
Chapter 4

Analytical fuzzy space geometry III

4.1 Introduction

A thorough study of fuzzy space geometry with the introduction of related basic

concepts has been provided by Ghosh et al. in [117]. In continuation of the study of

fuzzy space geometry, we have initiated the construction of fuzzy spheres and fuzzy

cones in this paper. Detailed literature on fuzzy geometry has been delineated in

[117].

4.1.1 Motivation and novelty

As described in the Subsection 1.4.3, fuzzy geometry has been successfully applied

to many areas, such as fuzzy optimization, fuzzy medical imaging, fuzzy geometrical

object detection, fuzzy extrapolation or interpolation, etc.

In [117, 3, 1, 2], it is observed that the same and inverse points are indispensable tool

to develop fuzzy geometry. With the help of these tools, in [117], we have developed

fuzzy distance between two space fuzzy points and space fuzzy line segments. It is

perceived in [117] that there is a need to develop fuzzy space geometrical elements,

and these fuzzy elements can be successfully applied in many realistic fields. There-

fore, in continuation of our study in fuzzy space geometry, in this paper, we have

investigated the fuzzy sphere and the fuzzy cone.
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The paper has following novelties.

This paper has dealt with the construction of fuzzy spheres and fuzzy cones. Mainly,

three different forms of a fuzzy sphere and a fuzzy cone are presented in this study.

Proposed analysis in this study are as follows:

(i) We give three different methodologies to formulate fuzzy spheres depending on

the information available for the fuzzy sphere, such as a space fuzzy point and

a fuzzy distance or a diameter of the fuzzy sphere or four space fuzzy points.

(ii) With the help of Theorem 4.2.1, we construct a fuzzy sphere as a collection

of space fuzzy points that are at a predetermined fuzzy distance from a given

fuzzy point.

(iii) We define the notions of translation and rotation of a space fuzzy point. With

the help of these notions, we have constructed the diameter form of a fuzzy

sphere and a fuzzy cone.

(iv) We give two methods to construct the diameter form of a fuzzy sphere. One is

based on the translation of space fuzzy points. The other one is the extension

of the classical definition of the diameter form to the fuzzy environment.

(v) We discuss a fuzzy sphere passing through four space fuzzy points whose core

points are not co-planar. A detailed study on the intersection of the fuzzy

sphere with a crisp plane has been conducted.

(vi) This study incorporates the concept of a great fuzzy circle and its rotation.

We show that the rotation of a great fuzzy circle about its diameter is a fuzzy

sphere.

(vii) The notions of a fuzzy cone, convex fuzzy cone, and its intersection with a

crisp plane are initiated here.
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(viii) Also, an idea of degenerated and non-degenerated fuzzy conic sections is ex-

plored. The types of fuzzy conics depend on how a crisp plane intersects a

fuzzy cone.

(ix) We discuss the construction of the membership functions of the fuzzy conics

and their classification as a fuzzy parabola, fuzzy ellipse, and fuzzy hyperbola.

The following section discusses three different forms of fuzzy spheres and their prop-

erties. The formulation of these forms of fuzzy spheres depends on the same and

inverse points.

4.2 Fuzzy sphere

This section explores the fuzzy spheres’ mathematical formulations when center

and radius are known imprecisely. In classical geometry, a sphere is a collection

of equidistant (radius) points from a fixed point (center). Analogously, we have

investigated that a fuzzy sphere is a collection of fuzzy points equidistant (fuzzy

radius) from a fixed fuzzy point (fuzzy center).

To define a fuzzy sphere, first, we focus on whether a fuzzy point exists at a pre-

decided fuzzy distance from a given fuzzy point, as in classical geometry.

The following theorem exhibits the condition based on which one can get a fuzzy

point at a pre-decided fuzzy distance from a given fuzzy point.

Theorem 4.2.1. Let P̃1(a1, b1, c1) be a fuzzy point and d̃ = (d − β/d/d + γ)LR

be an LR-type fuzzy number. Then, a fuzzy point P̃2(a2, b2, c2) exists such that

D̃(P̃1, P̃2) = d̃ or D̃(P̃2, P̃1) = d̃ if and only if

βL−1(α), γR−1(α) ≥ ϕ−1
1 (α) for all α ∈ [0, 1].
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Proof. Similar to Theorem 2.1 in [3].

Now, we give a numerical example that illustrates Theorem 4.2.1. The condition of

Theorem 4.2.1 gives a fuzzy point at a pre-decided fuzzy distance from a given fuzzy

point.

Example 4.2.1. Let P̃1(1, 0,−1) be an S-type space fuzzy point with the membership

function

µ
(
(x, y, z)

∣∣∣P̃1(1, 0,−1)
)

=


1−

√
(x− 1)2 + y2 + (z + 1)2 if (x− 1)2 + y2 + (z + 1)2 ≤ 1

0 otherwise.

Let d̃ = (5.1140/7.8102/10.5101)LR be an LR-type fuzzy number. As per the no-

tations of Theorem 4.2.1, L(x) = R(x) = max{0, 1 − x}, β = 2.6962, γ = 2.6999.

Also,

ϕ1(λ) = 1−
√

(λ sinφ cos θ)2 + (λ sinφ sin θ)2 + (λ cosφ)2 = α (4.1)

is the membership function of the fuzzy number along the line

L : x−1
sinφ cos θ

= y
sinφ sin θ

= z+1
cosφ

on the support of P̃1. By (4.1), ϕ1(λ) = 1−λ = α, i.e., ϕ−1
1 (α) = λ = 1−α. Note that

2.6962(1−α), 2.6999(1−α) ≥ (1−α) for all α ∈ [0, 1]. This satisfies the restriction

of the Theorem 4.2.1 for the existence of the fuzzy point at a predetermined fuzzy

distance from a given fuzzy point. According to Theorem 4.2.1, we get

ϕ−1
2 (α) = 2.6962(1− α)− (1− α),
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i.e.,

ϕ−1
2 (α) = 1.6962(1− α)

and the core point of P̃2 is

(a2, b2, c2) = (1 + 7.8102 sinφ cos θ, 7.8102 sinφ sin θ,−1 + 7.8102 cosφ)

along the line L. Now,

P̃2(α) = (a2 + 1.6962(1− α) sinφ cos θ, b2 + 1.6962(1− α) sinφ sin θ, c2 + 1.6962(1− α) cosφ) ,

for some θ ∈ [0, 2π], φ ∈ [0, π] and α ∈ [0, 1].

The representation of the membership function of P̃2(a2, b2, c2) is

µ
(
(x, y, z)

∣∣∣P̃2(a2, b2, c2)
)

=


1− 1

1.6962

√
(x− a2)2 + (y − b2)2 + (z − c2)2 if (x− a2)

2 + (y − b2)
2 + (z − c2)

2 ≤ 2.8770 and

x−a2

sinφ cos θ = y−b2
sinφ sin θ = z−c2

cosφ

0 otherwise.

It is easy to note that P̃2 is monotonically non-increasing along the ray

x−a2
sinφ cos θ

= y−b2
sinφ sin θ

= z−c2
cosφ

.

In Method 1, we formulate a fuzzy sphere based on the classical definition of a

sphere: the loci of a moving point in the space, whose distance from fixed point is

constant. The fixed point and constant distance are called the center and radius of

the sphere, respectively.

We propose a fuzzy sphere as a set of imprecise locations at a pre-decided impre-

cise distance from a fixed imprecise location. Here, the imprecise location and the

imprecise distance are expressed by a fuzzy point and a fuzzy number, respectively.
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Definition 4.2.1. (Fuzzy sphere (S̃1)). Let P̃1(a1, b1, c1) be a fuzzy point and R̃ be a

fuzzy number. Consider a line passing through the (a1, b1, c1), i.e.,

L : x−a1
sinφ cos θ

= y−b1
sinφ sin θ

= z−c1
cosφ

= λ.

Let ϕ̃θφ1 be a fuzzy number with the membership function

ϕθφ1 (λ) = f1 (λ sinφ cos θ, λ sinφ sin θ, λ cosφ)

along the line L on the support of P̃1(a1, b1, c1).

A fuzzy sphere, say S̃1, with center P̃1(a1, b1, c1) and radius R̃ is formulated as a

cluster of fuzzy numbers that are at a fuzzy distance R̃ from the fuzzy number ϕ̃θφ1

along L, for θ ∈ [0, 2π], φ ∈ [0, π]. More precisely, the fuzzy sphere S̃1 with center

P̃1(a1, b1, c1) and radius R̃ is evaluated as

S̃1 =
∨

θ∈[0,2π]
φ∈[0,π]

{ϕ̃θφ2 : D̃

(
ϕ̃θφ1 , ϕ̃

θφ
2

)
= R̃, where ϕ̃θφ1 and ϕ̃θφ2

are fuzzy numbers along the line L}. (4.2)

Note 10. In the next theorem, by 0̃, we mean a fuzzy subset of R with the following

properties:

(i) µ(x|0̃) = 1, for x = 0.

(ii) µ(x|0̃) = 0, for x < 0.

(iii) µ(x|0̃) is decreasing for x ∈ (0, r) for some r > 0 and µ(x|0̃) = 0, for x ≥ r.
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A fuzzy number R̃ is called positive (R̃ > 0) if its membership function µ(x|R̃) = 0,

for x ≤ 0. A fuzzy number R̃ is called negative (R̃ < 0) if its membership function

µ(x|R̃) = 0, for x ≥ 0.

The following theorem explains the representation of the equation (4.2) according

as R̃ > 0, R̃ = 0̃, or R̃ < 0, respectively.

Theorem 4.2.2. The equation (4.2) represents a fuzzy sphere, a fuzzy point, or no

fuzzy point according as R̃ > 0, R̃ = 0̃, or R̃ < 0, respectively.

Proof. By the Definition 4.2.1, it is clear that P̃1(a1, b1, c1) is a fuzzy point and R̃ is

a fuzzy number in the equation (4.2).

For R̃ > 0, the equation (4.2) represents a fuzzy sphere since D̃

(
ϕ̃θφ1 , ϕ̃

θφ
2

)
= R̃ > 0

which ensures that the core of the fuzzy sphere is a crisp sphere not a crisp point. In

this case, the center and radius of the fuzzy sphere are the fuzzy point P̃1(a1, b1, c1)

and the fuzzy number R̃ > 0, respectively, in (4.2).

For R̃ = 0̃, the equation (4.2) reduces to

∨
θ∈[0,2π]
φ∈[0,π]

{ϕ̃θφ2 : D̃

(
ϕ̃θφ1 , ϕ̃

θφ
2

)
= 0̃},

which ensures that the core of the fuzzy sphere is a crisp point. The fuzzy sphere

S̃1 reduces to a fuzzy point P̃ which can be evaluated by

P̃ =
∨

θ∈[0,2π]
φ∈[0,π]

{ϕ̃θφ2 : D̃

(
ϕ̃θφ1 , ϕ̃

θφ
2

)
= 0̃}.

