
Chapter 1

Introduction

Optimization, in simplest terms, is the act of making the best of anything. Broadly

speaking, optimization seeks to change an existing process to increase the occurrence

of favorable outcomes and decrease the occurrence of undesirable results. Concern-

ing mathematics, optimization adopts the most significant component of a particular

criterion from a set of viable alternatives. Mathematical optimization aims to find a

combination of input variables that maximizes or minimizes the output return of a

multivariable function. These days mathematical optimization has been transformed

into an innovatory tool for powerful modeling and decision-making occurrences in all

quantitative disciplines, from computer science and engineering to operations research

and economics.

Mathematically, optimization models comprise three significant components: deci-

sion variables, objective function, and constraints.

• Decision variables designate a value that may vary within the scope of a given

optimization problem.

• In a mathematical optimization problem, the objective function expresses the

problem’s main criteria, whose value is either minimized or maximized over the

set of feasible alternatives.
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• Constraints are the logical conditions or allowable values or scopes for the vari-

ables in an optimization problem that the solution of a given problem must satisfy.

In an optimization problem, the types of mathematical relationships among the

decision variables, the objective function, and the constraints determine how intricate

it is to operate and the algorithms that can be used for optimization. There are nu-

merous applications of optimization theory and methods in the fields of applied math,

computation math, and operations research, including science, engineering, business

management, military, and space technology. It involves

• the construction of model problems,

• the study of optimality conditions of the problems,

• the determination of the algorithmic method of the solution,

• the establishment of convergence theory of the algorithms, and

• numerical experiments with typical and real-life problems.

One of the most common and primary problems in scientific research and engineering

practice is optimization problems. In our thesis, we focus on a specific optimization

problem: the generalized Nash equilibrium problem. A generalized Nash Equilibrium

Problem (GNEP) is a noncooperative Nash equilibrium problem in which the strategy

set of each player may depend on the strategies of the rival player. It was first formally

introduced by Debreu [2] as a social equilibrium in 1952, and later as an abstract

economy [3]. GNEPs have been an interesting area of research during the last two

decades and it has several real-world applications in the areas of economics, computer

science and engineering, for example, the abstract economy model given by Arrow

and Debreu [3], a power allocation problem in telecommunications [4], a competition

among countries that arises from the Kyoto protocol to reduce the air pollution [5], etc.

A few other application areas of GNEPs include wireless communication [6, 7], cloud
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computing [8], electricity generation [9], etc. As an application of GNEPs, Robinson

[10,11] discussed the problem of measuring effectiveness in optimization-based combat

models and gave several mathematical formulations.

In the next section, we provide a literature review on GNEPs.

1.1 Literature review of GNEPs

GNEP is a non-cooperative game in which the strategy set of each player may depend

on the strategies of the rival player. It was first formally introduced by Debreu [2]

as a social equilibrium in 1952, and later as an abstract economy [3] in 1954. In the

early ’50s, Nash [12, 13] introduced a notion of equilibrium, called Nash equilibrium,

for non-cooperative N -player games where the payoff function of each player depends

on the others’ strategies. Arrow and Debreu [3] extended this notion to the general-

ized Nash equilibrium for games where both the payoff function and the set of feasible

strategies depend on others’ strategies. GNEPs have been a major area of research

during the last two decades, which have several real-world applications in the areas of

economics, computer science, and engineering, e.g., the abstract economy model [3],

a power allocation problem in telecommunications [4], a competition among countries

that arises from the Kyoto protocol to reduce the air pollution [5], social science [14],

energy problems [15–17], wireless communication [6,7], cloud computing [8], electricity

generation [9], etc. Robinson [10,11] discussed the problem of measuring the effective-

ness in optimization-based combat models and gave several mathematical formulations.

All these applications have motivated the evolution of the generalized Nash equilibrium

concept and its use in complex games that now require a deep understanding of theo-

retical and computational mathematics.

