
Chapter 3

Analytical fuzzy space geometry II

3.1 Introduction

This paper continues our research on fuzzy space geometry [117]. In [117], some

basic ideas of fuzzy space geometry, such as an S-type space fuzzy point, the theory

of same and inverse points, etc., have been defined. Also, these basic ideas are

used to investigate fuzzy distance and space fuzzy line segment in [117]. The ideas

concerning to S-type space fuzzy point and same and inverse points are the backbone

of our study in fuzzy space geometry (see [117]). In this paper, we carry on with

our research in fuzzy space geometry to formulate fuzzy lines and fuzzy planes in

R3-space.

3.1.1 Motivation and novelty

It is clear from Subsection 1.4.3 that fuzzy geometry has been successfully applied

to many areas, such as fuzzy linear programming, fuzzy medical imaging, fuzzy

geometrical object detection, fuzzy extrapolation or interpolation, etc.

In [1, 2, 3], basic concepts of the same and inverse points of fuzzy points, and some

fuzzy plane geometrical elements have been investigated. These concepts gave a new

direction to develop fuzzy plane geometry. The effect of the same and inverse points

to decrease the computational cost can be observed in [87]. Further, Ghosh et al.

87
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[117] extended the idea of same and inverse points in fuzzy space geometry. Also,

in [117], some fuzzy geometrical entities, such as fuzzy distance and space fuzzy

line segment, are formulated with the help of same and inverse points in R3. In

continuation of this study, from the literature of fuzzy lines and fuzzy planes (see

Subsection 1.4.1), we observe that a detailed construction and computation of fuzzy

lines and planes are yet to be rigorously done. Also, from the application viewpoint,

we notice that the computation of fuzzy lines and fuzzy planes is essential. Thus, a

consecutive study on fuzzy space geometry is needed.

Hence, in this article, we propose a detailed construction of space fuzzy lines, the

shortest distance between skew fuzzy lines, and fuzzy planes based on the concept

of the same and inverse points of space fuzzy points.

The main contribution and novelty of the present study are as follows:

(i) We define a space fuzzy line passing through two continuous S-type space

fuzzy points. Particularly, we also formulate symmetric fuzzy lines (L̃S). The

membership value of a point P ∈ L̃S(0) depends on the perpendicular distance

from P to a fixed line. One can note that the α-cut of the symmetric fuzzy

line is a right circular cylinder (see Figure 3.1).

(ii) We investigate the concept of skew fuzzy lines and the shortest distance be-

tween symmetric skew fuzzy lines. The proposed space fuzzy line and the

shortest distance between symmetric skew fuzzy lines are based on S-type rep-

resentation of fuzzy points.

(iii) With the help of the explicit expression of same and inverse points, we provide

algorithms to evaluate the membership grade of a point in the space fuzzy

lines (Algorithm 3.2.1), to execute the shortest distance between symmetric

skew fuzzy lines (Algorithm 3.3.1), and to evaluate the membership value of a
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number in the shortest distance between symmetric skew fuzzy lines (Algorithm

3.3.2).

(iv) We analyze the intersection of two space fuzzy lines (see Figure 3.2).

(v) We define three different forms of fuzzy planes—a three-point form (Π̃3P ), an

intercept form (Π̃I), and a fuzzy plane passing through an S-type space fuzzy

point and perpendicular to a given crisp direction (Π̃Pn).

(vi) Using the explicit expression of same and inverse points, we develop the step-

wise procedure to evaluate the membership grade of a number in the three-

point form of the fuzzy plane (Algorithm 3.4.1), to compute the membership

value of a number in the intercept form of the fuzzy plane (Algorithm 3.4.2),

and to evaluate the membership value of a number in the fuzzy plane that

passes through an S-type space fuzzy point and perpendicular to a given crisp

direction (Algorithm 3.4.3).

(vii) With the help of an LR-type fuzzy number and direction cosines of normal

(l,m, n) to the given plane, we provide the symmetrical form of a fuzzy plane,

namely, a symmetric fuzzy plane.

(viii) We introduce the angle between two fuzzy planes, and the fuzzy distance be-

tween a fuzzy point and a fuzzy plane. Table 3.7 represents the α-cuts of the

angle between two fuzzy planes evaluated for Example 3.4.8. Also, Table 3.8

represents the α-cuts of the fuzzy distance between a fuzzy point and a fuzzy

plane evaluated for Example 3.4.9.

In the following section, we construct space fuzzy lines and their geometric proper-

ties.
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3.2 Space fuzzy line

Euclid’s second postulate says that we can extend a straight line segment bi-infinitely

into a straight line. Analogously, we propose that a space fuzzy line is a bi-infinite

extension of the space fuzzy line segment joining two continuous space fuzzy points.

To construct a space fuzzy line, we first formulate a space fuzzy line segment ˜̄LP1P2

joining S-type space fuzzy points P̃1 and P̃2. Next, we introduce the concept of

semi-infinite space fuzzy line segments ˜̄L1∞ and ˜̄L2∞ as in [2] (p. 88). The semi-

infinite space fuzzy line segments ˜̄L1∞ and ˜̄L2∞ are two bunches of half-lines with

varied membership values and the half-lines must be parallel to the core line. The

semi-infinite space fuzzy line segments (˜̄Li∞, i = 1, 2) is evaluated by

µ
(
(x, y, z)

∣∣∣˜̄Li∞)
= sup

(u,v,w)∈l(x,y,z)∩P̃i(0)

µ
(
(u, v, w)

∣∣∣P̃i) , (3.1)

where l(x, y, z) is a line passing through (x, y, z) and the direction ratios are same

as the direction ratios of the core line ˜̄LP1P2(1), for i = 1, 2.

The mathematical form of the space fuzzy line L̃ is

L̃ = ˜̄L1∞ ∪ ˜̄LP1P2 ∪ ˜̄L2∞. (3.2)

To find the membership grade of a point (x, y, z) ∈ L̃(0) we have to find whether

(x, y, z) belongs to ˜̄Li∞ or ˜̄LP1P2 , for i = 1, 2. Since if (x, y, z) ∈ ˜̄Li∞, then the

membership grade is given by (3.1) and if (x, y, z) ∈ ˜̄LP1P2 , then the membership

grade is given by the Definition 2.5.1. For finding the membership grade at a point

in (x, y, z) ∈ L̃(0), a step-wise procedure is given in the following Algorithm 3.2.1.
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Algorithm 3.2.1: Algorithm to find µ
(
(x, y, z)

∣∣∣L̃)
Input: Given two continuous S-type space fuzzy points P̃i(ai, bi, ci) with the membership

functions fi(x− ai, y − bi, z − ci), for i = 1, 2. We denote

ϕi(λi) = fi (λi sinφ cos θ, λi sinφ sin θ, λi cosφ) for λi ≥ 0, i = 1, 2.

