Optimization Methods to Solve Generalized Nash Equilibrium Problems

Thesis submitted in partial fulfillment

for the Award of Degree

Doctor of Philosophy

by

Abhishek Singh

DEPARTMENT OF MATHEMATICAL SCIENCES

INDIAN INSTITUTE OF TECHNOLOGY

(BANARAS HINDU UNIVERSITY)

VARANASI - 221005

Roll No. 16121010

Year 2022

CERTIFICATE

It is certified that the work contained in the thesis titled "Optimization Methods to Solve Generalized Nash Equilibrium Problems" by Abhishek Singh has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all requirements of Comprehensive Examination, Candidacy, and SOTA for the award of Ph.D. Degree.

Dr. Debdas Ghosh

(Supervisor) Assistant Professor Department of Mathematical Sciences Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

ABaner

Dr. Anuradha Banerjee

(Co-Supervisor) Assistant Professor Department of Mathematical Sciences Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

DECLARATION BY THE CANDIDATE

I, Abhishek Singh, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Dr. Debdas Ghosh and cosupervison of Dr. Anuradha Banerjee from July, 2016 to December 2022 at the Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

30 Date: 26-12-2022

A Ghisher Singh

Place: Varanasi

(Abhishek Singh)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the candidate is correct to the best of

our knowledge.

Dr. Debdas Ghosh

(Supervisor) Assistant Professor Department of Mathematical Sciences Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

ABaneir

Dr. Anuradha Banerjee

30.12.2022

(Co-Supervisor) Assistant Professor Department of Mathematical Sciences Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

Signature of the Head of the Department Department of Mathematical Sciences Indian Institute of Technology (BHU), Varanasi-221005 विभागाध्यक्ष /HEAD गणितीय विज्ञान विभाग Department of Mathematical Sciences भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology (काशी हिन्दू विश्वविद्यालय) (Banaras Hindu University) वाराणसी/Varanasi-201000

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Optimization Methods to Solve Generalized Nash Equilibrium Problems

Name of the Student: Abhishek Singh

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *Doctor of Philosophy*.

30 F Date: 26- 12-2022

Place: Varanasi

16 hisher Singh

(Abhishek Singh)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for the author's personal use provided that the source and the Institute's copyright notice are indicated.

Dedicated to my parents

ACKNOWLEDGEMENT

Foremost, I would like to thank my supervisor *Dr. Debdas Ghosh*, for his constant guidance and support. It is my great honor to be his student and to work with him during my candidacy. I started my doctoral studies with a crude knowledge of optimization, particularly multiobjective optimization. I am eternally grateful to my supervisor for mining, polishing, and making me a confident researcher. He has been and will remain my role model as a successful researcher.

I would like to thank my co-supervisor *Dr. Anuradha Banrejee*, for her constant guidance and support. It is my great honor to work with her during my candidacy.

Next, I am indebted to my parents *Shri. Omprakash Singh* and *Smt. Asha Singh* for their blessings, support, and belief in my ability to pursue my career as a researcher. I feel extraordinarily fortunate to have moral support from my sisters *Alka Singh*, *Priya Singh*, and *Sonali Singh* during my Ph.D. and in particular, while completing the thesis work. I deeply thank my wife *Kislay Singh* for her love and constant support during my research work.

I would also like to thank the Research Progress Evaluation Committee (RPEC) members *Prof. T som, Prof. K. K. Shukla & Dr. Anuradha Banerjee*, for their insightful comments and encouragement, but also for the hard questions which incented me to widen my research from various perspectives.

I express my cordial thanks to our H.O.D, *Prof. S. K. Pandey*. I would sincerely like to acknowledge the facilities provided by the Department of Mathematical Sciences, Indian Institute of Technology (BHU) Varanasi, India.

It is difficult to describe my gratitude and appreciation for the suggestions and support that I received from my co-author *Mr. Krishan Kumar*. My sincere thanks go to *Prof. Qamrul Hasan Ansari & Prof. K. K. Shukla* who made me motivated during the Ph.D. and gave me access to their immense knowledge.

