| ANSI | American National Standards Institute |
| :---: | :---: |
| API | Application Programming Interface |
| AGV | Automated Guided Vehicle |
| CAD | Computer Aided Design |
| CAM | Computer Aided Manufacturing |
| CNC | Computer Numeric Control |
| DH | Denavit-Hartenberg |
| GUI | Graphical User Interface |
| HT | Homogeneous Transformation |
| IK | Inverse Kinematic |
| IFR | International Federation of Robotics |
| ISO | International Organisation for Standardization |
| JIT | just-in-time |
| NDT | Non-Destructive Testing |
| NP | Non-deterministic Polynomial |
| OBB | Oriented Bounding Box |
| PDE | Partial Differential Equation |
| RVC | Robotics Vision and Control |
| RIA | Robotic Industries Association |
| SQP | Sequential Quadratic Programming |
| STL | Stereolithography |
| 3D | Three Dimensional |
| 2D | Two Dimensional |

## LIST OF SYMBOLS

${ }_{o}^{l} P \quad$ location of a point $P$ in the coordinate frame $l$ relative to the origin frame $o$
${ }_{o}^{l} P_{x} \quad$ Projection of a point $P$ in the coordinate frame $l$ relative to the origin frame $o$ on x axis
${ }_{o}^{l} P_{y} \quad$ Projection of a point $P$ in the coordinate frame $l$ relative to the origin frame $o$ on y axis
${ }_{o}^{l} P_{z} \quad$ Projection of a point $P$ in the coordinate frame $l$ relative to the origin frame $o$ on z axis
${ }_{0}^{l} R \quad$ orientation matrix
$\hat{x}_{o}, \hat{y}_{o}, \hat{z}_{o}$ basis vector of the coordinate frame $o$
$\hat{x}_{l}, \hat{y}_{l}, \hat{z}_{l} \quad$ basis vector for the frame $l$
${ }_{o}^{l} T \quad$ Homogeneous transformation matrix
$P \quad$ end-effector's position vector
$R \quad$ end-effector's orientation matrix
$\partial_{f k} \quad$ nonlinear forward kinematics function
$q$ joint position vector
$\delta_{k} \quad$ fixed kinematic link parameters vector
$a_{i} \quad$ link length
$\alpha_{i} \quad$ link twist
$d_{i} \quad$ joint offset
$\theta_{i} \quad$ joint angle
${ }_{i-1} T^{i} \quad$ transformation matrix between any two joints of the robot
$C$ processing data required to select the feasible solution
$X \quad$ desired configuration
I positive definite $n \times n$ generalized inertia matrix of the manipulator
$\tau \quad$ the $n$ dimensional vectors of active forces
$\mathbf{w}^{\mathrm{W}} \quad$ static wrench acts on the end-effector
$\boldsymbol{\delta} \quad n$ dimensional vectors of dissipative generalized forces
ӫ angular acceleration
$\mathrm{F}_{\mathbf{i}} \quad$ force acting at the centre of mass of $i$ th link
$\boldsymbol{m}_{\boldsymbol{i}} \quad$ mass of the $i$ th link and $\boldsymbol{v}_{\boldsymbol{i}}$ is the linear acceleration

| $\dot{\nu}_{i}$ | linear acceleration |
| :---: | :---: |
| $\tau$ | joint torque vector |
| M | joint space symmetric inertia matrix |
| G | gravity force vector |
| $h$ | vector of centrifugal and Coriolis forces |
| $q$ | joint position vector |
| $\dot{\boldsymbol{q}}$ | joint velocity vector |
| $\ddot{\boldsymbol{q}}$ | joint acceleration vector |
| $\mathcal{L}$ | Lagrange function |
| K | total kinetic energy |
| P | potential energy |
| m | mass of the system |
| v | velocity of system |
| I | inertia |
| $\omega$ | angular velocity |
| g | magnitude of gravitational acceleration |
| 1 | link length |
| $\boldsymbol{\theta}$ | rotation angle |
| $M_{i j}$ | effective coupling inertia |
| $h_{i j k}$ | centrifugal and Coriolis forces |
| $\boldsymbol{G}_{\boldsymbol{i}}$ | gravitational repulsion force |
| $p$ | number of nodes |
| $H_{\text {max }}$ | maximum edge length |
| $H_{\text {min }}$ | minimum edge length |
| p | number of nodal points |
| e | number of element edges |
| t | number of mesh element |
| $d$ | distance error |
| $N$ | number of machines and job points |
| $n$ | degree-of-freedom of manipulator |
| $\alpha^{j}$ | orientation angle |
| $f_{i j}$ | transportation cost |
| $c_{i j}$ | material flow cost |

$\boldsymbol{q}^{i} \quad$ joint angle values of $i$ th machine
$\boldsymbol{q}^{j} \quad$ joint angle values of $j$ th machine
$\vec{X}_{j} \quad$ machine's job point vector
$\mathbf{N}_{\mathrm{jj}+1} \quad$ intercepts produced due to collision between point clouds of machines
$\mathbf{T}_{\mathbf{j k}} \quad$ intercepts produced due to collision between point clouds of machines and robot
${ }_{x}^{k} R_{\text {min }} \quad$ minimum value of the minimum bounding box along the x -axis of $k$ th link of robot $R$
${ }_{x}^{k} R_{\text {max }} \quad$ maximum value of the minimum bounding box along the x -axis of $k$ th link of robot $R$
$\mathbf{B}_{\mathbf{j k}} \quad$ intercepts produced due to collision between point clouds of two robots
M number of robots
M1 Sand die conveyor
M2 $\quad$ Brusher 1
M3 Dipping tank
M4 Oven conveyor
R1 Robot in Cell 1
R2 Robot in Cell 2