The membership value µ
(
(x, y, z)

∣∣∣L̃) for a given (x, y, z) has to be calculated.

Output: The membership value µ
(
(x, y, z)

∣∣∣L̃) = αsup.

Initialize αsup ← 0
loop:
For α = 0 to 1; step size δα

For θ = 0 to 2π; step size δθ
For φ = 0 to π; step size δφ

Compute
ϕ−1
1 (α) = λ1

ϕ−1
2 (α) = λ2

Compute the same points(
u1

)α
θφ

= (a1 + (sinφ cos θ)ϕ−1
1 (α), b1 + (sinφ sin θ)ϕ−1

1 (α), c1 + (cosφ)ϕ−1
1 (α))(

u2
)α
θφ

= (a2 + (sinφ cos θ)ϕ−1
2 (α), b2 + (sinφ sin θ)ϕ−1

2 (α), c2 + (cosφ)ϕ−1
2 (α))

For t = 0 to 1; step size δt

if (x, y, z) = t
(
u1

)α
θφ

+ (1− t)
(
u2

)α
θφ

then

if αsup < α then
αsup ← α

else
goto loop

end

end

end
For λ′

1 = −N to 0; step size δλ′
1

if (x, y, z) =
(
u1

)α
θφ

+ λ′
1(a1 − a2, b1 − b2, c1 − c2) then

if αsup < α then
αsup ← α

else
goto loop

end

end

end
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For λ′
2 = 0 to N ; step size δλ′

2

if (x, y, z) =
(
u2

)α
θφ

+ λ′
2(a1 − a2, b1 − b2, c1 − c2) then

if αsup < α then
αsup ← α

else

goto loop

end

end

end

end

end

end

return µ
(
(x, y, z)

∣∣∣L̃) = αsup

Next example illustrates how to evaluate the membership grade of a point on the

support of a space fuzzy line by Algorithm 3.2.1.

Example 3.2.1. (Evaluation of the membership values in L̃(0)). Let P̃1(0, 0, 0) and

P̃2(3,−2, 1) be two continuous fuzzy points with the membership functions

µ
(
(x, y, z)

∣∣∣P̃1(0, 0, 0)
)
=


1−

(∣∣x
2

∣∣+ ∣∣y
2

∣∣+ ∣∣ z
2

∣∣) if |x|+ |y|+ |z| ≤ 2

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃2(3,−2, 1)
)

=


1−

(∣∣x−3
5

∣∣+ ∣∣y+2
5

∣∣+ ∣∣ z−1
5

∣∣) if |x− 3|+ |y + 2|+ |z − 1| ≤ 5

0 otherwise.
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The general expression of the same points on P̃1(0, 0, 0) and P̃2(3,−2, 1) with α ∈

[0, 1] are (
u1
)α
θφ

:
(

2(1−α) sinφ cos θ
Rθφ

, 2(1−α) sinφ sin θ
Rθφ

, 2(1−α) cosφ
Rθφ

)
and (

u2
)α
θφ

:
(
3 + 5(1−α) sinφ cos θ

Rθφ
,−2 + 5(1−α) sinφ sin θ

Rθφ
, 1 + 5(1−α) cosφ

Rθφ

)
,

respectively, where Rθφ = |sinφ cos θ|+ |sinφ sin θ|+ |cosφ|.

Table 3.1 shows the membership values of some points in the space fuzzy line L̃(0),

obtained by the Algorithm 3.2.1.

(x, y, z) Membership value Step sizes

(−28.0000,−27.7750, 55.7750) 0.7750 δα = 0.2250, δθ = 1.5708, δφ = 0.7854,

δt = 0.1000, δλ′
1 = 1, δλ′

2 = 1 and N = 15

(0.3804,−0.0000,−0.2196) 0.7000 δα = 0.3000, δθ = 2.0944, δφ = 1.0472,

δt = 0.1000, δλ′
1 = 1, δλ′

2 = 1 and N = 15

(15.0000, 10.0000, 25.2500) 0.5500 δα = 0.4500, δθ = 3.1416, δφ = 6.2832,

δt = 0.1000, δλ′
1 = 1, δλ′

2 = 1 and N = 15

Table 3.1: Membership values of some points of L̃(0) produced by Algorithm
3.2.1 for Example 3.2.1

Theorem 3.2.1. A space fuzzy line that passes through n space fuzzy points P̃1, P̃2,

. . . , P̃n is unique.

Proof. Similar to theorem 3.4.1 (see Chapter 3) in [4].

Theorem 3.2.2. Let L̃ be a space fuzzy line and Π be a plane perpendicular to L̃(1).

The intersection Π
⋂
L̃ is a space fuzzy point on L̃(0).
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Proof. Let Π be a plane perpendicular to L̃(1) and represented by

{
(x, µ (x|Π)) : x ∈ R3

}
,

where µ (x|Π)= 1 for x ∈ Π, and ‘zero’ otherwise. Define a fuzzy set

P̃ =
{(
x, µ

(
x
∣∣∣L̃)) : x ∈ R3

}⋂{
(x, µ (x|Π)) : x ∈ R3

}
, (3.3)

where the membership value is evaluated by the t-norm as ‘min’. We have to prove

that P̃ is a space fuzzy point on Π.

For 0 < α ≤ 1, let P̄α be the plane curve which is the intersection of Π with

f(x, y, z;α) = 0, where f(x, y, z;α) = 0 is the boundary surface of L̃(α). Let P be

a point of intersection of Π and L̃(1). Consider a set Puαvα which is a collection of

line segments uαvα passing through the point P , where uα, vα ∈ P̄α, i.e.,

Puαvα = {uαvα : uαvα = λuα + (1− λ)vα, where uα, vα ∈ P̄α such that uαvα passes

through P, for 0 ≤ λ ≤ 1}. (3.4)

Now, we will show that P̃ (α) is Puαvα . Let us suppose there exist P ′ = λuα + (1−

λ)vα ∈ Puαvα , for some uα, vα ∈ P̄α and λ ∈ [0, 1], but P ′ /∈ P̃ (α). So µ
(
P ′

∣∣∣L̃) < α

by (3.3). Therefore, P ′ /∈ L̃(α) which arises a contradiction that α-cuts of L̃ are

closed convex sets and, for 0 < α < γ ≤ 1, L̃(γ) ⊆ L̃(α). Thus, P̃ (α) = Puαvα is

compact and convex set and, for 0 < α < γ ≤ 1, P̃ (γ) ⊆ P̃ (α). Therefore, µ
(
·
∣∣∣P̃)

is upper semi-continuous.

Now, since P is the point of intersection of Π and L̃(1), then

µ
(
P
∣∣∣P̃) = min

{
µ (P |Π) , µ

(
P
∣∣∣L̃)} = 1.
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Thus, the fuzzy set P̃ is a space fuzzy point on Π.