I am thankful to my fellow lab mates Mr. Amit Debnath, Dr. Ram Surat Chauhan, Mr. Jauny, Mr. Ashutosh Upadhayay, Mr. Krishan Kumar, Mrs. Anshika, Ms. Suprova Ghosh, Mr. Nand Kishor, Mr. Ravi Raushan for their stimulating discussions. I am also thankful to my friends Dr. Anil Shukla, Dr. Anup Singh, Dr. Om Namah Shivay, Dr. Pankaj Gautam, Dr. Rakesh, Dr. Avinash Dixit, Dr. Rahul Maurya, Dr. Swati Yadav, Dr. Anuwedita, Dr. Manushi Gupta, Dr. Vinita Devi in the institution for their immense kindness throughout the period and the friendly atmosphere that made me courageous to complete my work.

I thank you, my friends, Dr. Gopalkrishna Sharma, Dr. Akash Awale, Dr. Prashant Kumar Pandey, Dr. Rahul Chaturvedi, Dr. Harendra Kumar and my seniors Dr. Prashant kumar Mishra, Dr. Neeraj Tripathi for their support during my research work.

It is my ought to remember my friend *Mr. Mahesh*, *Dr. Rahul Kumar Maurya*, and *Dr. Shubham Jaiswal* for their motivations in completing my research work.

My acknowledgment will be incomplete if I do not mention *Pt. Madan Mohan Malaviya* with whose blessings and support I could be able to achieve my goal successfully.

Last but not least a very special thanks to *Baba Vishwnath* (whose blessings can be felt in every space of this place), I thank you for the hidden forces of nature brought within me during this scientific endeavor. I may apologize if I could not acknowledge somebody who supported me directly or indirectly and contributed to my research and preparation of this thesis. Thus, I recompense my thanks to all.

Date: 26-12-2022 Place: Varanasi

16hisher Fingh

(Abhishek Singh)

Contents

\mathbf{Li}	st of	Figures	xi
Li	st of	Tables	xiii
Li	st of	Symbols	xv
Li	st of	Abbreviations	xvi
\mathbf{P}	refac	e	xvii
1 Introduction			1
	1.1	Literature review of GNEPs	3
	1.2	Mathematical formulation of GNEP	4
		1.2.1 Assumptions	6
		1.2.2 Karush-Kuhn-Tucker conditions for GNEP	6
		1.2.3 GNEP reformulations: Player convex GNEP	8
		1.2.4 GNEP reformulations: Jointly convex GNEP	9
	1.3	Motivation and objective of the thesis	12
	1.4	Organization of the thesis	14
2 A Globally Convergent Improved BFGS Method for Generalized Na			h
	Equilibrium Problems 17		
	2.1	Introduction	17
	2.2	Motivation	18
	2.3	Contributions	19
	2.4	Improved BFGS method	19
	2.5	Improved BFGS methods to solve GNEPs	25
	2.6	Convergence analysis	27
	2.7	Numerical Results	38

	2.8	Conclusion	45	
3	An Inexact Newton Method to Solve Generalized Nash Equilibrium			
	Pro	blems	47	
	3.1	Introduction	47	
	3.2	Motivation	48	
	3.3	Contributions	48	
	3.4	Inexact Newton method	49	
		3.4.1 Inexact Newton method of GNEP: player convex case	49	
		3.4.2 Algorithm: Inexact Newton method for player convex GNEPs .	53	
		3.4.3 Inexact Newton method of GNEP: jointly convex case	65	
		3.4.4 Algorithm: Inexact Newton method for jointly convex GNEPs .	66	
	3.5	Numerical results	68	
	3.6	Conclusion	75	
4	Imp	proved Nonmonotone Adaptive Trust-region Method to solve Genera		
	Nas	h Equilibrium Problems	77	
	4.1	Introduction	77	
	4.2	Motivation	78	
	4.3	Contributions	79	
	4.4	Trust-region framework	79	
	4.5	INATR method	81	
	4.6	Convergence Analysis	85	
	4.7	Application to generalized Nash equilibrium problems	89	
	4.8	Numerical results	90	
		4.8.1 Some illustrative examples	93	
	4.9	Conclusion	96	
5	\mathbf{Ext}	ended Karush-Kuhn-Tucker Condition for Constrained Interva	1	
	Opt	imization Problems and its Application in Support Vector Machine	es 99	
	5.1	Introduction	99	
	5.2	Motivation	100	
	5.3	Contributions	101	
	5.4	Fundamentals of intervals and interval-valued functions	101	
		5.4.1 Interval arithmetic	101	
	5.5	Fritz John and Karush-Kuhn-Tucker optimality conditions	108	
		5.5.1 Unconstrained interval optimization problems	114	