Several numerical approaches have been proposed in the literature to solve GNEPs:

decomposition methods [18–20], (quasi)-variational inequality type methods [21–24],

penalty methods [25], Nikaido-Isoda function type methods [26, 27], and Newton-type
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approaches [28–31]. For a rigorous review of the commonly used numerical approaches,

we also refer to the articles by Facchinei et al. [32, 33], Fisher et al. [34], Cojocaru

et al. [35], Migot et al. [36] and Nabetani et al. [37]. Interested readers can see the

survey articles [34,38] and the references therein for a complete overview of the existing

techniques. In most methods, researchers have analyzed the case of player convex

GNEPs or jointly convex GNEPs.

According to Facchinei and Kanzow [38] and Fischer et al. [34], the two most popu-

lar methods for solving GNEPs are the Jacobi method and the Gauss-Seidel method. In

the former, optimization problems of the players are solved simultaneously to compute

the next iterate, while in the latter, the problems are solved one after another. One ad-

vantage of the Jacobi method is the possibility of exploiting parallel computation. Pang

et al. [4] provided a study of a GNEP formulation of an interference channels problem

and proved the convergence of a Jacobi type and a Gauss-Seidel type approach for this

particular problem. Facchinei et al. [38] studied two special cases of GNEPs: a noncon-

vex version where nonconvex problems have to be solved globally and a 2-player game.

Sagratella [39, 40], consider a Jacobi-type method for computing solutions of a Nash

model with mixed-integer variables. Facchinei and Pang [32] discussed conditions under

which an algorithm based on the regularized Jacobi method converges to a (classical)

Nash equilibrium. Pang and Tao [18] studied a general algorithm (Block Coordinate

Descent) for nonconvex nondifferentiable optimization and showed that their frame-

work is applicable to compute the stationary point of a generalized potential game with

linear shared constraints.

In the next section, the mathematical formulation of GNEP is discussed.

1.2 Mathematical formulation of GNEP

In this section, we provide a formal definition of GNEP and the associated notations

and assumptions. The described notations and terminologies are used throughout the
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thesis.

In general, a GNEP has N players, namely, Player 1, Player 2, . . ., Player N . In

the description of a GNEP, we associate a variable xv ∈ Rnv corresponding to Player

v, v = 1, 2, . . . , N . Accordingly, we form a vector x ∈ Rn by

x =
(
x1, x2, . . . , xN

)⊤
.

Denoting n = n1 + n2 + · · · + nN , we see that x ∈ Rn. To differentiate vth player’s

variable in x, we write (xv,x−v), where x−v is a vector formed by all players’ variables

except that of Player v.

The strategy set of a player depends on the rival players’ strategies. We denote the

strategy set of Player v by

Xv(x
−v) ⊆ Rnv .

In a game, the aim of Player v, for a given other players’ strategy x−v, is to choose a

strategy xv such that xv solves the following optimization problem:

min
xv

θv(x
v,x−v)

subject to xv ∈ Xv(x
−v), (1.1)

where −θv is the payoff function of the vth player. We denote the solution set of

(1.1) by Sv(x
−v) for the given x−v. The GNEP is the problem of finding a vector

x =
(
x1, x2, . . ., xN

)⊤
such that

xv ∈ Sv(x
−v), for every v ∈ {1, 2, . . . , N}. (1.2)

The point x is called a generalized Nash equilibrium point to the game.

In practical applications, the feasible set Xv(x
−v) of vth player is defined by a finite

number of constraints. Let gv : Rn → Rmv be the constraint mapping for Player v.
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Then, the feasible set for the vth player is given by

Xv(x
−v) =

{
xv ∈ Rnv : gv(xv,x−v) ≤ 0

}
, (1.3)

where the inequality gv(xv,x−v) ≤ 0 is in the sense of componentwise. It is also possible

to add equality constraints in (1.3), but we omit them for the notational simplicity. Note

that for GNEP (1.1)–(1.2), the constraint functions are g1, g2, . . . , gN . Thus, the total

number of constraints in the GNEP (1.1)–(1.2) is m = m1 +m2 + · · ·+mN .