Theorem 3.2.2 helps to visualize a space fuzzy line L̃ as a set of space fuzzy points

at every point of L̃(1). Thus, it may be noted that the space fuzzy lines can be

observed as

(i) set of crisp points, or

(ii) union of space fuzzy points, or

(iii) union of crisp half-line segments.

The following theorem shows the unique characterization of the space fuzzy lines.

Theorem 3.2.3. A fuzzy set in R3 is a space fuzzy line if and only if along any plane

perpendicular to the core line, there always exists a space fuzzy point on the space

fuzzy line, where its core is a crisp straight line.

Proof. One side of the theorem is true by the Theorem 3.2.2. By (ii) (in p. 95), it

is observed that the set of all the space fuzzy points along the plane perpendicular

to the core line identifies a space fuzzy line. So, by the assumption of the theorem,

the converse part is true.

In the next subsection, the idea of symmetric fuzzy line has been initiated.

3.2.1 Symmetric fuzzy line

Given a crisp line passing through a point (α, β, γ) along the direction (l,m, n), i.e.,

x− α
l

=
y − β
m

=
z − γ
n

. (3.5)
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Let P (x, y, z) be any point on R3 and the perpendicular distance of P from the given

crisp line is r. The surface in which all the points are at a distance r from the crisp

line (3.5) is given by

{n(y−β)−m(z−γ)}2+{l(z−γ)−n(x−α)}2+{m(x−α)−l(y−β)}2 = r2(l2+m2+n2).

(3.6)

One can note that (3.6) is a right circular cylinder, which is symmetric about the

line (3.5). With the help of (3.6) , we have given the concept of symmetric fuzzy

line, denoted as L̃S. The line (3.5) is called the core line of L̃S.

The membership value of the symmetric fuzzy line L̃S is defined below.
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Figure 3.1: Symmetric fuzzy line

Definition 3.2.1. (Symmetric fuzzy line). Consider a crisp line

x− α
l

=
y − β
m

=
z − γ
n

and let d ∈ R be any given number. The symmetric fuzzy line (L̃S) can be defined

by its membership function as
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µ
(
(x, y, z)

∣∣∣L̃S) =


L
(
r
d

)
if r ≤ d

0 if r > d,

(3.7)

where r is the distance from (x, y, z) to the given crisp line, and L is the reference

function.

Note that the distance of the point (x, y, z) from the line (3.5), r say, can be written

as

r =

√(
{n(y − β)−m(z − γ)}2 + {l(z − γ)− n(x− α)}2 + {m(x− α)− l(y − β)}2

)
(l2 +m2 + n2)

.

The α-cuts of L̃S can be formulated as

L̃S(α) = {(x, y, z) : r ≤ dL−1(α)}. (3.8)

According to Definition 3.2.1, a symmetric fuzzy line can be viewed as a collection

of points inside or on a right circular cylinder which can be visualised by Figure 3.1.

Figure 3.1 depicts that the support of L̃S is a solid right circular cylinder of radius

d. If P (x, y, z) be a point in L̃S(0) and the perpendicular distance of P (x, y, z) from

the given crisp line is r ≤ d, then the membership value of P (x, y, z) is evaluated by

(3.7).

Example 3.2.2. (Symmetric fuzzy line). Let the core of the fuzzy line (L̃S) be

x− 1

1
=
y − 2

2
=
z − 3

3
, (3.9)
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and 5 be the radius of the support of L̃S. The membership function of L̃S is

µ
(
(x, y, z)

∣∣∣L̃S) =


L
(
r
5

)
if r ≤ 5

0 if r > 5,

(3.10)

where r is the distance from (x, y, z) to the core line (3.9), and L(x) = max{0, 1−

x} is the reference function. Let us consider a point P (1, 1, 1) in L̃S(0). The perpen-

dicular distance of P (1, 1, 1) from the core line is 0.65. Evidently, the membership

value µ
(
(1, 1, 1)

∣∣∣L̃S) is 0.87.

Observation 3.2.1. Let (x, y, z) be a point in the space fuzzy line L̃ = ˜̄L1∞ ∪ ˜̄LP1P2 ∪˜̄L2∞. The point (x, y, z) may belong to ˜̄LP1P2 , or ˜̄L1∞, or ˜̄L2∞. Therefore, the

membership value of (x, y, z) in L̃(0) is evaluated by the Algorithm 3.2.1 which take

many steps. In contrast, to find the membership value of (x, y, z) in L̃S, we can easily

calculate the distance between the point (x, y, z) and the core line of L̃S. Hence, the

evaluation of the membership function in the symmetric fuzzy lines is easier than

the space fuzzy lines.

The following observation is made regarding the intersection of two fuzzy lines.

Observation 3.2.2. (i) The intersection of two space fuzzy lines may not be an

S-type space fuzzy point as the intersection of the supports of two space fuzzy

lines may not be a convex subset of R3. Figure 3.2 depicts such a case, where

the intersection of L̃1 and L̃2 is not a convex subset of R3; L̃1 and L̃2 are space

fuzzy lines that passes through two continuous fuzzy points P̃1 and P̃2, and P̃3

and P̃4, respectively.

(ii) If the core lines of two symmetric fuzzy lines intersect, then their intersection

is an S-type space fuzzy point since the α-cuts of symmetric fuzzy lines are

closed, connected, and convex subsets of R3 (see Definition 3.2.1).
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To illustrate (ii), let L̃S1 and L̃S2 be two symmetric fuzzy lines whose core lines are

z-axis and y-axis, respectively. The membership functions of L̃Si
are

µ
(
(x, y, z)

∣∣∣L̃Si

)
=


L
(
r
di

)
if r ≤ di

0 if r > di,

(3.11)

where r is the distance from (x, y, z) to the respective core lines, di ∈ R, and

L(x) = max{0, 1 − x} is the reference function, for i = 1, 2. The supports of the

symmetric fuzzy lines L̃S1 and L̃S2 are

{(x, y, z) : x2 + y2 = d21}

and

{(x, y, z) : x2 + z2 = d22},

which are the right circular cylinders of radius d1 and d2, respectively. One can see

that the intersection of these two symmetric fuzzy lines is a fuzzy point P̃ with core

at (0, 0, 0). The support of P̃ is bounded by the parametric curves

γ1(t) =

(
d1 cos(t), d1 sin(t),±

√
d22 − d21 cos2(t)

)

and

γ2(t) =

(
d2 cos(t),±

√
d21 − d22 cos2(t), d2 sin(t)

)
,

where 0 ≤ t ≤ 2π. Now, the space fuzzy point P̃ is evaluated by the membership

function

µ
(
(x, y, z)

∣∣∣P̃) = min
{
µ
(
(x, y, z)

∣∣∣L̃S1

)
, µ

(
(x, y, z)

∣∣∣L̃S2

)}
. (3.12)

Apparently, let d1 = d2 = 1. Suppose we have to determine the membership grade
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at (0.1000, 0.3000, 0) ∈ P̃ (0) by (3.12), where P̃ is determined by the intersection of

L̃S1 and L̃S2 . The membership grade

µ
(
(0.1000, 0.3000, 0)

∣∣∣P̃)
= min

{
µ
(
(0.1000, 0.3000, 0)

∣∣∣L̃S1

)
, µ

(
(0.1000, 0.3000, 0)

∣∣∣L̃S2

)}
= min{0.6836, 0.9000}

= 0.6836.
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Figure 3.2: Intersection of two space fuzzy lines may not be a convex subset of
R3

Note 7. In classical geometry, the intersection of two crisp lines gives a crisp point.

