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PREFACE

Optimization is not only important in its own right, but also integral to many applied

sciences such as operations research, management sciences, economics and finance, and

all branches of math-oriented engineering. It provides a unique insight into any situa-

tion. Optimization introduces a computational situation where the goal is to obtain the

best of all possible circumstances. Also, optimization techniques assist us in finding the

best under prespecified circumstances. Essentially, the optimization is used to detect,

characterize and compute the maxima or minima of a function for a set of acceptable

points and certain predefined conditions.

The mode of optimization is not just confined to the mathematical arena. Optimiza-

tion methods can be applied in many spheres of study to find solutions that maximize

or minimize some study parameters, such as in producing a good or service, minimizing

the cost of production, and maximizing profits. Such instances often have special struc-

tures: convex, nonconvex, linear, nonlinear, quadratic, semidefinite, dynamic, integer,

stochastic programming, etc. Optimization is the source of vast theoretical foundations

and advanced algorithms. Mathematically, identification of the solution is the essence of

optimization, i.e., The minimization or maximization of a function or a set of functions

in conjunction with a set of constraints, regardless of the number of decision variables.

This thesis describes a study of various optimization methods to solve GNEPs. Also

in Chapter 5, we have proposed an extended KKT condition, so that in the future we

can solve an interval-valued GNEPs This thesis is organized as follows.



xviii Preface

Chapter 1 begins with the introduction to GNEP. Then, a literature review of

GNEPs will be provided. After that, we derive KKT conditions for GNEP. Further, a

discussion on GNEP reformations will be provided.

In Chapter 2, a study of a globally convergent improved BFGS method to solve

GNEP is discussed. The author has solved GNEP by using two versions of the improved

BFGS method by considering two inexact line search techniques: the Armijo-Goldstein

line search technique and the MWWP line search technique. The algorithmic imple-

mentation and convergence analysis of the method with an estimate of the number of

iterations to reach an ϵ-precise solution is provided. A performance comparison between

the proposed methods is provided on some numerical problems.

Chapter 3 analyzes two types of GNEPs: player convex GNEP and jointly convex

GNEP by considering the nonsmooth GNEP reformulation. The author solves both

types of GNEPs by an inexact Newton method. The global convergence of the proposed

method is also shown under some mild conditions. The numerical performances of the

inexact Newtone method have been provided.

In Chapter 4, the author proposes an improved nonmonotone adaptive trust region

(INATR) method to solve a constrained nonlinear system of equations, and uses this to

solve GNEPs. The proposed optimization method converges globally. The numerical

performance of INATR method with nonmonotone trust region (NTR) method and

monotone trust region (MTR) method has been provided.

In Chapter 5, the author proposes extended first Gordan’s theorem, extended sec-

ond Gordan’s theorem, and extended Fritz John condition for interval optimization

problems. After that, the author proposes extended Karush-Kuhn-Tucker conditions

for interval optimization problems and discusses its application to Support Vector Ma-

chines (SVM).

Finally, in Chapter 6, we conclude the thesis with some suggestions for future work.