Now, Definition 4.1 (in [117]) clearly shows that the fuzzy distance D̃

(
ϕ̃θφ1 , ϕ̃

θφ
2

)
=

R̃ < 0 is not a possible case since the distance between two points can not be

negative. This completes the proof.
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Example 4.2.2. (Fuzzy sphere (S̃1)). Let us consider a fixed fuzzy point P̃1(1, 0,−1)

and a fixed fuzzy number d̃ as in Example 4.2.1. Let ϕ̃θφ1 be a fuzzy number along

the line

L : x−1
sinφ cos θ

= y
sinφ sin θ

= z+1
cosφ

on the support of P̃1. Here, the core point (a2, b2, c2) of ϕ̃
θφ
2 is

(1 + 7.8102 sinφ cos θ, 7.8102 sinφ sin θ,−1 + 7.8102 cosφ).

The union of all possible such fuzzy numbers

ϕ̃θφ
2 (α) = (a2 + 1.6962(1− α) sinφ cos θ, b2 + 1.6962(1− α) sinφ sin θ, c2 + 1.6962(1− α) cosφ) ,

for all θ ∈ [0, 2π], φ ∈ [0, π] and α ∈ [0, 1] along the line L, forms the fuzzy sphere

S̃1. One can note that D̃

(
ϕ̃θφ1 , ϕ̃

θφ
2

)
= d̃.

Choose a point (−4, 0, 5) ∈ S̃1(0) whose membership value has to be evaluated.

Consider the line joining the points (1, 0,−1) and (−4, 0, 5), i.e.,

L : x−1
−5

= z+1
6
, y = 0,

for θ = π and φ = 39.8056. The core point (a2, b2, c2) of ϕ̃
θφ
2 is (−3.9999, 0, 4.9999)

along the line L, for θ = π, φ = 39.8056. Now, we evaluate ϕ̃θφ2 (α) for θ = π,

φ = 39.8056 and α ∈ [0, 1]. The α-cuts of ϕ̃θφ2 is

ϕ̃θφ2 (α) = (−3.9999− 1.0858(1− α), 0, 4.9999 + 1.3030(1− α)),

for θ = π, φ = 39.8056 and α ∈ [0, 1]. The membership value for the point

(−4, 0, 5) ∈ S̃1(0) is 0.9999.

Let us represent the α-cuts of the fuzzy sphere S̃1.
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Theorem 4.2.3. Let S̃1 be a fuzzy sphere with center P̃1(a1, b1, c1) and radius R̃. Let

ϕ−1
1 (α) = P̃1(α) ∩ {(x, y, z) : x−a1

sinφ cos θ
= y−b1

sinφ sin θ
= z−c1

cosφ
= λ1} and ϕ−1

2 (α) be a line

segment in x−a1
sinφ cos θ

= y−b1
sinφ sin θ

= z−c1
cosφ

= λ2, where

ϕ1(λ1) = f1 (λ1 sinφ cos θ, λ1 sinφ sin θ, λ1 cosφ) = α.

Then,

S̃1(α) =
⋃

θ∈[0,2π]

⋃
φ∈[0,π]

{ϕ−1
2 (α) : R̃(α) = [ min

λ1∈ϕ−1
1 (α)

λ2∈ϕ−1
2 (α)

d(λ1, λ2), max
λ1∈ϕ−1

1 (α)

λ2∈ϕ−1
2 (α)

d(λ1, λ2)]}.

Proof. The proof is similar to Theorem 3.1 in [3].

The following definitions are mainly dealt with the notions of translations and ro-

tations of a fuzzy point which will be the tools for investigating the fuzzy sphere S̃2

in the second form and the fuzzy cone C̃ .

Definition 4.2.2. (Translation of a fuzzy point along a direction (ℓ,m, n)). Let

P̃ (a, b, c) be a fuzzy point whose membership grade at a point (x, y, z) be evalu-

ated by

µ
(
(x, y, z)

∣∣∣P̃) = f(x− a, y − b, z − c).

Let

x−a
ℓ

= y−b
m

= z−c
n

= λ

be the line passing through (a, b, c). Translation of P̃ (a, b, c), say P̃T , along a direc-

tion (ℓ,m, n) is defined by the membership function as

µ
(
(x, y, z)

∣∣∣P̃ T
)
= f(x− (a+ λℓ), y − (b+ λm), z − (c+ λn)).
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Explicitly, the translation of (x, y, z) ∈ P̃ (0) along a direction (ℓ,m, n) to a new

position (x′, y′, z′) is obtained by applying the translation matrix

T =



1 0 0 λℓ

0 1 0 λm

0 0 1 λn

0 0 0 1


such that T (x, y, z) = (x′, y′, z′).

During translation, P̃ (0) gets shifted to another position with keeping the shape

and size of the fuzzy point intact. If P̃T is obtained by the translation of P̃ along a

direction, then P̃ and P̃T are said to be translation copies of each other.

Example 4.2.3. (Translation of a fuzzy point along a direction (ℓ,m, n)).

Let P̃ (5, 0,−2) be a fuzzy point whose membership grade at a point (x, y, z) is

evaluated by

µ
(
(x, y, z)

∣∣∣P̃ (5, 0,−2)
)
=


1−

√
(x− 5)2 + y2 + (z + 2)2 if (x− 5)2 + y2 + (z + 2)2 ≤ 25

0 otherwise.

Let P̃T be the translated fuzzy point along the direction (0, 0, 1). Consider the line

x = 5, y = 0 passing through the core point (5, 0,−2) along the direction (0, 0, 1).

Note that the foot of the perpendicular on the line x = 5, y = 0 from the point

(1, 0,−1) will be the core point of the translated P̃T (0) on which the point (1, 0,−1)

lies. On calculation, we find that (5, 0,−1) is the core point of the translated P̃T (0)

on which the point (1, 0,−1) lies.

Now, the membership grade µ
(
(x, y, z)

∣∣∣P̃T) can be evaluated by

µ
(
(x, y, z)

∣∣∣P̃T

)
=


1−

√
(x− 5)2 + y2 + (z + 1)2 if (x− 5)2 + y2 + (z + 1)2 ≤ 25

0 otherwise.
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Let us define the rotation of a fuzzy point about co-ordinate axes.

Definition 4.2.3. (Rotation of a fuzzy point about co-ordinate axes). Let P̃ (a, b, c)

be a fuzzy point whose membership function is

µ
(
(x, y, z)

∣∣∣P̃) = f(x− a, y − b, z − c).

Let

Rx =


1 0 0

0 cosψ − sinψ

0 sinψ cosψ

 , Ry =


cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ


and

Rz =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


be the rotation matrices about a co-ordinate axis x, or y, or z by an angle ψ,

respectively. The membership function of rotation of P̃ about a co-ordinate axis x,

or y, or z by an angle ψ can be defined by

µ

(
(x, y cosψ − z sinψ, y sinψ + z cosψ)

∣∣∣∣(P̃)ψ
Rx

)
= f(x− a, y − b, z − c),

or

µ

(
(x cosψ + z sinψ, y,−x sinψ + z cosψ)

∣∣∣∣(P̃)ψ
Ry

)
= f(x− a, y − b, z − c),
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or

µ

(
(x cosψ − y sinψ, x sinψ + y cosψ, z)

∣∣∣∣(P̃)ψ
Rz

)
= f(x− a, y − b, z − c),

respectively. Here,
(
P̃
)ψ
Rx

,
(
P̃
)ψ
Ry

and
(
P̃
)ψ
Rz

denote the rotation of P̃ (a, b, c) about

a co-ordinate axis x, or y, or z, by an angle ψ.

Definition 4.2.4. (Rotation of a fuzzy point about any arbitrary line passing through

the core point). Let P̃ (a, b, c) be a fuzzy point whose membership function is

µ
(
(x, y, z)

∣∣∣P̃) = f(x− a, y − b, z − c).

Apply translation and a combination of rotations by a required angle on P̃ such

that the arbitrary axis passing through the core point (a, b, c) coincides with any

co-ordinate axis, say z-axis. The steps to do same, we refer [117] (see p. 10). After

applying the transformations, rotation of P̃ about any arbitrary axis passing through

the core point (a, b, c) by an angle ψ can be obtained as
(
P̃
)ψ
Rz

.

Example 4.2.4. (Rotation of a fuzzy point about any arbitrary axis passing through

the core point). Let us consider an S-type space fuzzy point P̃ (0, 0, 0) with the

membership function

µ
(
(x, y, z)

∣∣∣P̃ (0, 0, 0)) =


1− 1

2

√
x2 + y2 + z2 if x2 + y2 + z2 ≤ 4

0 otherwise.

Consider a line

L : x
1√
11

= y
3√
11

= z
−1√
11
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passing through the P̃ (1).

Let T(0,0,0) = I4, the identity matrix of order 4,

R71.56◦

x =



1 0 0 0

0 −1√
10
− 3√

10
0

0 3√
10

−1√
10

0

0 0 0 1


, R17.54◦

y =



√
10
11

0 − 1√
11

0

0 1 0 0

1√
11

0
√

10
11

0

0 0 0 1


and

R90◦

z =



0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1


(see p. 10 in [117]). Then,

R90◦

z R17.54◦

y R71.56◦

x T(0,0,0) =



0 − 1√
10
− 3√

10
0

−
√

10
11

3√
110

− 1√
110

0

1√
11

3√
11

− 1√
11

0

0 0 0 1


.
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For instance, choose a point (0.6325,−0.5721, 1.5076) for which the membership

value of P̃R90◦
z

has to be calculated. The membership value is given by

µ
(
(0.6325,−0.5721, 1.5076)

∣∣∣P̃R90◦
z

)
= µ

(
(1, 1,−1)

∣∣∣P̃)
=


1− 1

2

√
x2 + y2 + z2 if x2 + y2 + z2 ≤ 4

0 otherwise

= 0.1339.

In Method 2, we formulate a fuzzy sphere when a fuzzy line segment as the diam-

eter is given. We give two methodologies to define the diameter form of the fuzzy

sphere. In the first methodology, the construction of the fuzzy sphere depends on the

translation of fuzzy points along the perpendicular directions passing through the

core points of the fuzzy points. In the second methodology, we extend the classical

definition of the diameter form of a sphere in a fuzzy environment.

A sphere can be obtained in the classical geometry when a line segment joining

two points as a diameter is given. Let LP1P2 be the line segment joining two given

points P1 and P2. Consider a point P on the sphere. Then, the line segment

joining PP1 and PP2 must be perpendicular. A question may arise what if the given

points are imprecise? Is the condition of perpendicularity of the fuzzy line segment

joining PP1 and PP2 necessary when the given points P1 and P2 are imprecise?

The following definition is the answer to these questions. The analogous idea, as in

classical geometry, can be applied to describe a fuzzy sphere, say S̃2, when the given

points are imprecise. The idea of the perpendicularity of the line segment joining

PP1 and PP2 prompted us to define the fuzzy sphere in the following manner.
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Definition 4.2.5. (Fuzzy sphere S̃2 (diameter form)). Let P̃1 and P̃2 be two S-type

space fuzzy points, and ˜̄LP1P2 be the fuzzy line segment joining P̃1 and P̃2. The

fuzzy line segment ˜̄LP1P2 is a diameter of the fuzzy sphere. Let lθφ and lθ′φ′ be two

perpendicular directions passing through the core points of P̃1 and P̃2, respectively.

Consider a fuzzy line L̃θφ generated by the translation copies of P̃1 along the direc-

tion lθφ. Consider another fuzzy line L̃θ′φ′ generated by the translation copies of P̃2

along the direction lθ′φ′ .