From now on, unless otherwise mentioned, we will always assume that the following

assumptions for the cost function θv, v = 1, 2, . . . , N , and

1.2.1 Assumptions

We call a function ψ : Rn → Rm as a Cp-function if ψ is p times continuously differ-

entiable. A Cp-function is said to be an LCp-function if its p-th derivative is locally

Lipschitz. Throughout the chapter, for each v = 1, 2, . . . , N , we assume the following:

1. the pay-off function θv : Rn → R is an LC1-function, and

2. the constraint mapping gv : Rn → Rmv is an LC2-function.

3. The strategy set Xv is nonempty, closed, and convex.

1.2.2 Karush-Kuhn-Tucker conditions for GNEP

Let x =
(
x1, x2, . . ., xN

)⊤
be a solution to GNEP (1.1)–(1.2). For the vth player, if

a suitable constraint qualification (for example, Mangasarian-Fromovitz, Slater, etc.)

holds, then there exists a vector λ
v ∈ Rmv such that (xv, λ

v
) is a solution to the following

KKT system:

∇xvLv(x
v,x−v, λv) = 0

λv ⊥ −gv(xv,x−v)

λv ≥ 0, gv(xv,x−v) ≤ 0,


(1.4)
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where Lv(x
v,x−v, λv) = θv(x

v,x−v)+ gv(xv,x−v)⊤λv is the Lagrangian associated with

the vth player’s optimization problem (1.1).

Assume that a suitable constraint qualification holds for all the players. Then, for

every player v = 1, 2, . . . , N , KKT system (1.4) has a solution (xv, λ
v
). Concatenating

these N KKT systems, if x is a solution of GNEP (1.1)–(1.2), then there exists a

multiplier λ ∈ Rm such that (x, λ) satisfies the system

L(x, λ) = 0

λ ⊥ −g(x)

λ ≥ 0, g(x) ≤ 0,


(1.5)

where

λ =



λ1

λ2

...

λN


, g(x) =



g1(x1,x−1)

g2(x2,x−2)

...

gN(xN ,x−N)


, L(x, λ) =



∇x1L1(x
1,x−1, λ1)

∇x2L1(x
2,x−2, λ2)

...

∇xNLN(x
N ,x−N , λN)


and λv, gv(xv,x−v) ∈ Rmv . Thus, in the context of a suitable constraint qualifica-

tion, system (1.5) can be considered as a first order necessary optimality condition for

GNEP (1.1)–(1.2). In addition, in the context of further convexity assumptions, the

x-component of the solution to system (1.5) solves GNEP (1.1)–(1.2).

Definition 1.1 [1] Consider a function fv : Rn → R associated to the vth player

that depends on every players’ variable. The function fv is said to be a player convex

function if the function fv(x
v,x−v) is convex in xv for every fixed x−v. If fv is convex

with respect to x = (xv,x−v), then fv is called a jointly convex function.

Let us consider GNEP (1.1)–(1.2) whose feasible set is defined by (1.3). GNEP

(1.1) is called player convex if the objective function θv and the constraint functions

gvi , i = 1, 2, . . . ,mv are player convex, for every player v = 1, 2, . . . , N , i.e., for a given

x−v, the minimization problem (1.1) of the vth player is a convex optimization problem.
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In the next section, we will consider both cases of GNEPs: Player convex GNEP

and Jointly convex GNEP.

1.2.3 GNEP reformulations: Player convex GNEP

In player convex GNEP, we need the following theorem and definitions.

Theorem 1.1 [41] If the GNEP is player convex, then for each solution (x, λ) to

system (1.5), the vector x̄ is a generalized Nash equilibrium point.