In contrast, the intersection of two space fuzzy lines may not give an S-type space

fuzzy point (see Figure 3.2).
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In the next section, we give an idea to investigate skew fuzzy lines and the shortest

distance between two skew fuzzy lines.

3.3 Shortest distance

We begin with a definition of skew fuzzy lines.

Definition 3.3.1. (Skew fuzzy lines). Two space fuzzy lines L̃1 and L̃2 passing through

P̃1 to P̃2 and P̃3 to P̃4, respectively, are said to be skew fuzzy lines if the same points

of P̃1, P̃2, and P̃3, P̃4 forms a tetrahedron of nonzero volume, i.e.,∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0, where (x1, y1, z1), (x2, y2, z2) are the same points of P̃1, P̃2, and

(x3, y3, z3), (x4, y4, z4) are the same points of P̃3, P̃4.

Example 3.3.1. Consider the first pair of fuzzy points P̃1(1, 0, 0) and P̃2(0, 0, 0) with

the membership functions

µ
(
(x, y, z)

∣∣∣P̃1(1, 0, 0)
)
=


1− 1

0.5

√
(x− 1)2 + y2 + z2 if (x− 1)2 + y2 + z2 ≤ 0.25

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃2(0, 0, 0)
)
=


1− 1

0.5

√
x2 + y2 + z2 if x2 + y2 + z2 ≤ 0.25

0 otherwise.

The general expressions of the same points on P̃1(0) and P̃2(0) are

(1 + 0.5(1− α) sinφ cos θ, 0.5(1− α) sinφ sin θ, 0.5(1− α) cosφ)
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and

(0.5(1− α) sinφ cos θ, 0.5(1− α) sinφ sin θ, 0.5(1− α) cosφ) ,

respectively.

Consider the second pair of fuzzy points P̃3(0, 1, 1) and P̃4(0, 1, 0) with the member-

ship functions

µ
(
(x, y, z)

∣∣∣P̃3(0, 1, 1)
)

=


1−

√
x2 + (y − 1)2 + (z − 1)2 if x2 + (y − 1)2 + (z − 1)2 ≤ 1

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃4(0, 1, 0)
)

=


1− 1

0.5

√
x2 + (y − 1)2 + z2 if x2 + (y − 1)2 + z2 ≤ 0.25

0 otherwise.

The general expressions of the same points on P̃3(0) and P̃4(0) are

((1− α) sinφ cos θ, 1 + (1− α) sinφ sin θ, 1 + (1− α) cosφ)

and

(0.5(1− α) sinφ cos θ, 1 + 0.5(1− α) sinφ sin θ, 0.5(1− α) cosφ) ,

respectively. Let L̃1 and L̃2 be two space fuzzy lines passing through P̃1 to P̃2, and

P̃3 to P̃4, respectively. The same points of P̃1, P̃2, and P̃3, P̃4 form a tetrahedron of

nonzero volume, i.e.,
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∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −1− (1−α) cosφ

2

̸= 0, for 0 ≤ φ ≤ π. Hence, L̃1 and L̃2 form a pair of skew fuzzy lines.

Now, we discuss the symmetric skew fuzzy lines. Let P̃1(a1, b1, c1) and P̃2(a2, b2, c2)

be two fuzzy points whose supports are identical up to a translation. If P̃1(a1, b1, c1)

is a fuzzy point with the membership function

µ
(
(x, y, z)

∣∣∣P̃1

)
= f1(x− a1, y − b1, z − c1),

then the membership function of P̃2(a2, b2, c2) is

µ
(
(x, y, z)

∣∣∣P̃2

)
= f1(x− a2, y − b2, z − c2).

Shape and size of P̃1(0) and P̃2(0) remains same but the core points of P̃1 and P̃2

are different. These types of fuzzy points are said to be just a photo-copy of each

other.

Let L̃1 and L̃2 be space fuzzy lines passing through P̃1 to P̃2 and P̃3 to P̃4, respec-

tively, where P̃2 is a photo-copy of P̃1 and P̃4 is a photo-copy of P̃3. By the Definition

3.3.1, if L̃1 and L̃2 are skew fuzzy lines, then L̃1 and L̃2 are called symmetric skew

fuzzy lines.

Below, we discuss the shortest distance between two symmetric skew fuzzy lines.

Definition 3.3.2. (Shortest distance between two symmetric skew fuzzy lines). Let

P̃2 be a photo-copy of a given fuzzy point P̃1, and P̃4 be a photo-copy of a given
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fuzzy point P̃3. Shortest distance, D̃S say, between two symmetric skew fuzzy lines

L̃1 and L̃2 passing through P̃1 to P̃2, and P̃3 to P̃4, respectively, can be defined by

the membership function

µ
(
ds

∣∣∣D̃S

)
= sup{α : where ds is the shortest distance between two skew lines l1

and l2 passing through the same points of P̃1 and P̃2, and the

inverse points of P̃3 and P̃4 of membership value α, respectively}.

Theorem 3.3.1. For two symmetric skew fuzzy lines L̃1 and L̃2, their shortest distance

D̃S is a fuzzy number in R.

Proof. Similar to Theorem 4.1 in [1].

Algorithm 3.3.1 describes the procedure to obtain the shortest distance D̃S between

two symmetric skew fuzzy lines L̃1 and L̃2 passing through P̃1 to P̃2, and P̃3 to P̃4,

respectively.
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Algorithm 3.3.1: Algorithm to evaluate the shortest distance D̃S

(
L̃1, L̃2

)
Input: Given four continuous S-type space fuzzy points P̃i(ai, bi, ci) with the membership

functions fi(x− ai, y− bi, z − ci), for i = 1, 2, 3, 4. The fuzzy point P̃2 is a photo-copy

of P̃1, and P̃4 is a photo-copy of P̃3. We denote

ϕi(λi) = fi (λi sinφ cos θ, λi sinφ sin θ, λi cosφ) for λi ≥ 0, i = 1, 2, 3, 4.