The diameter form of the fuzzy sphere is the collection of fuzzy points P̃ , which are

the intersection of L̃θφ and L̃θ′φ′ such that

S̃2 =
∨
{P̃ : the fuzzy points which are the intersection of perpendicular fuzzy

lines L̃θφ and L̃θ′φ′}.

More explicitly, the diameter form of the fuzzy sphere can be formulated by the

membership function

µ
(
(x, y, z)

∣∣∣S̃2

)
= min{µ

(
(x, y, z)

∣∣∣L̃θφ) , µ((x, y, z)∣∣∣L̃θ′φ′

)
}.

A geometrical view of the diameter form of the fuzzy sphere S̃2 is shown in Figure

4.1, where the fuzzy line segment ˜̄LP1P2 joining P̃1 and P̃2 is the diameter of S̃2. The

lines lθφ and lθ′φ′ are two perpendicular directions passing through the core points

of P̃1 and P̃2, respectively. The point P̃ is a representative fuzzy point on S̃2(0),

and the points (a, b, c) and (ai, bi, ci) are the core points of P̃ and P̃i, respectively,

for i = 1, 2.

To evaluate µ
(
(x, y, z)

∣∣∣S̃2

)
, we detect a fuzzy point in S̃2 on which the point (x, y, z)

lies. We observe that there are infinite number of fuzzy points P̃i(ai, bi, ci)’s at
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Figure 4.1: Diameter form of fuzzy sphere S̃2

which (x, y, z) lies and µ
(
(x, y, z)

∣∣∣P̃i) > 0, i ∈ R (by Definition 4.2.5). The points

(ai, bi, ci)’s lie on the core sphere S̃2(1). Suppose the membership function of P̃i’s is

µ
(
(x, y, z)

∣∣∣P̃i) = 1− d((x,y,z),(ai,bi,ci))
r

, (4.3)

where ‘d’ is the Euclidean distance and r ∈ R is any given positive number. By (4.3),

higher membership value is associated with the minimum distance d((x, y, z), (ai, bi, ci)).
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Hence, we search for a fuzzy point on which (x, y, z) lies and the core of the fuzzy

point has minimum distance from the point (x, y, z). Noticeably, by Definition 4.2.5,

P̃i lies on L̃θφ and L̃θ′φ′ at (ai, bi, ci) such that d((x, y, z), (ai, bi, ci)) is minimum. The

support of P̃i(ai, bi, ci) must be the intersection of L̃θφ and L̃θ′φ′ . The membership

value of the point (x, y, z) ∈ S̃2(0) is given by µ
(
(x, y, z)

∣∣∣P̃i).
Example 4.2.5. (Fuzzy sphere S̃2 (diameter form)). Let us consider two fuzzy points

P̃1(−2, 0, 0) and P̃2(3, 1,−1) with the membership functions

µ
(
(x, y, z)

∣∣∣P̃1(−2, 0, 0)
)
=


1− 1

4

√
(x+ 2)2 + y2 + z2 if (x+ 2)2 + y2 + z2 ≤ 16

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃2(3, 1,−1)
)

=


1− 1

3

√
(x− 3)2 + (y − 1)2 + (z + 1)2 if (x− 3)2 + (y − 1)2 + (z + 1)2 ≤ 9

0 otherwise.

The diameter ˜̄LP1P2 of S̃2 can be obtained by joining the P̃1(−2, 0, 0) and P̃2(3, 1,−1),

and evaluated by Definition 2.5.1. The core line ˜̄LP1P2(1) is

x+2
5

= y = −z = λ.

The equation

x2 + y2 + z2 − x− y + z − 6 = 0

describes the core sphere S̃2(1) whose one diameter is the core line ˜̄LP1P2(1). Note

that the center of S̃2(1) is (0.5, 0.5,−0.5).
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Suppose the membership value of a point (2,−3, 0) ∈ S̃2(0) has to be evaluated.

Consider a line joining the points (2,−3, 0) and (0.5, 0.5,−0.5), i.e.,

L : x−2
1.5

= y+3
−3.5

= z
0.5

= λ.

According to Definition 4.2.5, our main task is to find the core point (x′, y′, z′) of the

fuzzy point in S̃2 in which the point (2,−3, 0) belongs. It is consider that the lines

joining ‘(x′, y′, z′) and (−2, 0, 0)’ and ‘(x′, y′, z′) and (3, 1,−1)’ are perpendicular

since (x′, y′, z′) ∈ S̃2(1). To find (x′, y′, z′), evaluate the intersection points of the

S̃2(1) with the line L. After simple calculations, the intersection of L with

x2 + y2 + z2 − x− y + z − 6 = 0

yields the points (0.04,−1.77, 0.68) and (−1.55, 1.96, 0.15), for λ = −1.6764,−0.3235,

respectively. Choose the point (0.04,−1.77, 0.68) or (−1.55, 1.96, 0.15) which one

is the nearest from the point (2,−3, 0). Here, it is easy to check that the point

(0.04,−1.77, 0.68) is nearest from the point (2,−3, 0) ∈ S̃2(0). Suppose the point

(0.04,−1.77, 0.68) is the core point of the fuzzy points, say P̃Ti , which includes the

point (2,−3, 0) on its supports, for i = 1, 2.

Now, the membership functions of the fuzzy points P̃Ti(0.04,−1.77, 0.68) are

µ
(
(x, y, z)

∣∣∣P̃T1
(0.04,−1.77, 0.68)

)
=


1− 1

4

√
(x− 0.04)2 + (y + 1.77)2 + (z − 0.68)2 if (x− 0.04)2 + (y + 1.77)2 + z2 ≤ 16

0 otherwise,

if P̃1 is translated along the direction

lθφ : x−0.04
−2.04

= y+1.77
1.77

= z−0.68
−0.68
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and

µ
(
(x, y, z)

∣∣∣P̃T2
(0.04,−1.77, 0.68)

)
=


1− 1

3

√
(x− 0.04)2 + (y + 1.77)2 + (z − 0.68)2 if (x− 0.04)2 + (y + 1.77)2 + (z − 0.68)2 ≤ 9

0 otherwise,

if P̃2 is translated along the direction

lθ′φ′ : x−0.04
2.96

= y+1.77
2.77

= z−0.68
−1.68

,

respectively. By Definition 4.2.5, the membership value of the point (2,−3, 0) is

min
{
µ
(
(2,−3, 0)

∣∣∣P̃T1(0.04,−1.77, 0.68)) , µ((2,−3, 0)∣∣∣P̃T2(0.04,−1.77, 0.68))}
= min {0.2287, 0.4216}

= 0.2287.

The forthcoming Theorem 4.2.4 refers that there is no lack of inner conformity to

the perpendicularity of line segments joining a point on the sphere to the extreme

points of the spheres’ diameter when it is extended to the fuzzy geometry.

Theorem 4.2.4. Let ˜̄LP1P2 be a diameter of a fuzzy sphere and P̃ be a fuzzy point on

the fuzzy sphere such that the core points of P̃1, P̃2 and P̃ are not collinear. Then,

the space fuzzy line segments ˜̄LP1P and ˜̄LP2P joining P̃1, P̃ and P̃2, P̃ , respectively,

are perpendicular.

Proof. Definition 4.2.5 indicates that the fuzzy point P̃ on the S̃2 is the intersection

of L̃θφ and L̃θ′φ′ . The fuzzy line L̃θφ is generated by the translation copies of P̃1 along

the direction lθφ. Also, the fuzzy line L̃θ′φ′ is generated by the translation copies

of P̃2 along the direction lθ′φ′ . Since lθφ and lθ′φ′ are two perpendicular directions
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passing through the core points of P̃1 and P̃2, respectively. It is easy to say that

the fuzzy line segments ˜̄LP1P and ˜̄LP2P joining P̃1, P̃ and P̃2, P̃ , respectively, are

perpendicular. This completes the proof.

Note 11. Theorem 4.2.4 ensures that the diameter form of a fuzzy sphere is a true

extension of the diameter form of a crisp sphere in the classical geometry to the

fuzzy geometry. This is equivalent to the fact that any fuzzy diameter of a fuzzy

sphere subtends a right angle at any space fuzzy point on the fuzzy sphere, except

the two endpoints of the fuzzy diameter.

The following definition is the another way to construct a fuzzy sphere S̃3 in the

diameter form.

Definition 4.2.6. (Fuzzy sphere S̃3 (diameter form)). Let P̃1 and P̃2 be two S-type

space fuzzy points, and ˜̄LP1P2 be the fuzzy line segment joining P̃1 and P̃2. The

fuzzy line segment ˜̄LP1P2 is the diameter of the fuzzy sphere. The membership value

of a point (x, y, z) in the fuzzy sphere S̃3 is defined as

µ
(
(x, y, z)

∣∣∣S̃3

)
= sup{α : (x, y, z) belongs to the sphere whose diameter is a crisp

line segment joining the same points of P̃1 and P̃2 with the

membership value α}.

More explicitly,

µ
(
(x, y, z)

∣∣∣S̃3

)
=sup{α :

(
x− (x1)

α
θφ

)(
x− (x2)

α
θφ

)
+
(
y − (y1)

α
θφ

)(
y − (y2)

α
θφ

)
+

(
z − (z1)

α
θφ

)(
z − (z2)

α
θφ

)
= 0,

where
(
(xi)

α
θφ , (yi)

α
θφ , (zi)

α
θφ

)
are the co-ordinates of the same points of P̃i, for i = 1, 2}.

The following Algorithm 4.2.1 can be applied to evaluate µ
(
(x, y, z)

∣∣∣S̃3

)
.
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Algorithm 4.2.1: To evaluate µ
(
(x, y, z)

∣∣∣S̃3

)
Input: Given two continuous S-type space fuzzy points P̃1(a1, b1, c1) and P̃2(a2, b2, c2) whose

membership functions are strictly decreasing along the rays emanated from their

respective core points.

Given a point (x, y, z) whose membership value in S̃3 is to be calculated.

Output: The membership value µ
(
(x, y, z)

∣∣∣S̃3

)
= αsup.

Initialize αsup ← 0

loop:

for α = 0 to 1 with step size δα do

for θ = 0 to 2π with step size δθ do

for φ = 0 to π with step size δφ do

Compute the same points(
u1

)α
θφ

:
(
(x1)

α
θφ , (y1)

α
θφ , (z1)

α
θφ

)
and

(
u2

)α
θφ

:
(
(x2)

α
θφ , (y2)

α
θφ , (z2)

α
θφ

)
using

(2.4) and (2.5), respectively

Compute

Sα
θφ

=
(
x− (x1)

α
θφ

)(
x− (x2)

α
θφ

)
+

(
y − (y1)

α
θφ

)(
y − (y2)

α
θφ

)
+

(
z − (z1)

α
θφ

)(
z − (z2)

α
θφ

)

if Sα
θφ = 0 then

if αsup < α then
αsup ← α

else

goto loop

end

end

end

end

end

return µ
(
(x, y, z)

∣∣∣S̃3

)
= αsup

Example 4.2.6. (Evaluation of the membership values of some points in the fuzzy
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sphere S̃3(0)). Consider the fuzzy points P̃1(1, 0, 1) and P̃2(−1, 1, 5) with the mem-

bership functions

µ
(
(x, y, z)

∣∣∣P̃1(1, 0, 1)
)

=


1− 1

2

√
(x− 1)2 + y2 + (z − 1)2 if (x− 1)2 + y2 + (z − 1)2 ≤ 4

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃2(−1, 1, 5)
)

=


1−

√
(x+ 1)2 + (y − 1)2 + (z − 5)2 if (x+ 1)2 + (y − 1)2 + (z − 5)2 ≤ 1

0 otherwise.