Definition 1.2 [42] A function ϕ : R2 → R is called a complementarity function if

ϕ(x, y) = 0 ⇔ (x, y) ≥ 0, xy = 0. (1.6)

With the help of a complementarity function ϕ : Rm × Rm → Rm, defined by

ϕ(x, y) =



ϕ(x1, y1)

ϕ(x1, y1)

...

ϕ(xm, ym)


,

system (1.5) can be reformulated as

 L(x, λ)

ϕ(−g(x), λ)

 = 0. (1.7)

reformulated system (1.7) becomes

F (x, λ) = 0, (1.8)
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where

F (x, λ) =

 L(x, λ)

ϕ(−g(x), λ)

 . (1.9)

1.2.4 GNEP reformulations: Jointly convex GNEP

In this section, we assume that the objective function θv(x
v,x−v) of (1.1) is convex in

xv, and the set Xv(x
−v) is closed and convex for every v, v = 1, 2, . . . , N . Accumulating

the strategy sets of all the players, we get the strategy set for the GNEP as

X :=
N∏
v=1

Xv(x
−v).

Definition 1.3 [38] A GNEP (1.1) with θv(x
v,x−v) of (1.1) being convex in xv is said

to be a jointly convex GNEP if X is closed and convex, and

Xv(x
−v) = {xv ∈ Rnv : (xv,x−v) ∈ X} (1.10)

for every v = 1, 2, . . . , N .

From the definition (1.3) of the set Xv(x
−v), it is easy to check that (1.10) is equiv-

alent to the requirement that g1 = g2 = · · · = gN := g. Here, g(x) is componentwise

convex with respect to all variables x. In this case, we have

X = {x ∈ Rn : g(x) ≤ 0}.

To characterize a generalized Nash equilibrium of the GNEP in Definition 1.3, we

note that the strategy sets are defined by

Xv(x
−v) = {x ∈ Rn : g(xv,x−v) ≤ 0}, (1.11)

where g : Rn → Rm is continuously differentiable and convex in x. Then, the vth player’s
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problem is given by 
min
xv

θv(x
v,x−v)

subject to g(xv,x−v) ≤ 0.

(1.12)

Assume that the KKT conditions are satisfied at every solution of (1.12), for every

player v = 1, 2, . . . , N . Let x∗ be a solution of the game (1.12). Then, for each player

v, a vector λv of multipliers exists such that

∇xvθv(x
∗) +∇xvg(x∗)λv = 0

0 ≤ λv ⊥ −gv(x∗) ≥ 0.


In general, the multipliers λv1 of the player v1 need not be equal to the multipliers λv2

of the player v2, i.e., λ
v1 ̸= λv2 for v1 ̸= v2. It is easy to see that at a generalized Nash

equilibria of the GNEP in Definition 1.3, the multipliers are the same for all players,

i.e., λ1 = λ2 = · · · = λN (see [43]).

Theorem 1.2 [44] Consider a GNEP in Definition 1.3 with continuously differentiable

functions θv and gv for every v = 1, 2, . . . , N.

(i) Let x be a generalized Nash equilibrium at which all player’s subproblems satisfy

a constraint qualification. Then, there exists λ which together with x solves the

system (1.5).

(ii) Assume that (x, λ) solves the system (1.5) and that θv(x
v,x−v) of (1.1) is convex

for all v = 1, 2, . . . , N . Then, x is a generalized Nash equilibrium point.

For a jointly convex GNEP, we let the feasible set X have the following explicit

expression

X = {x ∈ Rn : s(x) ≤ 0, hv(xv) ≤ 0, v = 1, 2, . . . , N}, (1.13)

where s : Rn → Rm0 defines those constraints which are shared by all players and can

depend on all variables. The total number of such constraints in the GNEP ism0. These



1.2. Mathematical formulation of GNEP 11

constraints are known as shared constraints. The function s is same for all players and

assumed to be a componentwise convex function. Here, hv(xv) is the constraint that

depends only on the variables of Player v, and we assume that hv is also componentwise

convex function. The functions hv and s are assumed to be continuously differentiable.