Output: The shortest distance D̃S

(
L̃1, L̃2

)
=

∨
α∈[0,1]

D̃S(α).

For α = 0 to 1; step size δα

(ds)
α
min = M , a very large number

(ds)
α
max = −M

For θ = 0 to 2π; step size δθ

(ds)
θ
min = M

(ds)
θ
max = −M

For φ = 0 to π; step size δφ

Compute

λ1 = ϕ−1
1 (α)

λ2 = ϕ−1
2 (α)

λ3 = ϕ−1
3 (α)

λ4 = ϕ−1
4 (α)

Compute the same points of P̃1 and P̃2

uα
θφ = (a1 + (sinφ cos θ)ϕ−1

1 (α), b1 + (sinφ sin θ)ϕ−1
1 (α), c1 + (cosφ)ϕ−1

1 (α))

vαθφ = (a2 + (sinφ cos θ)ϕ−1
2 (α), b2 + (sinφ sin θ)ϕ−1

2 (α), c2 + (cosφ)ϕ−1
2 (α))

Compute the inverse points of P̃3 and P̃4

pαθφ = (a3 + (sinφ cos θ)ϕ−1
3 (α), b3 + (sinφ sin θ)ϕ−1

3 (α), c3 + (cosφ)ϕ−1
3 (α))

qαθφ = (a4 − (sinφ cos θ)ϕ−1
4 (α), b4 − (sinφ sin θ)ϕ−1

4 (α), c4 − (cosφ)ϕ−1
4 (α))

Compute

(r1, r2, r3) = uα
θφ − vαθφ

(s1, s2, s3) = pαθφ − qαθφ

We assign (x1, x2, x3)← uα
θφ and (y1, y2, y3)← vαθφ
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Calculate the shortest distance between L̃1 and L̃2

(ds)
α
φ ←

∣∣∣∣∣∣
y1 − x1 y2 − x2 y3 − x3
r1 r2 r3
s1 s2 s3

∣∣∣∣∣∣√
(r2s3 − s2r3)2 + (r1s3 − r3s1)2 + (r1s2 − r2s1)2

if (ds)
α
φ > (ds)

θ
max then

(ds)
θ
max ← (ds)

α
φ

end

if (ds)
θ
min > (ds)

α
φ then

(ds)
θ
min ← (ds)

α
φ

end

if (ds)
θ
max > (ds)

α
max then

(ds)
α
max ← (ds)

θ
max

end

if (ds)
α
min > (ds)

θ
min then

(ds)
α
min ← (ds)

θ
min

end

end

end

At the end of loop, D̃S(α)← [(ds)
α
min , (ds)

α
max]

end

return D̃S(L̃1, L̃2) =
∨

α∈[0,1]
D̃S(α)

In the following example, we employ Algorithm 3.3.1 on symmetric skew fuzzy lines

to evaluate the fuzzy shortest distance.

Example 3.3.2. Consider the first pair of fuzzy points P̃1(0, 1, 1) and P̃2(0, 1, 0) with

the membership functions

µ
(
(x, y, z)

∣∣∣P̃1(0, 1, 1)
)

=


1− 1

0.5

√
x2 + (y − 1)2 + (z − 1)2 if x2 + (y − 1)2 + (z − 1)2 ≤ 0.25

0 otherwise
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and

µ
(
(x, y, z)

∣∣∣P̃2(0, 1, 0)
)

=


1− 1

0.5

√
x2 + (y − 1)2 + z2 if x2 + (y − 1)2 + z2 ≤ 0.25

0 otherwise.

Note that P̃2(0, 1, 0) is a photo-copy of P̃1(0, 1, 1). For a given α ∈ [0, 1], the same

points on P̃1(0, 1, 1) and P̃2(0, 1, 0) with the membership value α are

(
u1
)α
θφ

: (0.5(1− α) sinφ cos θ, 1 + 0.5(1− α) sinφ sin θ, 1 + 0.5(1− α) cosφ)

and

(
u2
)α
θφ

: (0.5(1− α) sinφ cos θ, 1 + 0.5(1− α) sinφ sin θ, 0.5(1− α) cosφ) ,

respectively.

Consider the second pair of fuzzy points P̃3(0, 0, 0) and P̃4(1, 0, 0) with the member-

ship functions

µ
(
(x, y, z)

∣∣∣P̃3(0, 0, 0)
)
=


1− 1

0.3

√
x2 + y2 + z2 if x2 + y2 + z2 ≤ 0.09

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃4(1, 0, 0)
)
=


1− 1

0.3

√
(x− 1)2 + y2 + z2 if (x− 1)2 + y2 + z2 ≤ 0.09

0 otherwise.
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Note that P̃4(1, 0, 0) is a photo-copy of P̃3(0, 0, 0). For a given α ∈ [0, 1], the inverse

points on P̃3(0, 0, 0) and P̃4(1, 0, 0) with the membership value α are

(
u3
)α
θφ

: (0.3(1− α) sinφ cos θ, 0.3(1− α) sinφ sin θ, 0.3(1− α) cosφ)

and

(
u4
)α
θφ

: (1− 0.3(1− α) sinφ cos θ,−0.3(1− α) sinφ sin θ,−0.3(1− α) cosφ) ,

respectively. Consider L̃1 and L̃2 are two symmetric skew fuzzy lines passing through

P̃1 to P̃2, and P̃3 to P̃4, respectively.

Table 3.2 gives α-cuts of the shortest distance D̃S(L̃1, L̃2) executed by the proposed

Algorithm 3.3.1 with step sizes δα = 0.1000, δθ = 0.0706 and δφ = 0.0353.

α D̃S(L̃1, L̃2)(α)

0.1 [0.6618, 1.0541]

0.2 [0.7174, 1.0541]

0.3 [0.7676, 1.0541]

0.4 [0.8130, 1.0541]

0.5 [0.8540, 1.0539]

0.6 [0.8908, 1.0508]

0.7 [0.9237, 1.0437]

0.8 [0.9528, 1.0328]

0.9 [0.9782, 1.0182]

1.0 1

Table 3.2: α-cuts of D̃S(L̃1, L̃2) by Algorithm 3.3.1 for Example 3.3.2
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The following Figure 3.3 displays the membership function of D̃S(L̃1, L̃2) obtained

from Table 3.2. Note that the obtained D̃S supports Theorem 3.3.1.