The general expressions of the same points with the membership value α ∈ [0, 1] on

P̃1(1, 0, 1) and P̃2(−1, 1, 5) are

(
u1
)α
θφ

: (1 + 2(1− α) sinφ cos θ, 2(1− α) sinφ sin θ, 1 + 2(1− α) cosφ)

and

(
u2
)α
θφ

: (−1 + (1− α) sinφ cos θ, 1 + (1− α) sinφ sin θ, 5 + (1− α) cosφ) ,

respectively. Table 4.1 shows the membership values of some points in the fuzzy

sphere S̃3(0) by execution of Algorithm 4.2.1.
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(x, y, z) Membership Value Step size

(−1.2893, 0.8947, 5.8457) 0.1000 δα = 0.1000, δθ = 0.6981 and δφ = 0.3491

(−1.6000, 1.2370, 5.4000) 0.3000 δα = 0.1000, δθ = 0.6981 and δφ = 0.3491

(1.4500, 0, 1) 0.7750 δα = 0.2250, δθ = 1.5708 and δφ = 0.7854

(1.6364, 0, 1.6364) 1 δα = 0.2250, δθ = 1.5708 and δφ = 0.7854

Table 4.1: Membership values of some points of S̃3(0) using Algorithm 4.2.1 for
Example 4.2.6

In Method 3, we investigate a fuzzy sphere that passes through four given S-type

space fuzzy points. Note that the core points of the fuzzy points must not be co-

planar, and any three of the core points must not be collinear. In classical geometry,

for any tetrahedron, there exists a sphere on which all four vertices lie. In a similar

manner, we describe that if the same points of four fuzzy points form a tetrahedron

of non-zero volume, then there is a fuzzy sphere containing all the fuzzy points.

Although, there may be a fuzzy sphere in which only core points of fuzzy points

form a tetrahedron of non-zero volume but not the same points of the fuzzy points.

It may be noted that in this case, we may not find a unique sphere, in fact, this is

demonstrated in the following study. First of all, we focus on formulating a fuzzy

sphere S̃4.

Definition 4.2.7. (Fuzzy sphere (S̃4)). A fuzzy sphere, say S̃4, passing through four

S-type space fuzzy points P̃1, P̃2, P̃3 and P̃4 whose core points must not be co-

planar and any three of the core points must not be collinear, can be defined by the
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membership function as

µ
(
(x, y, z)

∣∣∣S̃4

)
= sup{α : where (x, y, z) belongs to the sphere passing through the four same

points of P̃1(0), P̃2(0), P̃3(0) and P̃4(0) with the membership value α}.

The following example explicits the construction of the fuzzy sphere by the third

approach in which the positions of four points are given imprecisely. Also, a math-

ematical expression is illustrated using the concept of the same and inverse points

of the fuzzy points. According to Definition 4.2.7, a fuzzy sphere is the union

of all the crisp spheres that pass through the four same points of P̃1(a1, b1, c1),

P̃2(a2, b2, c2), P̃3(a3, b3, c3) and P̃4(a4, b4, c4). The same approach can be perceived

from Figure 4.2 which represents the fuzzy sphere through four fuzzy points

P̃1(a1, b1, c1), P̃2(a2, b2, c2), P̃3(a3, b3, c3) and P̃4(a4, b4, c4), where (ui)
α
θφ

(
(vi)

α
θφ

)
de-

note the same points of P̃i(ai, bi, ci), for i = 1, 2, 3, 4. The direction ratios of Liθφ’s

that pass through the core points (ai, bi, ci) of P̃i are identical, for i = 1, 2, 3, 4.

Example 4.2.7. Let P̃1(a1, b1, c1), P̃2(a2, b2, c2), P̃3(a3, b3, c3) and P̃4(a4, b4, c4) be four

fuzzy points whose core points are not co-planar and any three of the core points

are not collinear. Let S̃3 be a fuzzy sphere passing through P̃1, P̃2, P̃3 and P̃4. The

same points of P̃i(ai, bi, ci) with the membership value α are

(
ui
)α
θφ

:
(
ai + ϕ−1

i (α) sinφ cos θ, bi + ϕ−1
i (α) sinφ sin θ, ci + ϕ−1

i (α) cosφ
)
, (4.4)

for i = 1, 2, 3, 4.
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Figure 4.2: Fuzzy sphere passing through four fuzzy points P̃1, P̃2, P̃3 and P̃4

The sphere, say (S)αθφ, that passes through (u1)
α
θφ, (u

2)
α
θφ, (u

3)
α
θφ, and (u4)

α
θφ can be

determined by the equation

x2 + y2 + z2 + 2x (u)αθφ + 2y (v)αθφ + 2z (w)αθφ + (c)αθφ = 0,
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where

(u)αθφ = 1
M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
((

(x1)
α
θφ

)2

+
(
(y1)

α
θφ

)2

+
(
(z1)

α
θφ

)2
)

2 (y1)
α
θφ 2 (z1)

α
θφ 1

−
((

(x2)
α
θφ

)2

+
(
(y2)

α
θφ

)2

+
(
(z2)

α
θφ

)2
)

2 (y2)
α
θφ 2 (z2)

α
θφ 1

−
((

(x3)
α
θφ

)2

+
(
(y3)

α
θφ

)2

+
(
(z3)

α
θφ

)2
)

2 (y3)
α
θφ 2 (z3)

α
θφ 1

−
((

(x4)
α
θφ

)2

+
(
(y4)

α
θφ

)2

+
(
(z4)

α
θφ

)2
)

2 (y4)
α
θφ 2 (z4)

α
θφ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(v)αθφ = 1
M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 (x1)
α
θφ −

((
(x1)

α
θφ

)2

+
(
(y1)

α
θφ

)2

+
(
(z1)

α
θφ

)2
)

2 (z1)
α
θφ 1

2 (x2)
α
θφ −

((
(x2)

α
θφ

)2

+
(
(y2)

α
θφ

)2

+
(
(z2)

α
θφ

)2
)

2 (z2)
α
θφ 1

2 (x3)
α
θφ −

((
(x3)

α
θφ

)2

+
(
(y3)

α
θφ

)2

+
(
(z3)

α
θφ

)2
)

2 (z3)
α
θφ 1

2 (x4)
α
θφ −

((
(x4)

α
θφ

)2

+
(
(y4)

α
θφ

)2

+
(
(z4)

α
θφ

)2
)

2 (z4)
α
θφ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(w)αθφ = 1
M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 (x1)
α
θφ 2 (z1)

α
θφ −

((
(x1)

α
θφ

)2

+
(
(y1)

α
θφ

)2

+
(
(z1)

α
θφ

)2
)

1

2 (x2)
α
θφ 2 (z2)

α
θφ −

((
(x2)

α
θφ

)2

+
(
(y2)

α
θφ

)2

+
(
(z2)

α
θφ

)2
)

1

2 (x3)
α
θφ 2 (z3)

α
θφ −

((
(x3)

α
θφ

)2

+
(
(y3)

α
θφ

)2

+
(
(z3)

α
θφ

)2
)

1

2 (x4)
α
θφ 2 (z4)

α
θφ −

((
(x4)

α
θφ

)2

+
(
(y4)

α
θφ

)2

+
(
(z4)

α
θφ

)2
)

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(c)αθφ = 1
M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 (x1)
α
θφ 2 (y1)

α
θφ 2 (z1)

α
θφ −

((
(x1)

α
θφ

)2

+
(
(y1)

α
θφ

)2

+
(
(z1)

α
θφ

)2
)

2 (x2)
α
θφ 2 (y2)

α
θφ 2 (z2)

α
θφ −

((
(x2)

α
θφ

)2

+
(
(y2)

α
θφ

)2

+
(
(z2)

α
θφ

)2
)

2 (x3)
α
θφ 2 (y3)

α
θφ 2 (z3)

α
θφ −

((
(x3)

α
θφ

)2

+
(
(y3)

α
θφ

)2

+
(
(z3)

α
θφ

)2
)

2 (x4)
α
θφ 2 (y4)

α
θφ 2 (z4)

α
θφ −

((
(x4)

α
θφ

)2

+
(
(y4)

α
θφ

)2

+
(
(z4)

α
θφ

)2
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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and

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 (x1)
α
θφ 2 (y1)

α
θφ 2 (z1)

α
θφ 1

2 (x2)
α
θφ 2 (y2)

α
θφ 2 (z2)

α
θφ 1

2 (x3)
α
θφ 2 (y3)

α
θφ 2 (z3)

α
θφ 1

2 (x4)
α
θφ 2 (y4)

α
θφ 2 (z4)

α
θφ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The fuzzy sphere S̃4 that passes through P̃1(a1, b1, c1), P̃2(a2, b2, c2), P̃3(a3, b3, c3) and

P̃4(a4, b4, c4) is the union of all possible spheres (S)αθφ that passes through (u1)
α
θφ,

(u2)
α
θφ, (u

3)
α
θφ, and (u4)

α
θφ, i.e.,

S̃4 =
∨

α∈[0,1]

⋃
θ∈[0,2π]

⋃
φ∈[0,π]

{
x2 + y2 + z2 + 2x (u)

α
θφ + 2y (v)

α
θφ + 2z (w)

α
θφ + (c)

α
θφ = 0

}
.

Now we state a result that facilitates to get the membership value of the sphere S

in S̃4(0) by the idea of the same points.

Theorem 4.2.5. Suppose that S is a sphere in S̃4(0) and four same points (x1, y1, z1) ∈
P̃1(0), (x2, y2, z2) ∈ P̃2(0), (x3, y3, z3) ∈ P̃3(0), and (x4, y4, z4) ∈ P̃4(0) with

µ
(
(x1, y1, z1)

∣∣∣S̃4

)
= µ

(
(x2, y2, z2)

∣∣∣S̃4

)
= µ

(
(x3, y3, z3)

∣∣∣S̃4

)
= µ

(
(x4, y4, z4)

∣∣∣S̃4

)
= α

exist such that S is the sphere passing through (x1, y1, z1), (x2, y2, z2), (x3, y3, z3),

and (x4, y4, z4). Then

µ
(
S
∣∣∣S̃4

)
= α.

Proof. Similar to Theorem 3.2 in [3].

The following Algorithm 4.2.2 treats how to find the membership value of a point

in the fuzzy sphere S̃4.
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Algorithm 4.2.2: To evaluate the membership value of a point in the fuzzy

sphere S̃4

Input: Given four continuous fuzzy points P̃1(a1, b1, c1), P̃2(a2, b2, c2), P̃3(a3, b3, c3) and

P̃4(a4, b4, c4) whose membership functions are strictly decreasing along the rays

emanated from their respective core points.

Given a point (x, y, z) whose membership value in S̃4 is to be calculated.

Output: The membership value µ
(
(x, y, z)

∣∣∣S̃4

)
= αsup.