Let the strategy set for the vth player is

Xv(x
−v) = {xv ∈ Rnv : s(xv,x−v) ≤ 0, hv(xv) ≤ 0}. (1.14)

Then, the KKT conditions for the vth player’s optimization problem (1.12) are

∇xvθv(x
v,x−v) +∇xvs(xv,x−v)λv +∇xvh(xv)µv = 0

0 ≤ λv ⊥ −s(xv,x−v) ≥ 0

0 ≤ µv ⊥ −hv(xv) ≥ 0


(1.15)

for some multiplier λ ∈ Rm0 and µv ∈ Rmv .

Theorem 1.3 [38] Consider a jointly convex GNEP with θv, g, and h
v are continu-

ously differentiable. Then, (x, λ, µ) is a solution to the GNEP in Definition 1.3 if and

only if (x, λ, µ) satisfies the KKT conditions (1.15) with λ1 = λ2 = · · · = λN := λ.

Thus, to find a generalized Nash equilibrium point of a jointly convex GNEP, we attempt

to find a solution of (1.15) with λ := λ1 = λ2 = · · · = λN .

With the help of a complementarity function ϕ as defined in (1.6), system (1.5) for
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the GNEP in Definition 1.3 can be reformulated into the following system

G(x, λ, µ) =



L(x, λ, µ)

ϕ(−s(x), λ)

ϕ(−h1(x1), µ1)

...

ϕ(−hv(xv), µv)

...

ϕ(−hN(xN), µN)



= 0, (1.16)

where µ =



µ1

µ2

...

µN


, L(x, λ, µ) =



∇x1L1(x
1,x−1, λ, µ)

∇x2L1(x
2,x−2, λ, . . . , µ)

...

∇xNLN(x
N ,x−N , λ, µ)


and

Lv(x
v, x−v, λ, µ) = θv(x

v,x−v) + λs(xv,x−v) + h(xv)µv, v = 1, 2, . . . , N.

1.3 Motivation and objective of the thesis

The generalized Nash equilibrium problems are typically challenging to solve by New-

tonian methods because the problems generally have locally nonunique solutions.

Facchinei et al. [1] analyzed GNEPs with shared constraints and proposed Newton-

type methods– semi-smooth Newton methods and Levenberg-Marquardt method to

solve them. The semi-smooth Newton method in [1] converges Q-quadratically, but

they have a drawback: they do not converge globally. Solving a system of linear (or

nonlinear) equations by the semi-smooth Newton method at each stage can be expensive

if the number of unknowns is large and may not be justified when the initial guess is far

from a solution. This motivates us to develop an improved BFGS method that consumes
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lesser computation costs (number of iterations and CPU time). Therefore, we aim to

solve GNEPs using an improved BFGS method such that it converges globally. To

minimize the computation costs, we use Armijo-type line search techniques, which are

cost-effective compared to the Wolfe-type line search techniques. Therefore, we solve

GNEPs by BFGS method using the two-line search techniques: Armijo-Goldstein and

MWWP [45], and provide their numerical performances.

But the proposed improved BFGS method converges globally and has a superlinear

rate of convergence. Therefore, we propose to solve the GNEP by a Newtonian method:

the inexact Newton method. The inexact Newton method has a nice convergence

property. Under some mild conditions, the inexact Newton method converges globally

and Q-quadratically too. We provide the numerical performance of the inexact Newton

method for solving GNEPs.

The main challenge in solving GNEPs is that the solution sets are mostly local and

nonunique. Some reliable techniques have attractive global convergence properties as

well, for example, the augmented Lagrangian-type method [46] and the interior-point-

type scheme [47], but they are not locally fast convergent. To develop a method for

GNEPs, which is both locally and globally convergent, Tong et al. [48] have proposed a

monotone trust region method for constrained optimization problems, which is globally

and quadratically convergent under the local error-bound assumption. Further, Galli et

al. [49] modified this method using nonmonotone strategy and obtained a nice local con-

vergence as well as global convergence under mild error-bound conditions. We develop

this method using a new nonmonotone technique and adaptive trust region radius. Also,

with some mild error bound constraints [50], we use a smooth GNEP reformulation,

and using the proposed method, we solve a dataset of 35 different GNEPs.