Figure 3.3: Shortest distance D̃S(L̃1, L̃2) by Algorithm 3.3.1 for Example 3.3.2

Algorithm 3.3.2 provides a procedure to find the membership grade of a point in

the shortest distance D̃S between two symmetric skew fuzzy lines L̃1 and L̃2 passing

through P̃1 to P̃2, and P̃3 to P̃4, respectively.
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Algorithm 3.3.2: Algorithm to find µ(ds|D̃S)

Input: Given four continuous S-type space fuzzy points P̃i(ai, bi, ci) with the membership

functions fi(x− ai, y− bi, z − ci), for i = 1, 2, 3, 4. The fuzzy point P̃2 is a photo-copy

of P̃1, and P̃4 is a photo-copy of P̃3. We denote

ϕi(λi) = fi (λi sinφ cos θ, λi sinφ sin θ, λi cosφ) for λi ≥ 0, i = 1, 2, 3, 4.

We denote the shortest distance between L̃1 and L̃2 by D̃S .

Given ds ∈ R for which the membership value µ
(
ds

∣∣∣D̃S

)
has to be calculated.

Output: The membership value µ(ds|D̃S) = αsup.

Initialize αsup ← 0

loop:

For α = 0 to 1; step size δα

For θ = 0 to 2π; step size δθ

For φ = 0 to π; step size δφ

Compute

ϕ−1
1 (α) = λ1

ϕ−1
2 (α) = λ2

ϕ−1
3 (α) = λ3

ϕ−1
4 (α) = λ4

Compute the same points of P̃1 and P̃2

uα
θφ = (a1 + (sinφ cos θ)ϕ−1

1 (α), b1 + (sinφ sin θ)ϕ−1
1 (α), c1 + (cosφ)ϕ−1

1 (α))

vαθφ = (a2 + (sinφ cos θ)ϕ−1
2 (α), b2 + (sinφ sin θ)ϕ−1

2 (α), c2 + (cosφ)ϕ−1
2 (α))

Compute the inverse points of P̃3 and P̃4

pαθφ = (a3 + (sinφ cos θ)ϕ−1
3 (α), b3 + (sinφ sin θ)ϕ−1

3 (α), c3 + (cosφ)ϕ−1
3 (α))

qαθφ = (a4 − (sinφ cos θ)ϕ−1
4 (α), b4 − (sinφ sin θ)ϕ−1

4 (α), c4 − (cosφ)ϕ−1
4 (α))

Compute

(r1, r2, r3) = uα
θφ − vαθφ

(s1, s2, s3) = pαθφ − qαθφ

We denote (x1, x2, x3)← uα
θφ and (y1, y2, y3)← vαθφ
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Calculate the shortest distance between L̃1 and L̃2

dαs =

∣∣∣∣∣∣
y1 − x1 y2 − x2 y3 − x3
r1 r2 r3
s1 s2 s3

∣∣∣∣∣∣√
(r2s3 − s2r3)2 + (r1s3 − r3s1)2 + (r1s2 − r2s1)2

if ds = dαs then
if αsup < α then

αsup ← α
else

goto loop
end

end

end

end

end

return µ(ds|D̃S) = αsup

Example 3.3.3. (Evaluation of the membership values in D̃S

(
L̃1, L̃2

)
(0)).

Consider the first pair of fuzzy points P̃1(0, 1, 1) and P̃2(0, 1, 0) as in Example 3.3.2

Consider the second pair of fuzzy points P̃3(0, 0, 0) and P̃4(1, 0, 0) as in Example

3.3.2.

Table 3.3 displays the membership grades of some numbers in the shortest distance

D̃S(L̃1, L̃2), obtained by Algorithm 3.3.2.
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ds Membership value Step sizes

0.8804 0.5696 δα = 0.0131, δθ = 0.0911 and δφ = 0.0455

1.0521 0.5729 δα = 0.0153, δθ = 0.1065 and δφ = 0.0532

0.9932 0.9658 δα = 0.0114, δθ = 0.0795 and δφ = 0.0398

Table 3.3: Membership grades of some points of D̃S

(
L̃1, L̃2

)
(0) produced by

Algorithm 3.3.2 for Example 3.3.3

3.3.1 A brief discussion of the shortest distance between

non-symmetric skew fuzzy lines

First, we make attention to a particular case of it; the shortest distance between a

crisp line L and a non-symmetric fuzzy line L̃. Note that L and l are skew lines,

where l ∈ L̃(α), α ∈ [0, 1]. The shortest distance D̃S

(
L, L̃

)
can be defined by

membership function

µ
(
ds

∣∣∣D̃S

)
= sup{α : ds = ds(L, l), where l ∈ L̃(α) and ds is the shortest distance

between L and l}.

In other words, let p be a point on l ∈ L̃(α) that determine the shortest distance

ds = ds(L, l). The membership function of D̃S

(
L, L̃

)
may be defined as

µ
(
ds

∣∣∣D̃S

)
= sup{α : ds = ds(L, p), where p ∈ l with membership value α}. (3.13)

We will demonstrate that the shortest distance D̃S

(
L, L̃

)
(by (3.13)) may not be a

fuzzy number.
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Since L̃(α) is non-convex set, we have x1 ≤ λx1 + (1 − λ)x2 ≤ x2 on L̃(0), for λ ∈

(0, 1), such that µ (λx1 + (1− λ)x2) = β < α, where x1, x2 ∈ L̃(0) with membership

value α. We may choose ds1, dsλ and ds2 such a manner that ds1 ≤ dsλ ≤ ds2,

where ds1 = ds(L, l1), dsλ = ds(L, lλ), ds2 = ds(L, l2), and l1, lλ, l2 ∈ L̃(0). We

took x1 ∈ l1, λx1 + (1 − λ)x2 ∈ lλ and x2 ∈ l2 as the points which determine the

shortest distances ds1 = ds(L, l1), dsλ = ds(L, lλ), ds2 = ds(L, l2). Clearly, by (3.13),

µ
(
dsλ

∣∣∣D̃S

)
= β < α. Apparently, D̃S

(
L, L̃

)
is not a convex set. Hence, D̃S

(
L, L̃

)
may not be a fuzzy number.

In a similar manner, without loss of generality, we can say that the D̃S

(
L̃, L̃′

)
may

not be a fuzzy number, where L̃ and L̃′ are non-symmetric skew fuzzy lines.

3.4 Fuzzy plane

In the three-dimensional Euclidean space, a crisp plane can be defined in many ways:

a normal form of a plane, a three-point form of a plane, an intercept form of a plane,

and a plane passing through a point and perpendicular to a given crisp direction.

We extend analogous approaches in the fuzzy environment to define fuzzy planes.

Here, an attempt is made to define a fuzzy plane in the case where positions of three

points, or three intercepts, or position of a point with a given crisp direction, are

given imprecisely.