Initialize αsup ← 0

loop:

for α = 0 to 1; with step size δα do

for θ = 0 to 2π; with step size δθ do

for φ = 0 to π; with step size δφ do

Compute the same points(
ui
)α
θφ

:
(
(xi)

α
θφ , (yi)

α
θφ , (zi)

α
θφ

)
using (4.4), for i = 1, 2, 3, 4

Compute

Sα
θφ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 + y2 + z2 x y z 1(
(x1)

α
θφ

)2

+
(
(y1)

α
θφ

)2

+
(
(z1)

α
θφ

)2

(x1)
α
θφ (y1)

α
θφ (z1)

α
θφ 1(

(x2)
α
θφ

)2

+
(
(y2)

α
θφ

)2

+
(
(z2)

α
θφ

)2

(x2)
α
θφ (y2)

α
θφ (z2)

α
θφ 1(

(x3)
α
θφ

)2

+
(
(y3)

α
θφ

)2

+
(
(z3)

α
θφ

)2

(x3)
α
θφ (y3)

α
θφ (z3)

α
θφ 1(

(x4)
α
θφ

)2

+
(
(y4)

α
θφ

)2

+
(
(z4)

α
θφ

)2

(x4)
α
θφ (y4)

α
θφ (z4)

α
θφ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
if Sα

θφ = 0 then

if αsup < α then
αsup ← α

else

goto loop

end

end

end

end

end

return µ
(
(x, y, z)

∣∣∣S̃4

)
= αsup

Example 4.2.8. (Evaluation of the membership values of some points in the fuzzy

sphere S̃4(0)). Consider four fuzzy points P̃1(0, 3, 2), P̃2(1,−1, 1), P̃3(2, 1, 0) and
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P̃4(5, 1, 3) with the membership functions

µ
(
(x, y, z)

∣∣∣P̃1(0, 3, 2)
)

=


1− 1

2

√
x2 + (y − 3)2 + (z − 2)2 if x2 + (y − 3)2 + (z − 2)2 ≤ 4

0 otherwise,

µ
(
(x, y, z)

∣∣∣P̃2(1,−1, 1)
)

=


1− 1

3

√
(x− 1)2 + (y + 1)2 + (z − 1)2 if (x− 1)2 + (y + 1)2 + (z − 1)2 ≤ 9

0 otherwise,

µ
(
(x, y, z)

∣∣∣P̃3(2, 1, 0)
)

=


1− 1

2

√
(x− 2)2 + (y − 1)2 + z2 if (x− 2)2 + (y − 1)2 + z2 ≤ 4

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃4(5, 1, 3)
)

=


1−

√
(x− 5)2 + (y − 1)2 + (z − 3)2 if (x− 5)2 + (y − 1)2 + (z − 3)2 ≤ 1

0 otherwise.
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Clearly, the same points of P̃1, P̃2, P̃3 and P̃4 can be expressed in general term as

(
u1
)α
θφ

: (2(1− α) sinφ cos θ, 3 + 2(1− α) sinφ sin θ, 2 + 2(1− α) cosφ) ,(
u2
)α
θφ

: (1 + 3(1− α) sinφ cos θ,−1 + 3(1− α) sinφ sin θ, 1 + 3(1− α) cosφ) ,(
u3
)α
θφ

: (2 + 2(1− α) sinφ cos θ, 1 + 2(1− α) sinφ sin θ, 2(1− α) cosφ) and(
u4
)α
θφ

: (5 + (1− α) sinφ cos θ, 1 + (1− α) sinφ sin θ, 3 + (1− α) cosφ) ,

respectively.

Table 4.2 shows the membership values of some points in the fuzzy sphere S̃4 by

execution of Algorithm 4.2.2.

(x, y, z) Membership Value Step size

(2, 1, 1.8000) 0.1000 δα = 0.2250, δθ = 1.5708 and δφ = 0.7854

(2, 2.2728, 1.2728) 0.5500 δα = 0.2250, δθ = 1.5708 and δφ = 0.7854

(1.5757, 3, 2.2778) 0.6000 δα = 0.1000, δθ = 0.6981 and δφ = 0.3491

(3.8000, 1, 0) 1 δα = 0.2250, δθ = 1.5708 and δφ = 0.7854

Table 4.2: Membership values of some points (x, y, z) ∈ S̃4(0) produced by
Algorithm 4.2.2 for Example 4.2.8

In what follows we explore about center and radius of the fuzzy sphere S̃4.

Definition 4.2.8. (Center C̃ of the fuzzy sphere S̃4). Let S̃4 be the fuzzy sphere

passing through four S-type space fuzzy points P̃1, P̃2, P̃3 and P̃4 whose core points

must not be co-planar and any three of the core points must not be collinear. The
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center C̃ of the fuzzy sphere S̃4 can be defined by the membership function as

µ
(
c
∣∣∣C̃) = sup{α : where c is the center of the sphere passing through the four

same points of P̃1(0), P̃2(0), P̃3(0) and P̃4(0) with the membership

value α}.

Let us consider the Example 4.2.7. According to Definition 4.2.8, the center C̃ of S̃4

is expressed by

C̃ =
∨

φ∈[0,π]
θ∈[0,2π]
α∈[0,1]

{(
− (u)αθφ ,− (v)αθφ ,− (w)αθφ

)}
. (4.5)

Example 4.2.9. (Center C̃ of the fuzzy sphere S̃4). Let us consider the fuzzy sphere

in the Example 4.2.8. Figure 4.3 depicts the boundary of 0.7-cut of the C̃ evaluated

by (4.5) with step size δθ = π
70

and δφ = π
70
.

Figure 4.3: The boundary of 0.7-cut of the center of the fuzzy sphere

Theorem 4.2.6. Let C̃ be the center of the fuzzy sphere S̃4 that passes through four

fuzzy points P̃1, P̃2, P̃3 and P̃4. If no pair of the same points of P̃1, P̃2, P̃3 and
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P̃4 are co-planar and any three of the same points are collinear. Then, C̃(α) is a

compact and connected set, and for 0 ≤ α1 ≤ α2 ≤ 1, C̃(α2) ⊆ C̃(α1).

Proof. Analogous to the proof of Theorem 3.4 in [3], we can define a function

F : [α, 1]× [0, 2π]× [0, π] −→ R3

by

F (γ, θ, φ) =
(
− (u)γθφ ,− (v)γθφ ,− (w)γθφ

)
.

Since (ui)
α
θφ are continuous and no pair of the same points in P̃1, P̃2, P̃3 and P̃4

are co-planar and any three of the same points are collinear, for i = 1, 2, 3, 4. The

expression of (u)αθφ , (v)
α
θφ and (w)αθφ as represented in Example 4.2.7 are continuous.

Since (u)αθφ , (v)
α
θφ and (w)αθφ are continuous, the function F (γ, θ, φ) is continuous.

We know that the continuous image of compact and connected set is compact and

connected set. Hence, the set F ([α, 1] × [0, 2π] × [0, π]) must be a compact and

connected set. Therefore, by (4.5), C̃(α) is compact and connected. It directly

follows from the (4.5) that for 0 ≤ α1 ≤ α2 ≤ 1, C̃(α2) ⊆ C̃(α1).

Definition 4.2.9. (Radius R̃ of the fuzzy sphere S̃4). Let S̃4 be the fuzzy sphere

passing through four S-type space fuzzy points P̃1, P̃2, P̃3 and P̃4 whose core points

must not be co-planar and any three of the core points must not be collinear. The

radius R̃ of the fuzzy sphere S̃4 can be defined by the membership function as

µ
(
r
∣∣∣R̃) = sup{α : where r is the radius of the sphere passing through the four

same points of P̃1(0), P̃2(0), P̃3(0) and P̃4(0) with the membership

value α}.
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Let us consider Example 4.2.7. According to Definition 4.2.9, the radius R̃ of S̃4 is

expressed by

R̃ =
∨

φ∈[0,π]
θ∈[0,2π]
α∈[0,1]

√
(u)αθφ

2
+ (v)αθφ

2
+ (w)αθφ

2 − (c)αθφ. (4.6)

Example 4.2.10. (Radius R̃ of the fuzzy sphere S̃4). Consider the fuzzy sphere in the

Example 4.2.8, then the α-cuts of the radius R̃ of S̃4 in Example 4.2.8 are found in

Table 4.3 as

α R̃(α)

0 [2.4141, 4.1111]

0.1 [2.4561, 3.9728]

0.2 [2.5012, 3.8406]

0.3 [2.5495, 3.7144]

0.4 [2.6011, 3.5942]

0.5 [2.6565, 3.4801]

0.6 [2.7158, 3.3721]

0.7 [2.7792, 3.2703]

0.8 [2.8476, 3.1745]

0.9 [2.9211, 3.0844]

1 3

Table 4.3: α-cuts of R̃ for Example 4.2.8

Theorem 4.2.7. Let R̃ be the radius of the fuzzy sphere S̃4 that passes through four

fuzzy points P̃1, P̃2, P̃3 and P̃4. If no pair of the same points of P̃1, P̃2, P̃3 and P̃4

are co-planar and any three of the same points are collinear. Then, radius R̃ of the

fuzzy sphere S̃4 is a fuzzy number.
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Figure 4.4: Membership function of the radius R̃ in Example 4.2.8

Proof. Analogous to the proof of Theorem 4.2.6, we can define a function

R : [α, 1]× [0, 2π]× [0, π] −→ R

by

R(γ, θ, φ) =
√

(u)αθφ
2
+ (v)αθφ

2
+ (w)αθφ

2 − (c)αθφ,

which is continuous. The set R([α, 1] × [0, 2π] × [0, π]) is compact and connected

since [α, 1] × [0, 2π] × [0, π] is a compact and connected set. Therefore, the set

R̃(α) is a closed and bounded interval, for α ∈ [0, 1]. It is obvious from (4.6)

that for 0 ≤ α1 ≤ α2 ≤ 1, R̃(α2) ⊆ R̃(α1). The membership function of R̃ is

upper semi-continuous since for all λ ∈ R, the set
{
R : µ

(
R
∣∣∣R̃) ≥ λ

}
is closed

and bounded. Now, for the R̃(1), consider the radius of the sphere passing through

P̃1(1), P̃2(1), P̃3(1) and P̃4(1). Hence, the theorem is proved.

Note 12. In classical geometry, four points always determine a unique sphere if they

are not co-planar. Here, we can exclude the restriction that ‘if no three points are

collinear’ because in such a case, the four points will necessarily be co-planar. If they

are co-planar, either there is no sphere through these four points or an infinity of
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them. Because if three points are collinear, they do not lie on any circle (and hence

not on any sphere). Also, if they are not collinear, they determine a unique circle,

which is contained by an infinity of spheres. Overall, a sphere passing through the

four not co-planar points is a unique sphere.

Theorem 4.2.8. (Uniqueness theorem). Let P̃1, P̃2, P̃3 and P̃4 be four fuzzy points.

If no pair of the same points of P̃1, P̃2, P̃3 and P̃4 are co-planar. Then, the fuzzy

sphere S̃4 that passes through P̃1, P̃2, P̃3 and P̃4 is unique.

Proof. The proof is trivial by Definition 4.2.7 and the Note 12.

Next, we show that the intersection of fuzzy sphere S̃ with a crisp plane Π is a fuzzy

circle.