		5.5.2	Interval optimization problem with inequality constraints	117
		5.5.3	Comparison with existing KKT conditions for IOPs	125
5.6 Application to Support Vector Machines		cation to Support Vector Machines	126	
		5.6.1	Comparison with existing solutions to interval uncertainty in SVI	<mark>M</mark> 130
	5.7	Conclu	usion	132
6	Cor	clusio	n and future directions	133
	6.1	Gener	al conclusions	133
6.2 Contribution of the thesis		ibution of the thesis	133	
	6.3	Future	e directions	135
R	efere	nces		138
Li	List of Publications 14			149

List of Figures

3.1	Graphical view of the movement of the iterative points generated by the	
	proposed inexact Newton method for Problem 3.1 with the initial point $(2, 4)$, it to be 2 it out in the second s	70
	$(2, 4)$: it takes 3 iterations to converge $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	70
3.2	Graphical view of the movement of the iterative points generated by the	
	semismooth Newton method II [1] for Problem 3.1 with the initial point	
	$(2,4)$: it takes 28 iterations to converge $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	70
3.3	Graphical view of the movement of the iterative points generated by	
	Algorithm 4 for Problem 3.2 with the initial point $(20, 40)$: it takes 10	
	iterations to converge	72
3.4	Graphical view of the movement of the iterative points generated by the	
	semismooth Newton method II [1] for Problem 3.2 with the initial point	
	(20, 40): it takes 51 iterations to converge	73
3.5	Graphical view of the movement of the iterative points generated by	
	Algorithm 4 for Problem 3.3 with the initial point $(2,5)$: it takes 4	
	iterations to converge	74
3.6	Graphical view of the movement of the iterative points generated by the	
	semismooth Newton method II [1] for Problem 3.3 with the initial point	
	$(2,5)$: it does not converge \ldots	74
4.1	Performance profile based on CPU-time	92
4.2	Performance profile based on number of iterations	93
4.3	Convergence of INATR method for Problem 4.1	94
4.4	Convergence INATR method for Problem 4.1	96
1.1		50
5.1	The objective function $\mathbf{F}(x_1, x_2)$ of the Example 5.1	111
5.2	The cones of descent directions $\hat{F}(x_0)$ and $\hat{F}(x_{00})$ for the Example 5.1.	112

List of Tables

2.1	Performances of Algorithm 1 and Algorithm 2 on Problem 2.1	40
2.2	Performances of Algorithm 1 and Algorithm 2 on Problem 2.2	41
2.3	Performances of Algorithm 1 and Algorithm 2 on Problem 2.3 \ldots	42
2.4	Performances of Algorithm 1 and Algorithm 2 on Problem 2.4 \ldots	43
2.5	Performances of Algorithm 1 and Algorithm 2 on Problem 2.5 \ldots .	44
3.1	Comparison of the performances of Algorithm 3 and the semismooth Newton method II [1] on Problem 3.1	
		69
3.2	Comparison of the performances of Algorithm 4 and the semismooth	
	Newton method II $[1]$ on Problem 3.2	70
3.3	Comparison of the performances of Algorithm 4 and the semismooth Newton method II [1] on Problem 3.3	72
		73
3.4	Performance of Algorithm 4 on Problem 3.4 with 4 players	10
		75
3.5	Performance of Algorithm 4 on Problem 3.4 with 10 players	
		76
4.1	Performances of INATR and NTR methods on Problem 4.2 \ldots .	95
4.2	Performances of INATR method and NTR-method on Problem 4.2	96