There may not exist a normal form of fuzzy plane because the fuzzy linear equation

ãx̃+ b̃ỹ+ c̃z̃ = d̃ [118] may not have any triplet (x̃, ỹ, z̃) that satisfy it. For instance,

taking ã = (0.5/2/3), b̃ = (0/0/0), c̃ = (0/0/0) and d̃ = (1/4/5), and putting all

these quantities in ãx̃+b̃ỹ+c̃z̃ = d̃, where x̃ = (x−λx/x/x+γx), ỹ = (y−λy/y/y+γy)

and z̃ = (z − λz/z/z + γz) with λx, λy, λz, γx, γy, γz ≥ 0, we obtain γx = −0.4, for

α = 0.5. So it contradict that γx ≥ 0. Thus, there does not exist any triplet (x̃, ỹ, z̃)
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such that ãx̃ + b̃ỹ + c̃z̃ = d̃. Hence, we conclude that a fuzzy plane cannot be

mathematically represented by a fuzzy linear equation.

In the following subsections, we propose mathematical formulations for fuzzy planes

when three S-type space fuzzy points, or three intercepts, or an S-type space fuzzy

point and a crisp direction are known.

3.4.1 Fuzzy plane passing through three S-type space fuzzy

points (Π̃3P )

Definition 3.4.1. (Three-point form (Π̃3P )). Let P̃1, P̃2 and P̃3 be three S-type space

fuzzy points whose cores are not collinear. The fuzzy plane Π̃3P that passes through

the fuzzy points P̃1, P̃2 and P̃3 can be defined by the membership function

µ
(
(x, y, z)

∣∣∣Π̃3P

)
= sup{α : (x, y, z) belongs to the plane passing through the same

points of P̃1(0), P̃2(0) and P̃3(0) with membership value α}.

For any α ∈ [0, 1], the α-cuts of Π̃3P is given by

Π̃3P (α) =
∨
{Π : Π is the plane passing through the same points of P̃1(0), P̃2(0)

and P̃3(0) with membership value α}. (3.14)

According to this definition of µ
(
·
∣∣∣Π̃3P

)
, a fuzzy plane can be perceived as a collec-

tion of crisp planes passing through the same points of P̃1(0), P̃2(0) and P̃3(0) with

membership value α ∈ [0, 1].
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The membership value of a crisp plane Π, inside the region Π̃3P (0), can be defined

as

µ
(
Π
∣∣∣Π̃3P

)
= min

(x,y,x)∈Π
µ
(
(x, y, z)

∣∣∣Π̃3P

)
.

Now, we present a theorem which facilitates in finding the membership value of the

plane Π in Π̃3P (0) by the idea of same points.

Theorem 3.4.1. Suppose that Π is a plane in Π̃3P (0) and there exist three same

points (x1, y1, z1) ∈ P̃1(0), (x2, y2, z2) ∈ P̃2(0), and (x3, y3, z3) ∈ P̃3(0) with

µ
(
(x1, y1, z1)

∣∣∣Π̃3P

)
= µ

(
(x2, y2, z2)

∣∣∣Π̃3P

)
= µ

(
(x3, y3, z3)

∣∣∣Π̃3P

)
= α

such thatΠ is the plane passing through (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3). Then

µ
(
Π
∣∣∣Π̃3P

)
= α.

Proof. The proof is similar to that of Theorem 3.1.1 in [2] and thus omitted.

The Algorithm 3.4.1 demonstrates how to find the membership grade of a number

in the fuzzy plane Π̃3P passing through three continuous S-type space fuzzy points.
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Algorithm 3.4.1: Algorithm to evaluate µ
(
(x, y, z)

∣∣∣Π̃3P

)
Input: Given three continuous fuzzy points P̃i(ai, bi, ci) with the membership

functions fi(x− ai, y − bi, z − ci), for i = 1, 2, 3. We denote

ϕi(λi) = fi (λi sinφ cos θ, λi sinφ sin θ, λi cosφ) , for λi ≥ 0, i = 1, 2, 3.

Given a point (x, y, z) whose membership value in Π̃3P is to be calculated.

Output: The membership value µ
(
(x, y, z)

∣∣∣Π̃3P

)
= αsup.

Initialize αsup ← 0

loop:

For α = 0 to 1; with step size δα

For θ = 0 to 2π; with step size δθ

For φ = 0 to π; with step size δφ

Compute

ϕ−1
1 (α) = λ1

ϕ−1
2 (α) = λ2

ϕ−1
3 (α) = λ3

Compute the same points

(u1)
α
θφ =(

a1 + (sinφ cos θ)ϕ−1
1 (α), b1 + (sinφ sin θ)ϕ−1

1 (α), c1 + (cosφ)ϕ−1
1 (α)

)
(u2)

α
θφ =(

a2 + (sinφ cos θ)ϕ−1
2 (α), b2 + (sinφ sin θ)ϕ−1

2 (α), c2 + (cosφ)ϕ−1
2 (α)

)
(u3)

α
θφ =(

a3 + (sinφ cos θ)ϕ−1
3 (α), b3 + (sinφ sin θ)ϕ−1

3 (α), c3 + (cosφ)ϕ−1
3 (α)

)
Compute

normal = cross product of (u1)
α
θφ − (u2)

α
θφ and (u

1)
α
θφ − (u3)

α
θφ

Compute

fp = dot product of normal and (x, y, z)− (u1)
α
θφ
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if fp = 0 then
if αsup < α then

αsup ← α
else

goto loop
end

end

end

end

end

return µ
(
(x, y, z)

∣∣∣Π̃3P

)
= αsup

Example 3.4.1. (Evaluation of the membership values in Π̃3P (0)). Consider three

fuzzy points P̃1(1, 0, 1), P̃2(−5, 0, 0) and P̃3(4,−3, 2) with the membership functions

µ
(
(x, y, z)

∣∣∣P̃1(1, 0, 1)
)

=


1−

√
1
4
(x− 1)2 + y2 + 1

4
(z − 1)2 if 1

4
(x− 1)2 + y2 + 1

4
(z − 1)2 ≤ 1

0 otherwise,

µ
(
(x, y, z)

∣∣∣P̃2(−5, 0, 0)
)

=


1−

√
1
4
(x+ 5)2 + y2

4
+ z2 if 1

4
(x+ 5)2 + y2

4
+ z2 ≤ 1

0 otherwise

and
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µ
(
(x, y, z)

∣∣∣P̃3(4,−3, 2)
)

=


1− 1

4

√
(x− 4)2 + (y + 3)2 + (z − 2)2 if (x− 4)2 + (y + 3)2 + (z − 2)2 ≤ 16

0 otherwise.

