 211.6401868 | 263.1287694 | 277.8278983 | 37 | 42.5 47 288.3394868 | 382.7355782 | 406.0382182
5 < |lzo]] <15 34 | 46 50 206.7644701 | 279.6569243 | 305.4529313 | 36 | 45 47 324.7146608 | 407.6843183 | 430.5627083
15 < [laol <50 |45 | 50.5 61 276.7633172 | 311.7309502 | 373.2828701 | 50 | 59.5 86 460.2240536 | 544.4629340 | 772.6540426
50 < Jlzol] <100 | 47 | 58 64 286.6669676 | 354.7094388 | 391.3671929 | 49 | 62 69 452.0246391 | 560.8488727 | 636.3005903

Here, we observe that both Algorithms 1 and 2 take almost the same number of iterations
but have a big difference in their consumed CPU time. We have provided regions where
we have randomly taken initial points. We can see that Algorithm 1 is cost-effective

compared to Algorithm 2.

Problem 2.4 This problem is an internet switching model which was proposed by
Kesselman et al. [65], where the traffic is generated by selfish users. The model de-
picts the behavior of users sharing the first-in-first-out buffer with bounded capacity.
The utility of each user depends on its transmission rate and congestion level. Specif-
ically, we consider that there are N wusers, and the buffer capacity is B. The user v

controls the amount of his “packets” in the buffer, denoted by z¥ € [0,00). The utility
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function for the player v (v=1,2,3,...,N) is given by

[V z’ I1+$2+"'+IN (U] N
0, (2", x ):_x1+x2+~~+xN 1- 5 , (2%, x7") eR

and the constraints are

4224+ 2V < Band2® > 1,

where I, > 0. Kesselman et al. [65] have shown that model (2.43) has a unique solution

7' =B(N—1)/N%, v=1,2,...,N.

We take N = 4 players, I, = 0.01, [ = 0.01, I3 = 0.01, Iy = 0.01 and B = 1 for
numerical computation. The problem has a total of 4 variables, and the system (2.12)
pertaining to solve this GNEP involves nine variables. The GNEP problem (2.43) for
four players has a unique solution T+ = 7% = 3 = 7* = 0.1875.

In employing Algorithms 1 and 2 on this problem, we randomly took the initial points
from the region indicated in Table 2.4. For some initial points, it converges to T' =
72 =73 = 7* = 0.20. The numerical performance of Algorithms 1 and 2 on this GNEP
is provided in Table 2.4, which depicts that Algorithms 1 is cost-efficient compared to

Algorithm 2 corresponding to each specified region for initial points.

Table 2.4: Performances of Algorithm 1 and Algorithm 2 on Problem 2.4

Region Algorithm 1 Algorithm 2
of Iteration number Computation time Iteration number Computation time
initial point Min | Median | Max | Min Median Max Min | Median | Max | Min Median Max
lzo|| < 0.2 110 | 130.5 135 | 60.8716676 | 69.9992739 | 80.7818287 | 120 | 143 170 | 78.5046025 | 82.9273549 | 105.4812018
0.2 < ||zl <04 |91 | 109.5 128 | 48.3546525 | 57.6142135 | 67.3743387 | 102 | 125 140 | 58.7771746 | 71.6256916 | 84.7519417

0.4 < ||zl <0.6 | 60 | 81.5 87 32.7544586 | 43.5582642 | 46.6964562 | 70 | 91.5 96 45.1349918 | 60.5001818 | 81.0909437

0.6 < |lzol] <0.8 50 |76 88 27.1916965 | 40.7106048 | 47.1182006 | 61 83.5 101 | 45.7480215 | 60.4065841 | 81.3667261

0.8 <zl <1 89 106.5 121 | 48.0518683 | 57.2676848 | 70.8017430 | 98 111 147 | 72.8384523 | 81.3266689 | 101.3417314

Problem 2.5 The following problem is another version of the internet switching model



44 2.7. Numerical Results

proposed by Kesselman et al. [65]. In this problem, there are N = 3 players. The
variables corresponding to player v is x¥ € R. The objective function of Player v is
given by

¥ b+ 2% + o8
!l + 22 + 28 B

0,(z",x7") = , (2%, x7Y) € R, (2.44)

where B is the buffer capacity. The constraints for the Player 1 are

0.3<z'<0.5,

and for the remaining players

'+ 22+ 23 < B, and z° > 0.01.

Here, we have taken the parameter B = 1 and solved this problem using both Algorithms
1 and 2. The system (2.12) has a total 8 variables. The GNEP problem (2.44) for 3
players has a unique solution T' = 0.2999 and 7> = 7*> = 0.2055. The numerical
performance of both Algorithms 1 and 2 on this GNEP is shown in Table 2.5. Table 2.5
shows that Algorithm 1 takes lesser computation time and iteration numbers compared

to Algorithm 2.

Table 2.5: Performances of Algorithm 1 and Algorithm 2 on Problem 2.5

Region Algorithm 1 Algorithm 2
of Iteration number Computation time Iteration number Computation time
initial point Min | Median | Max | Min Median Max Min | Median | Max | Min Median Max
[lzo]l < 0.2 142 | 145.5 180 | 60.5156996 | 69.8729060 | 75.1300861 | 146 | 187.5 200 | 75.4941229 | 95.8196587 | 110.6429374
0.2 < |lzo]] <04 | 134 | 14255 126 | 54.5175096 | 57.8729938 | 70.8400814 | 140 | 155 186 | 65.1114390 | 89.4622365 | 96.7129967
0.4 < ||zl < 0.6 |90 |94 126 | 36.6010346 | 38.1234327 | 51.1466707 | 98 | 114 150 | 45.6356939 | 59.8191949 | 71.2675442
0.6 <[zl <0.8 |82 | 1255 146 | 33.2986903 | 51.0556914 | 59.3054762 | 92 | 139.5 175 | 47.4608546 | 64.4523775 | 91.8372476
0.8 < [lzo]| <1 109 | 130 161 | 44.2290509 | 52.8775267 | 65.5032156 | 120 | 137.5 181 | 54.4723432 | 68.4284650 | 95.1546866
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2.8 Conclusion

In this chapter, we have solved GNEPs by an improved BFGS using the two line search
techniques: The Armijo-Goldstein line search technique (see Algorithm 1) and MWWP
line search technique (see Algorithm 2). We have reformulated GNEPs into a smooth
system of equations (2.12), and by incorporating the merit function (2.11), we have
solved GNEPs by improved BFGS method using two line search techniques. The BFGS
method using MW WP line search technique converges globally and works well compared
to other quasi-Newton methods (see a detailed comparison in [45]). However, we have
used the Armijo-Goldstein line search technique to minimize computation costs. The
improved BFGS method equipped with Armijo-Goldstein line search technique takes
lesser computation costs than the MWWP-line search technique. We have solved five
numerical problems using Algorithms 1 and 2, and have given a numerical comparison

of both algorithms.
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