List of Symbols

Symbol	Description
\mathbb{R}^n	Euclidean space of dimension n
$\mathcal{X}_{\sqsubseteq}$	Feasible set for the v^{th}
$I_{n \times n}$	Identity matrix of dimension n

Abbreviations

Abbreviation	Description
GNEP	Generalized Nash Equilibrium Problem
BFGS	Broyden–Fletcher–Goldfarb–Shanno
VI	Variational inequality
WWP	Weak Wolfe Powell
MWWP	Modified Weak Wolfe Powell
IPM	Interior Point Method
TR	Trust Region
MTR	Monotone Trust Region
NTR	Nonmonotone Trust Region
INATR	Improved Nonmonotone Adaptive Trust Region
KKT	Karush-Kuhn-Tucker
SVM	Support Vector Machine

PREFACE

Optimization is not only important in its own right, but also integral to many applied sciences such as operations research, management sciences, economics and finance, and all branches of math-oriented engineering. It provides a unique insight into any situation. Optimization introduces a computational situation where the goal is to obtain the best of all possible circumstances. Also, optimization techniques assist us in finding the best under prespecified circumstances. Essentially, the optimization is used to detect, characterize and compute the maxima or minima of a function for a set of acceptable points and certain predefined conditions.

The mode of optimization is not just confined to the mathematical arena. Optimization methods can be applied in many spheres of study to find solutions that maximize or minimize some study parameters, such as in producing a good or service, minimizing the cost of production, and maximizing profits. Such instances often have special structures: convex, nonconvex, linear, nonlinear, quadratic, semidefinite, dynamic, integer, stochastic programming, etc. Optimization is the source of vast theoretical foundations and advanced algorithms. Mathematically, identification of the solution is the essence of optimization, i.e., The minimization or maximization of a function or a set of functions in conjunction with a set of constraints, regardless of the number of decision variables.

This thesis describes a study of various optimization methods to solve GNEPs. Also in Chapter 5, we have proposed an extended KKT condition, so that in the future we can solve an interval-valued GNEPs This thesis is organized as follows. Chapter 1 begins with the introduction to GNEP. Then, a literature review of GNEPs will be provided. After that, we derive KKT conditions for GNEP. Further, a discussion on GNEP reformations will be provided.

In Chapter 2, a study of a globally convergent improved BFGS method to solve GNEP is discussed. The author has solved GNEP by using two versions of the improved BFGS method by considering two inexact line search techniques: the Armijo-Goldstein line search technique and the MWWP line search technique. The algorithmic implementation and convergence analysis of the method with an estimate of the number of iterations to reach an ϵ -precise solution is provided. A performance comparison between the proposed methods is provided on some numerical problems.

Chapter 3 analyzes two types of GNEPs: player convex GNEP and jointly convex GNEP by considering the nonsmooth GNEP reformulation. The author solves both types of GNEPs by an inexact Newton method. The global convergence of the proposed method is also shown under some mild conditions. The numerical performances of the inexact Newtone method have been provided.

In Chapter 4, the author proposes an improved nonmonotone adaptive trust region (INATR) method to solve a constrained nonlinear system of equations, and uses this to solve GNEPs. The proposed optimization method converges globally. The numerical performance of INATR method with nonmonotone trust region (NTR) method and monotone trust region (MTR) method has been provided.

In Chapter 5, the author proposes extended first Gordan's theorem, extended second Gordan's theorem, and extended Fritz John condition for interval optimization problems. After that, the author proposes extended Karush-Kuhn-Tucker conditions for interval optimization problems and discusses its application to Support Vector Machines (SVM).

Finally, in Chapter 6, we conclude the thesis with some suggestions for future work.