LIST OF FIGURES

Figure 2.1. The D-H convention frame assignment. 25
Figure 3.1. A schematic diagram of the proposed approach for design and planning of
robotic workcell
Figure 3.2. The classification of the point cloud modeling of workcell objects
Figure 3.3. Illustrative diagram for the point cloud modeling of non-moving object (a) the
side view of an object (b) top view of same object (c) CAD model (d) meshed model (e)
point cloud model
Figure 3.4. (a) Image of the real robot installed in a workcell, (b) snapshot of the AutoCAD
file disintegrating robot model and (c) the point cloud model of the robot
Figure 3.5. Schematic diagram for modeling and transformation of an object in
various coordinate frames
Figure 3.6. Algorithm 1 for generating point cloud model of an object
Figure 3.7. Algorithm 2 for transforming the point cloud model in coordinate space
Figure 3.8. Algorithm to generate the optimal location of the variables
Figure 3.9. Flowchart of the point cloud simulation approach
Figure 3.10. Different configurations of RVC model (black) and point cloud model (blue)
of ABB IRB 6640 robot
Figure 3.11. Robotic Workcell in M/s Electrosteel Castings Ltd., Dhanbad, India
Figure 3.12. Depicted diagram of the industrial robotic workcell under study

Figure 4.1. Top view of the robotic workcell (a) the industry layout (b) the proposed
layout
Figure 4.2. Angular values of the joint configuration of industry and proposed layout for
single cycle
Figure 4.3. Isometric view of the optimal layout of industrial robotic workcell
Figure 5.1. Proposed multirobot workcell layout design
Figure 5.2. Depicted diagram of two single robotic workcells operating simultaneously 97
Figure. 5.3. Point cloud map of the optimal multirobot workcell layout
Figure 5.4. Point cloud map of the single robot workcell layout
Figure 5.5. Point cloud map of the optimal multirobot layout in isometric view 103
Figure 6.1. Point cloud maps of the industrial workcell having two machines and a robot
with tool (a) top view and (b) isometric view
Figure 6.2. Point cloud maps of robotic manipulator with two machines in a workcell with
optimal and original trajectories
Figure 6.3. Isometric view of the point cloud map of robotic workcell illustrating the fifth
order optimal and original trajectory profile
Figure 6.4 Third order derivative of the interpolated curve in joint space for (a) original fifth
degree polynomial, (b) fifth-degree polynomial single via-point optimal and (c) optimal
sixth-degree polynomial
Figure 6.5. Point cloud maps of the sixth-degree single via-point trajectory interpolation with
via-point

Figure 6.6. Point cloud map of the fifth degree B-Spline trajectory profile passing through four
via point
Figure 6.7. Third order derivative of (a) fifth-degree polynomial, (b) optimal fifth degree B-
spline interpolated curves in joint space
Figure 6.8. Point cloud map showing the isometric view of the fifth degree B-spline profile
and fifth degree polynomial profile passing through optimal via-points