Note 13. In further analysis, we have given a uniform notation for a fuzzy sphere as

S̃, formulated by either Method 1 or Method 2 or Method 3.

Definition 4.2.10. (The intersection of fuzzy sphere S̃ with a crisp plane Π).

Let S̃ be a fuzzy sphere and Π be a crisp plane such that S̃(1)
⋂
Π ̸= ∅. The

intersection of fuzzy sphere S̃ with a crisp plane Π is a fuzzy circle, say C̃Π , with

the membership function as

µ
(
(x, y, z)

∣∣∣C̃Π) =


µ
(
(x, y, z)

∣∣∣S̃) if (x, y, z) ∈ S̃
⋂
Π

0 otherwise.

Example 4.2.11. (The intersection of fuzzy sphere S̃ with a crisp plane Π). Let

P̃ (4,−2,−4) and d̃ = (9−β/9/9+γ)LR be a fuzzy point and a fuzzy number, where

β = 6, γ = 2 and L(x) = R(x) = max{0, 1 − x}. The membership function of
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P̃ (4,−2,−4) is

µ
(
(x, y, z)

∣∣∣P̃ (4,−2,−4))
=


1− 1

2

√
(x− 4)2 + (y + 2)2 + (z + 4)2 if (x− 4)2 + (y + 2)2 + (z + 4)2 ≤ 4

0 otherwise.

Let x− 2y + 2z = 3 be a crisp plane. Let S̃ be the fuzzy sphere formulated by the

Method 1 whose center and radius are P̃ (4,−2,−4) and d̃ = (9 − β/9/9 + γ)LR,

respectively. The α-cuts of S̃ are

S̃(α) = (a2 + (1− α) sinφ cos θ, b2 + (1− α) sinφ sin θ, c2 + (1− α) cosφ) ,

for θ ∈ [0, 2π], φ ∈ [0, π] and α ∈ [0, 1] along the ray

L : x−4
sinφ cos θ

= y+2
sinφ sin θ

= z+4
cosφ

.

Here, the points on the core sphere are

{(a2, b2, c2) : (a2, b2, c2) = (4 + 9 sinφ cos θ,−2 + 9 sinφ sin θ,−4 + 9 cosφ)},

for θ ∈ [0, 2π], φ ∈ [0, π]. The membership function of C̃Π is

µ
(
(x, y, z)

∣∣∣C̃Π) =


µ
(
(x, y, z)

∣∣∣S̃) if (x, y, z) ∈ S̃
⋂
x− 2y + 2z = 3

0 otherwise.
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The α-cuts C̃Π(α) is the set

{(a2 + (1− α) sinφ cos θ, b2 + (1− α) sinφ sin θ, c2 + (1− α) cosφ) :

(a2 + (1− α) sinφ cos θ)− 2(b2 + (1− α) sinφ sin θ) + 2(c2 + (1− α) cosφ) = 3},

for θ ∈ [0, 2π], φ ∈ [0, π].

Definition 4.2.11. (Center of the fuzzy circle C̃Π). Let S̃ be a fuzzy sphere and

Π be a crisp plane such that S̃(1)
⋂
Π ̸= ∅. Center of the fuzzy circle, say c̃,

can be obtained as a translation copy of the center C̃ of the fuzzy sphere S̃ along

the direction drawn perpendicularly from C̃(1) to the plane Π. The membership

function of the center c̃ of the fuzzy circle C̃Π is defined as

µ ((x, y, z)|c̃) =


µ
(
(x, y, z)

∣∣∣C̃T) if (x, y, z) ∈ C̃T
⋂
Π

0 otherwise,

where C̃T is the translation copy of the center C̃ to the plane Π.

Example 4.2.12. (Center of the fuzzy circle C̃Π). Let us consider the fuzzy circle C̃Π

as in Example 4.2.11. Draw a perpendicular from C̃(1) to the plane Π : x−2y+2z =

3. We get that the point (4.33,−2.66,−3.33) is the foot of perpendicular from C̃(1)

to the plane Π. Hence, by Definition 4.2.11, the membership function of the center

c̃ of the fuzzy circle C̃Π is

µ ((x, y, z)|c̃)

=


1− 1

2

√
(x− 4.33)2 + (y + 2.66)2 + (z + 3.33)2 if (x− 4.33)2 + (y + 2.66)2 + (z + 3.33)2 ≤ 4

and x− 2y + 2z = 3

0 otherwise.

Here, the core point c̃(1) is (4.33,−2.66,−3.33).
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Definition 4.2.12. (Radius of the fuzzy circle C̃Π). Let S̃ be a fuzzy sphere and Π be

a crisp plane such that S̃(1)
⋂
Π ̸= ∅. Let a fuzzy point, say C̃R, be a 90◦ rotation of

the center C̃ of the fuzzy sphere about the co-ordinate axis considering the direction

drawn perpendicularly from C̃(1) to the plane Π as an axis of reference. Radius

of the fuzzy circle, say r̃, can be obtained as the fuzzy distance between the fuzzy

points C̃R and c̃.

The membership function of the radius r̃ of the fuzzy circle C̃Π is defined as

µ (r|r̃) =


µ
(
r
∣∣∣D̃(C̃R, c̃)

)
if r ∈ D̃(C̃R, c̃)

0 otherwise.

Example 4.2.13. (Radius of the fuzzy circle C̃Π). Let us consider the fuzzy circle

C̃Π as in Example 4.2.11. The α-cut of the center P̃ (4,−2,−4) of the sphere S̃ in

Example 4.2.11 is

(4 + 2(1− α) sinφ cos θ,−2 + 2(1− α) sinφ sin θ,−4 + 2(1− α) cosφ) ,

for θ ∈ [0, 2π], φ ∈ [0, π] and α ∈ [0, 1] along the ray L. Consider a line

L′ : x−4
1

= y+2
−2

= z+4
2

drawn from (4,−2,−4) to the plane x − 2y + 2z = 3. Rotate all the points of

P̃ (4,−2,−4)(α) perpendicular to the line L′. To do this, we need the following
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rotations by appropriate angles. Let

R45◦

x =



1 0 0 0

0 1√
2

1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1


and R90◦

y =



0 0 −1 0

0 1 0 0

1 0 0 0

0 0 0 1


,

(see p. 10 in [117]). Then,

R90◦

y R45◦

x =



0 1√
2
− 1√

2
0

0 1√
2

1√
2

0

1 0 0 0

0 0 0 1


.

The α-cuts of the fuzzy point C̃R are {R90◦
y R45◦

x (4 + 2(1− α) sinφ cos θ,−2 + 2(1−

α) sinφ sin θ,−4 + 2(1− α) cosφ)}. Here, C̃R(1) is the point (4.2426, 1.4142, 4).

According to Definition 4.2.12, the radius r̃ of C̃Π is the fuzzy distance between c̃

and C̃R. We have evaluated the r̃(0.1) = [5.9683, 11.0916], r̃(0.3) = [6.4997, 10.4907],

r̃(0.5) = [7.0360, 9.8903], r̃(0.8) = [7.8475, 8.9908], r̃(1) = 8.3922.

Analogous to the definition of a great circle in classical geometry, we define the

great fuzzy circle, say G̃c, as the intersection of a fuzzy sphere S̃ by a crisp plane Π

that passes through the core point of the center of the sphere S̃. We know that the

surface for θ = constant, in the spherical polar co-ordinate system, is a half-plane

from any co-ordinate axis (say z-axis). Another part of the surface, where θ + π =

constant, is also a half-plane. Both the half-planes, where θ = constant and θ+π =

constant, form a complete plane. The intersection of S̃ with that complete plane



Chapter 4. Analytical fuzzy space geometry III 190

gives the G̃c. Note that the points of support of the center C̃(0) are represented by

that spherical polar co-ordinate system in which origin is translated to the C̃(1).

Definition 4.2.13. (Great fuzzy circle G̃c). For each fixed θ, θ+π ∈ [0, 2π], according

to Definition 4.2.1, the membership function of the great fuzzy circle G̃c can be

expressed as

G̃c =
∨

φ∈[0,π]

{ϕ̃φ2 : D̃
(
ϕ̃φ1 , ϕ̃

φ
2

)
= R̃, where ϕ̃φ1 and ϕ̃φ2 are fuzzy

numbers along the line L},

where R̃ is the radius of S̃, and

L : x−a
sinφ cos θ

= y−b
sinφ sin θ

= z−c
cosφ

= λ.

On the other hand, the membership function of the G̃c can be represented as

µ
(
(x, y, z)

∣∣∣G̃c

)
=


µ
(
(x, y, z)

∣∣∣S̃) if (x, y, z) ∈ S̃
⋂
Π

0 otherwise,

where Π is a crisp plane passing through the core point of the center of S̃.

The center, say c̃g, and the radius, say r̃g, of the G̃c is C̃(0) ∩ Π and R̃, where C̃

and R̃ are the center and radius of the fuzzy sphere S̃, respectively.

Example 4.2.14. (Great fuzzy circle G̃c). Let us consider a fixed fuzzy point P̃1 and

a fixed fuzzy number d̃ as in the Example 4.2.2. For each fixed θ, θ+π ∈ [0, 2π], the

points on the α-cuts of the great fuzzy circle are

G̃c(α) = (a2 ± 1.6962(1− α) sinφ cos θ, b2 ± 1.6962(1− α) sinφ sin θ, c2 + 1.6962(1− α) cosφ) ,
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for φ ∈ [0, π] and α ∈ [0, 1] along the ray L. Here, the points on the core G̃c(1) are

(1± 7.8102 sinφ cos θ,±7.8102 sinφ sin θ,−1 + 7.8102 cosφ).

The center c̃g = P̃1 and the radius r̃g = d̃, for each fixed θ, θ + π ∈ [0, 2π].

As converse, the rotation of a great fuzzy circle G̃c about an axis passing through

c̃g(1) that lies on the Π, is a fuzzy sphere.

Definition 4.2.14. (Rotation of a great fuzzy circle G̃c). Let G̃c be the great fuzzy

circle on S̃(0). A rotation of G̃c about an axis that passes through the core point

of the center of G̃c and lies on the Π, can be perceived as a fuzzy sphere. For the

appropriate rotation of G̃c, first coincide the G̃c(0) to any co-ordinate plane (say xy-

plane). Then, apply the rotations about any co-ordinate axis (say x-axis) by angle

φ ∈ [0, π] to obtain a fuzzy sphere. Let (r sin θ, r cos θ, 0) be the points in G̃c(0)

(fuzzy circle in the xy-plane whose c̃g(1) is origin), where r ∈ r̃g(0). The rotation of

(r sin θ, r cos θ, 0) ∈ G̃c(0) with respect to x-axis by angle φ ∈ [0, π] is



1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1





r cos θ

r sin θ

0

1


=



r cos θ

r sin θ cosφ

r sin θ sinφ

1


,

for φ ∈ [0, π] and θ ∈ [0, 2π]. Hence, the rotation of (r cos θ, r sin θ, 0) in Gc(0), say

Rcθφ, is

Rcθφ = (r cos θ, r sin θ cosφ, r sin θ sinφ) .
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The membership function of the fuzzy sphere S̃ which is generated by the rotation

of the fuzzy circle G̃c can be defined by

µ
(
(x, y, z)

∣∣∣S̃) =


µ
(
(u, v, w)

∣∣∣G̃c

)
if (x, y, z) = Rcθφ(u, v, w)

0 otherwise.