Further, we try to solve an interval-valued GNEP, and for that, we need an opti-

mality condition in interval optimization problems. Therefore, we propose an extended

KKT condition to characterize efficient solutions to constrained interval optimization
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problems. Also, we extend Gordan’s theorems of the alternative for the existence of a

solution to a system of interval linear inequalities. Using Gordan’s theorem, we extend

Fritz John condition.

In this thesis, we develop three optimization methods to solve GNEPs considering

both cases of GNEPs: the player convex case and the joint convex case. In the next

section, we have given a literature review on GNEPs.

1.4 Organization of the thesis

The thesis is composed of six chapters, including an introductory chapter and a chap-

ter containing a conclusion and future scopes. In the introductory chapter, we have

introduced the GNEP and provided an adequate literature review on the GNEPs. The

outline of the thesis is as follows.

In Chapter 2, we propose to solve GNEPs by a quasi-Newton method. Therefore,

we consider the smooth version of GNEP reformulation with the help of the Fischer-

Burmeister function and solve the GNEP using a globally convergent improved BFGS

method. In Chapter 2, we solve GNEP by two algorithms: improved BFGS method

with Armijo-Goldstein line search technique and improved BFGS method with MWWP

line search technique. We provide the convergence analysis for both algorithms. In the

numerical part of Chapter 2, we compare the numerical performances of both algo-

rithms.

In Chapter 3, we propose to solve GNEPs by an inexact Newton method. In this

chapter, we consider the two GNEPs: player convex GNEP and jointly convex GNEP.

Also, in both GNEP reformulations, we use a semismooth complementarity function,

and therefore the reformulated system is nonsmooth. It is shown that the proposed

numerical scheme has the global convergence property for both types of GNEPs. It

is observed that the strongly BD-regularity assumption for the reformulated system of

GNEP plays a crucial role in global convergence. In fact, the strongly BD-regularity
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assumption and a suitable choice of a forcing sequence expedite the convergence be-

havior of the inexact Newton method for GNEPs to Q-quadratic convergence. The

performance of the proposed numerical scheme is shown for a collection of problems,

including the internet switching problem, where the traffic is generated by selfish users.

A comparison of the proposed method with the existing semismooth Newton method

II for GNEP indicates that the proposed scheme is more efficient.

In Chapter 4, we propose an improved nonmonotone adaptive trust region (INATR)

method to solve constrained nonlinear system of equations and provide its application

to solve GNEPs. Also, we provide its numerical performances. The INATR method

maintains the local convergence properties of its nonmonotone counterpart, and also

it is proven that the proposed INATR method has global convergence properties. The

numerical results indicate that the INATR method performs better compared to the

nonmonotone trust region method.

Chapter 5 presents an extended KKT condition to characterize efficient solutions

to constrained interval optimization problems. The theory n this chapter has been

developed on the fact that at an optimal solution, the cone of feasible directions and

the set of descent directions have an empty intersection. Using this developed theory,

a set of first-order optimality conditions has been derived to solve unconstrained op-

timization problems. Further, Gordan’s theorems for the existence of a solution to a

system of interval linear inequalities have been extended. Moreover, with the help of

Gordan’s theorem, we proposed Fritz John and KKT necessary optimality conditions

for constrained interval optimization problems. It is also observed that these optimality

conditions appear with inclusion relations instead of equations. Lastly, we apply the

derived KKT condition to the binary classification problem with interval-valued data

using support vector machines.

Finally, Chapter 6 summarizes the main conclusions and forecasts potential direc-

tions for future research.
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