On the other hand, by varying θ ∈ [0, 2π], in Definition 4.2.13, we get a fuzzy sphere.

Example 4.2.15. Let us consider a great fuzzy circle as in Example 4.2.14. For

varying θ ∈ [0, 2π], the points of the α-cuts of the fuzzy sphere are

S̃(α) = (a2 + 1.6962(1− α) sinφ cos θ, b2 + 1.6962(1− α) sinφ sin θ, c2 + 1.6962(1− α) cosφ) ,

for φ ∈ [0, π] and α ∈ [0, 1] along the ray L. Here, the points on the core S̃(1) are

(1 + 7.8102 sinφ cos θ, 7.8102 sinφ sin θ,−1 + 7.8102 cosφ).

The center and the radius are P̃1 and d̃, respectively.

The following section deals with the formulation of a fuzzy cone and its intersection

by a crisp plane.

4.3 Fuzzy cone

In classical geometry, a right circular cone is a surface generated by a straight line

that passes through a fixed point and makes a constant angle with a fixed straight

line. In analogy with this, we formulate a fuzzy cone as a collection of fuzzy lines

passing through a fixed fuzzy point P̃ and makes a constant angle with a fixed fuzzy

line that passes through the fuzzy point P̃ .



Chapter 4. Analytical fuzzy space geometry III 193

To form a fuzzy cone, we first translate a given fuzzy point along a fixed axis. The

fuzzy line generated by translating a given fuzzy point along a fixed axis is called

a fixed fuzzy line. Then, draw a line making a constant angle from the fixed axis.

Again, translate the same fuzzy point along that direction. The fixed fuzzy line is

called the axis, and the given fuzzy point is called the vertex of the fuzzy cone. The

fuzzy line that makes a constant angle with the fixed fuzzy line is called the fuzzy

cone generator. We rotate the generator 360◦ around the axis to form the fuzzy

cone.

Naturally, a question may arise as to why a constant angle and translation of fuzzy

point has been taken to define a fuzzy cone? Further, is it possible to define a fuzzy

cone in a general manner as other fuzzy space geometrical entities, such that the

angle and the axis must be a fuzzy number and a fuzzy line segment, respectively?

Answer to this question is geometrically depicted in Figure 4.5. For instance, we

define a fuzzy cone, say C̃ , as

µ
(
(x, y, z)

∣∣∣C̃)
= sup{α : (x, y, z) ∈ C α

ψ , where C α
ψ is the cone generated by the line making angle

ψ with the line joining the same points of P̃1(0) and P̃2(0) with the

membership value α}, (4.7)

ψ̃ is a fuzzy number and ψ ∈ ψ̃(0) with membership value α. Figure 4.5 gives the

geometrical interpretation of (4.7), where P̃1 and P̃2 are two fuzzy points and C α
ψ

is the crisp cone generated by the line, which makes angle ψ with the line joining

the same points (u1)
α
θφ

(
(v1)

α
θφ

)
and (u2)

α
θφ

(
(v2)

α
θφ

)
of P̃1(0) and P̃2(0) with the

membership value α, for some α ∈ [0, 1]. We denote the core cone by C 1
ψ , which

is a crisp cone generated by the line which makes angle ψ′ = ψ̃(1) with the core



Chapter 4. Analytical fuzzy space geometry III 194

Figure 4.5: Fuzzy cone defined by Equation (4.7)

line of the fuzzy line segment joining P̃1 and P̃2. It can be perceived by the Figure

4.5 that C̃ (1) ⊈ C̃ (α), for 0 ≤ α < 1. It contradicts an elementary property of

the fuzzy sets by which the fuzzy sets and the crisp sets are connected. Hence the

definition represented in (4.7) is not an appropriate way to define a fuzzy cone. To

fulfill all the elementary properties of α-cuts of the fuzzy cone C̃ illustrated by (4.7),

we define the fuzzy cone C̃ as follows.

Definition 4.3.1. (Fuzzy cone C̃ ). Let P̃ (a, b, c) be an S-type space fuzzy point.

Consider a fuzzy line L̃θφ generated by a translation copies of P̃ along the direction

lθφ. Consider another direction lθ′φ′ which makes angle ϕ with the lθφ. We construct
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that the fuzzy cone is a collection of all the fuzzy lines L̃θ′φ′ generated by the

translation copies of P̃ along the direction lθ′φ′ . The membership function of the

fuzzy cone C̃ is defined by

µ
(
(x, y, z)

∣∣∣C̃)
= sup{α : where (x, y, z) belongs to the fuzzy line L̃θ′φ′ with the

membership value α}.

As per notations of Definition 4.3.1, the geometrical representation of the fuzzy cone

is depicted in Figure 4.6, where P̃Tθ′φ′(a1, b1, c1) is the translation copy of P̃ along

the direction lθ′φ′ . The fuzzy point P̃Tθφ(a
′, b′, c′) is the translation copy of P̃ along

the direction lθφ. The fuzzy line L̃′
θ′φ′ represents the another position of L̃θ′φ′ in the

fuzzy cone C̃ (0) which also makes angle ϕ with lθφ.

Example 4.3.1. (Fuzzy cone C̃ ). Let P̃ (0, 0, 0) be the vertex of the fuzzy cone C̃

with the membership function

µ
(
(x, y, z)

∣∣∣P̃ (0, 0, 0)) =


1− 1

4

√
x2 + y2 + z2 if x2 + y2 + z2 ≤ 16

0 otherwise.

Let L̃θφ be a fuzzy line generated by a translation copies of P̃ (0, 0, 0) along the

z-axis. Let lθ′φ′ be another line which makes angle 45◦ with lθφ. Let L̃θ′φ′ be a fuzzy

line generated by the translation copies of P̃ (0, 0, 0) along the direction lθ′φ′ . The

surface of revolution of L̃θ′φ′(0) forms the fuzzy cone C̃ . The equation of the core

cone of the cone C̃ is x2 + y2 = z2.

Choose a point (1, 4, 0) whose membership value has to be evaluated. To evaluate

the membership value, we have to find the point of minimum distance from (1, 4, 0)

to the core cone x2 + y2 = z2. To find this, apply the Lagrange multiplier method.
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Figure 4.6: Fuzzy cone

This yields the point (1
2
, 2,

√
17
4
) on x2 + y2 = z2 which is at the minimum distance

from (1, 4, 0). Note that the point (1
2
, 2,

√
17
4
) will be the core point of the translated

fuzzy point P̃T at which the point (1, 4, 0) belongs. The fuzzy point P̃T (
1
2
, 2,

√
17
4
)

is the translated fuzzy point along the direction (1
2
, 2,

√
17
4
) with the membership
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function

µ

(
(x, y, z)

∣∣∣∣P̃T

(
1
2 , 2,

√
17
4

))

=


1− 1

4

√
(x− 1

2 )
2 + (y − 2)2 + (z −

√
17
4 )2 if (x− 1

2 )
2 + (y − 2)2 + (z −

√
17
4 )2 ≤ 16

0 otherwise.

(4.8)

By (4.8),

µ

(
(1, 4, 0)

∣∣∣∣P̃T (1
2
, 2,

√
17
4

))
= 0.2712.

Next we define the notion of convex fuzzy cone.

Definition 4.3.2. A fuzzy cone C̃ (according to Definition 4.3.1) is a convex fuzzy

cone if all the crisp cones C ∈ C̃ (α) are convex, i.e., λ1x1 + λ2x2 ∈ C for any

x1, x2 ∈ C and λ1, λ2 ≥ 0.

Theorem 4.3.1. A fuzzy set C̃ is a convex fuzzy cone if and only if it is convex and

C̃ (λv) ≥ C̃ (v), ∀v ∈ R3 and λ > 0.

Proof. Let C̃ be a convex fuzzy cone. We need to prove that it is convex and

C̃ (λv) ≥ C̃ (v), ∀v ∈ R3 and λ > 0. Clearly, it is convex by Definition 4.3.2.

Now, without loss of generality, we can write any arbitrary element λv ∈ C̃ (0) as

θλ1v ∈ C̃ (0), where λ ≥ 0, λ1 ≥ 0 and θ ∈ [0, 1]. Let us assign λ1v as v′. Since C̃ is

convex and θ ≥ 0,

C̃ (θλ1v) ≥ θC̃ (λ1v) ≥ C̃ (λ1v).

This implies C̃ (θv′) ≥ C̃ (v′). Replace v′ by v, the proof of this part is done.

Conversely, let C̃ be convex and C̃ (λv) ≥ C̃ (v), ∀v ∈ R3 and λ > 0. We have to

prove C̃ is a convex fuzzy cone. Consider v1, v2 ∈ C̃ (α) such that C̃ (v1), C̃ (v2) ≥ α

for some α ∈ [0, 1]. By Definition 4.3.2, it is sufficient to prove that C̃ (λ1v1+λ2v2) ≥
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α, for λ1, λ2 ≥ 0. It is easy to note that we can write λ1 = θ1λ
′
1 and λ2 = θ2λ

′
2, for

θ1, θ2 ∈ [0, 1]. Since C̃ is convex,

C̃ (θ1λ
′
1v1 + θ2λ

′
2v2) ≥ min{C̃ (λ′1v1), C̃ (λ′2v2)} ≥ α,

for some θ1, θ2 ∈ [0, 1]. Clearly, λ1v1 + λ2v2 ∈ C̃ (α). This completes the proof.

It is needed to give attention to fuzzy conics obtained by cutting a fuzzy cone by

a crisp plane. The surface C̃ (0) is called the nappe. There are four types of non-

degenerated fuzzy conics depending on how a crisp plane intersects the nappe. The

types of non-degenerated fuzzy conics are the following:

(i) Fuzzy parabola: If the angle between the crisp plane and the fixed line is the

same as the vertex angle.

(ii) Fuzzy Circle: If the angle between the crisp plane and the fixed line is right

angle.

(iii) Fuzzy ellipse: If the angle between the crisp plane and the fixed line is greater

than the vertex angle.

(iv) Fuzzy hyperbola: If the angle between the crisp plane and the fixed line is less

than the vertex angle.

Note 14. The crisp plane must intersect the core cone of C̃ since the fuzzy conics

are normal fuzzy sets. Also, in [3, 4], it is perceived that fuzzy circles and fuzzy

parabolas are a collection of fuzzy points.

Some cases may arise for the degenerated fuzzy conics, i.e., the fuzzy conics that

satisfy the requirement for a fuzzy parabola, a fuzzy circle, a fuzzy ellipse, and
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a fuzzy hyperbola, but do not form those fuzzy conics. There are three types of

degenerated fuzzy conics as follows.

(i) Fuzzy point : If the crisp plane intersects the fuzzy cone at the vertex and at

an angle greater than the vertex angle.

(ii) Fuzzy line: If the crisp plane intersects the fuzzy cone at the vertex and at an

angle equal to the vertex angle.

(iii) Two intersecting fuzzy lines : If the crisp plane intersects the fuzzy cone at the

vertex and at an angle less than the vertex angle.

Note 15. The crisp plane must pass through the core point of the vertex P̃ since the

fuzzy points and the fuzzy lines are normal fuzzy sets.

Now we discuss the construction of the membership functions of the fuzzy conics,

say F̃C. Consider a fuzzy point P̃ (0, 0, 0) and a fixed fuzzy line L̃θφ generated by

a translation copies of P̃ (0, 0, 0) along the z-axis. Let lθ′φ′ be a line that makes

an angle ϕ with the z-axis and L̃θ′φ′ be a fuzzy line generated by the translation

copies of P̃ (0, 0, 0) along the direction lθ′φ′ . The surface of revolution of L̃θ′φ′(0)

forms the fuzzy cone C̃ . The equation of the core cone C of the fuzzy cone C̃ is

x2 + y2 = z2 tanϕ.

Let Π be a crisp plane making an angel β with the z-axis. Note that the plane Π

intersects the core cone C . The intersection of cone C and plane Π gives the core

of the fuzzy conics F̃C. It is easy to classify the conics as a parabola, an ellipse

and a hyperbola according to β = ϕ, β > ϕ and β < ϕ, respectively, in the classical

geometry.

Let FC be the core of the fuzzy conics F̃C. For any point (a, b, c) ∈ FC, there must

be a fuzzy line L̃θ′φ′(0) such that the intersection L̃θ′φ′(0)
⋂
Π will be a fuzzy point
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in the F̃C whose core is (a, b, c). Next, vary the point (a, b, c) over the core conic,

this will form a collection of fuzzy points P̃ (a, b, c) = L̃θ′φ′(0)
⋂
Π which constitute

the fuzzy conic F̃C. The membership function of F̃C can be defined by

µ
(
(x, y, z)

∣∣∣F̃C) =


µ
(
(x, y, z)

∣∣∣L̃θ′φ′

)
if (x, y, z) ∈ L̃θ′φ′

⋂
Π

0 otherwise.

Note that each fuzzy point in F̃C will be translation copies of each other by the

Definition of 4.3.1. The classification of core conic classifies the fuzzy conic as a

fuzzy parabola, a fuzzy ellipse, and a fuzzy hyperbola. This is because each fuzzy

point in F̃C is obtained by the rigid translation of each other along with the core

conic.

4.4 Discussion and comparison

Some properties of the fuzzy spheres and the fuzzy cones have been dealt with in

this study. These properties are as follows.

1. A fuzzy sphere is a collection of fuzzy points that are equidistant from a given

fuzzy point. Under some restriction (Theorem 4.2.1), there always exists a

fuzzy point at a preset fuzzy distance from a fixed fuzzy point.

2. The angle between the fuzzy line segments joining any fuzzy point on the fuzzy

sphere with the extremities of the fuzzy diameter is a right angle (see Theorem

4.2.4).

3. The radius of the fuzzy sphere passing through four fuzzy points is a fuzzy

number unless the same points of the fuzzy points are co-planar (see Figure

4.4).



Chapter 4. Analytical fuzzy space geometry III 201

4. All the different forms of fuzzy spheres (see Definitions 4.2.1, 4.2.5, 4.2.7) can

be perceived as a union of the crisp spheres with varied membership values or

a collection of space fuzzy points.

5. There always exists a crisp sphere S with µ
(
S
∣∣∣S̃) = 1, i.e., S̃ is a normal

fuzzy set.

6. The α-cuts of the fuzzy spheres (see Definitions 4.2.1, 4.2.5, 4.2.7) and fuzzy

cones (see Definition 4.3.1) are closed, connected and arc-wise connected but

not necessarily convex.

7. The convex fuzzy cone is a fuzzy cone in which all the crisp cones are convex

(see Definition 4.3.2).

8. A fuzzy cone is a normal fuzzy set whose core is a crisp cone.

9. The crisp plane sections of a fuzzy cone are fuzzy conics (fuzzy circle, fuzzy

ellipse, fuzzy parabola, fuzzy hyperbola) (see Section 4.3).

In the introduction (see Subsection 1.4.1), it is noted that there are several papers

based on the fuzzy spheres [50, 51, 52] and fuzzy cones [53, 54, 55, 56], in which these

are not well defined and do not explicitly interpret the geometrical view. There are

a few papers on the fuzzy space geometrical elements in R3. Only Qiu and Zhang [7]

focused on the fuzzy space geometrical entities (space fuzzy lines and fuzzy planes)

by extending the concepts of [5, 6]. They used sup-min compositions [15] for the

well-known algebraic equations of lines, planes, etc., with the coefficients as fuzzy

numbers [7]. Thus, as per the approach of [7], we give a comparison primarily based

on Qiu and Zhang. A point-wise comparison is included below.
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(i) Fuzzy sphere.

As per the approach of [21], a fuzzy sphere is a fuzzy set in which the member-

ship value of a point depends on its distance from a reference point in R3. The

level sets of the fuzzy sphere are concentric spheres. Thus, the center of the

fuzzy sphere would be a crisp point. Also, according to [20], the center of the

fuzzy sphere is a crisp point. The definitions of the fuzzy spheres (according to

[20, 21]) are not suitable since, in the general definition, a fuzzy point instead

of a crisp point would have been more appropriate to represent a center of a

fuzzy sphere. The core of the fuzzy sphere, according to [32, 33], is not a crisp

sphere. However, the proposed definitions of the fuzzy spheres (see Definitions

4.2.1, 4.2.5, 4.2.7) are normal fuzzy sets, and the core of the fuzzy spheres are

crisp spheres.

It may be noted that the ideas used in [7] are simply extensions of the for-

mulated fuzzy geometrical entities in [6]. The sup-min compositions are also

employed in [7] by increasing the number of variables from two to three. All

the deficiencies of the fuzzy geometrical elements [6] are detailed in [3]. Fur-

thermore, the proposed concepts are similar to the concepts studied in [3]

when extending the number of variables from two to three. Also, the proposed

Method 1 and Method 3 for fuzzy spheres behave similarly to the approaches

delineated for the fuzzy circles in [3]. Hence, by [3], it is easy to note that the

proposed methods are more rigorous than the formulations in [7].

Explicitly, as per the approach of [7], the fuzzy sphere S̃ can be defined as

S̃ =
∨

α∈[0,1]

{S : where S is a sphere with center in C̃(α) and radius in R̃(α)}.

The definition of a fuzzy sphere given by Qiu and Zhang [7] does not qualify

the condition of the customary definition of a sphere, such as the collection of



Chapter 4. Analytical fuzzy space geometry III 203

points that are at a fixed distance from a given fixed point. On the other hand,

the proposed definition of the fuzzy sphere (Method 1) is the extension of the

classical definition of the sphere in the fuzzy environment. For the apparent

view, we can consider Example 4.2.2, where the fuzzy point P̃1(1, 0,−1) with

the membership function

µ
(
(x, y, z)

∣∣∣P̃1

)
= 1−

√
(x− 1)2 + y2 + (z + 1)2,

and the fuzzy number d̃ = (5.1140/7.8102/10.5101)LR are given. Note that the

fuzzy distance D̃

(
ϕ̃θφ1 , ϕ̃

θφ
2

)
= d̃, where ϕ̃θφ1 and ϕ̃θφ2 are fuzzy numbers along

the line L in Example 4.2.2. However, as per the approach of Qiu and Zhang

[7], D̃

(
ϕ̃θφ1 , ϕ̃

θφ
2

)
= (1/7.8102/12.5101) ̸= d̃. Here,

ϕ̃θφ1 = ((1− a,−λb,−1− c)/(1, 0,−1)/(1 + a, b,−1 + c))

and

ϕ̃θφ1 = ((1, 0,−1)/(1 + 7.8102a, 7.8102b,−1 + 7.8102c)/(1 + 11.5101a, 11.5101b,−1 + 11.5101c))

are the fuzzy numbers along the line L, where a = sinφ cos θ, b = sinφ sin θ

and c = cosφ.

The proposed Method 2 and Method 3 to construct the fuzzy spheres consid-

ered only the combinations of the same points of the fuzzy points. While in

contrast, Qiu and Zhang considered all the points on the α-cuts of the fuzzy

points to define the fuzzy spheres. The constraint set in the proposed methods

is a subset of that given by Qiu and Zhang. Hence, the proposed methods have

less computational cost and smaller spread than that of Qiu and Zhang.
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(ii) Fuzzy cone. As per the approach of [117], a fuzzy cone can be defined as

µ
(
(x, y, z)

∣∣∣C̃)
= sup{α : (x, y, z) ∈ C α

ψ , where C α
ψ is a cone generated by

a line making angle ψ with the line joining the same points

of P̃1(0) and P̃2(0) with the membership value α}, (4.9)

ψ̃ is a given fuzzy number and µ
(
ψ
∣∣∣ψ̃) = α.

Also, as per the approach of [7], a fuzzy cone can be defined as

µ
(
(x, y, z)

∣∣∣C̃)
= sup{α : (x, y, z) ∈ C α

ψ , where C α
ψ is a cone generated by a

line making angle ψ with the line joining the points of

P̃1(α) and P̃2(α), ψ ∈ ψ̃(0)}, (4.10)

and ψ̃ is a given fuzzy number.

As per our discussion made previously (see p. 193), the Equations (4.9) and (4.10)

are not appropriate since it contradicts the elementary property of the fuzzy sets

such that C̃ (1) ⊈ C̃ (α), for 0 ≤ α < 1 (depicted in Figure 4.5). Hence, none of both

definitions is an appropriate idea to define a fuzzy cone. In contrast, the proposed

Definition 4.3.1 does not have such type of deficiency. For a given fixed fuzzy point

and a fixed fuzzy axis, Definition 4.3.1 defines a fuzzy cone as a collection of fuzzy

lines making a constant angle with the fixed fuzzy axis. The proposed Definition

4.3.1 of the fuzzy cone is well defined and interpreted geometrically.
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4.5 Conclusion

This paper includes three different methods to construct the fuzzy sphere. Method

1 deals with the formulation of the fuzzy sphere when the center and radius of

a sphere given imprecisely. This formulation of the fuzzy sphere is based on the

study that there is a fuzzy number at a predetermined distance from a given fuzzy

number. Method 2 depends on the diameter of a fuzzy sphere. The diameter of the

fuzzy sphere is the fuzzy line segment joining two continuous fuzzy points. We have

given two methodologies to define the diameter form of a fuzzy sphere. At first, the

construction of the fuzzy sphere depends on the translation of fuzzy points along

the perpendicular directions passing through the core points of the fuzzy points.

In second, we have extended the conventional definition of the classical diameter

form of a sphere. Method 3 defines the fuzzy sphere passing through the four S-

type space fuzzy points whose core points are not co-planar. Importantly, we have

proved that there is a unique sphere passing through the four S-type space fuzzy

points. An extensive idea of a fuzzy cone is presented thereafter. Relevantly, we

have delineated the intersection of a fuzzy sphere and a fuzzy cone with a crisp

plane. Sequentially, the properties of the fuzzy sphere and the fuzzy cone are also

discussed.

In the future, we may also focus on a detailed analysis of the properties of the

fuzzy conic sections (fuzzy parabola, fuzzy ellipse and fuzzy hyperbola). The pro-

posed fuzzy space geometrical concepts can be used to analyze fuzzy optimization

problems. We will work on this in the future.

***********
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