The general expression of the same points of P̃1, P̃2 and P̃3 are

(
u1
)α
θφ

:
(
1 + 2(1−α) sinφ cos θ

Rα
θφ

, 2(1−α) sinφ sin θ
Rα

θφ
, 1 + 2(1−α) cosφ

Rα
θφ

)
(
u2
)α
θφ

:
(
−5 + 2(1−α) sinφ cos θ

Sα
θφ

, 2(1−α) sinφ sin θ
Sα
θφ

, 2(1−α) cosφ
Sα
θφ

)
(
u3
)α
θφ

: (4 + 4(1− α) sinφ cos θ,−3 + 4(1− α) sinφ sin θ, 2 + 4(1− α) cosφ) ,

respectively, where

Rα
θφ =

√
4 sin2 φ cos2 θ + 4 sin2 φ sin2 θ + cos2 φ

and

Sαθφ =

√
sin2 φ cos2 θ + sin2 φ sin2 θ + 4 cos2 φ.

The following Table 3.4 shows the membership values of some points in the fuzzy

plane Π̃3P by execution of the Algorithm 3.4.1.

(x, y, z) Membership Value Step size

(4,−3, 4.7) 0.3250 δα = 0.225, δθ = 1.5708 and δφ = 0.7854

(−5, 0, 0.225) 0.7750 δα = 0.225, δθ = 1.5708 and δφ = 0.7854

(−1,−2, 1) 1 δα = 0.225, δθ = 1.5708 and δφ = 0.7854

Table 3.4: Membership values of some points (x, y, z) ∈ Π̃3P (0) produced by
Algorithm 3.4.1 for Example 3.4.1



Chapter 3. Analytical fuzzy space geometry II 119

In our next result, we show that a fuzzy plane is uniquely determined by three fuzzy

points similar to that a fuzzy line [4] has been uniquely determined by two fuzzy

points (see Theorem 3.4.1 in [4]).

Theorem 3.4.2. Given three S-type space fuzzy points whose core points are not

collinear. There exists a unique fuzzy plane that passes through these S-type space

fuzzy points.

Proof. The proof of the theorem is easily followed from the proof of the Theorem

3.4.1 in [4].

In order to understand the intercept form of a fuzzy plane, it is important to famil-

iarize ourselves with the intercept of the fuzzy plane
(
Π̃3P

)
. Importantly, to define

the intercept of Π̃3P , it should pass through the coordinate axis.

As earlier, by the Definition 3.4.1, it is noted that the fuzzy plane can be constructed

by taking the union of the crisp planes with varied membership values. Thus, the

x-intercept of the fuzzy plane can be a collection of the x-intercepts of the crisp

planes that lie on the support of Π̃3P . The x-intercept of the fuzzy plane
(
Π̃3P

)
can

be written by the membership function as follows. Similarly, the y-intercept and the

z-intercept can be found.

Definition 3.4.2. (x-intercept of Π̃3P ). Let Π̃3P be a fuzzy plane passing through

three fuzzy points P̃1, P̃2 and P̃3. The x-intercept of Π̃3P , denoted as ã, can be

formulated as

µ(a|ã) =


µ
(
(a, 0, 0)

∣∣∣Π̃3P

)
if (a, 0, 0) ∈ Π̃3P (0)

⋂
(x-axis),

0 otherwise.

Note that ã may not be a fuzzy number. Here, we discuss two cases:
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(i) Π̃3P (1)
⋂
(x-axis) = ∅.

(ii) Π̃3P (1)
⋂
(x-axis) ̸= ∅.

In the first case, there does not exist a point (a, 0, 0) ∈ Π̃3P (1)
⋂
(x-axis) such that

µ
(
(a, 0, 0)

∣∣∣Π̃3P

)
= 1. More explicitly, in this case, the fuzzy set ã cannot be a fuzzy

number since a fuzzy number should be a normal fuzzy set. In the second case, the

fuzzy set ã is a fuzzy number. The following theorem supports this case.

Theorem 3.4.3. If Π̃3P (1)
⋂
(x-axis) ̸= ∅, then the x-intercept of Π̃3P that passes

through P̃1, P̃2 and P̃3 is a fuzzy number with a singleton core.

Proof. Let ã be x-intercept of the fuzzy plane passing through P̃1, P̃2 and P̃3. Let

(a, 0, 0) ∈ Π̃3P (1)
⋂

(x-axis).

Then, obviously µ((a, 0, 0)|ã) = 1.

For α ∈ [0, 1], let the least upper bound and the greatest lower bound of the x-

intercepts of the crisp planes in Π̃3P (α) be a1(α) and a2(α), respectively. It can

be easily seen that ã = Π̃3P

⋂
(x-axis) represents a fuzzy number since Π̃3P (α) is

closed and bounded across the core plane Π̃3P (1), and ã(α) = [a1(α), a2(α)]. Now

ã(α) ⊆ ã(β), that is, [a1(α), a2(α)] ⊆ [a1(β), a2(β)] since Π̃3P (α) ⊆ Π̃3P (β), for

0 < β < α ≤ 1. Hence, ã is a fuzzy number with a singleton core.

3.4.2 Intercept form (Π̃I)

Let ã, b̃ and c̃ be three fuzzy numbers. Suppose that a fuzzy line Π̃I has to be

constructed. Consider ã, b̃ and c̃ as the x-intercept, y-intercept and z-intercept,

respectively, of the fuzzy plane. To formulate the fuzzy plane Π̃I , we can consider
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that Π̃I passes through P̃1 (on the x-axis), P̃2 (on the y-axis) and P̃3 (on the z-

axis). Evidently, P̃1 is at a distance ã from the origin, P̃2 is at a distance b̃ from

the origin, and P̃3 is at a distance c̃ from the origin of the R3 space. Though, there

are many such continuous fuzzy points P̃1, P̃2 and P̃3. Consider all the fuzzy planes

Π̃3P passing through all possible such continuous P̃1, P̃2 and P̃3.

We construct Π̃I as the fuzzy plane that passes through P̃1, P̃2 and P̃3 such that

the points P̃1, P̃2 and P̃3 have the smallest possible support. If ∆1, ∆2 and ∆3 are

the volumes of P̃1(0), P̃2(0) and P̃3(0), respectively, then the fuzzy plane Π̃I can be

obtained as

Π̃I = lim
∆1→0
∆2→0
∆3→0

{
Π̃3P : Π̃3P passes through P̃1, P̃2 and P̃3

}
(3.15)

since zero is the smallest possible value of ∆1, ∆2 and ∆3.

Note 8. We mean by the smallest possible support of the fuzzy point as the points

on the support when θ → 0, φ→ 0, where θ ∈ [0, 2π], φ ∈ [0, π]. In simplest way, if

the support of the fuzzy point P̃ (0, 0, c) is described by a parametric representation

(x, y, z) = (r sinφ cos θ, r sinφ sin θ, c+ r cosφ),

for r > 0, θ ∈ [0, 2π], φ ∈ [0, π]. Then, for θ → 0, φ → 0, the point (x, y, z) tends

to the (0, 0, c + r). For the smallest possible support (θ → 0, φ → 0), the support

of fuzzy point P̃ (0, 0, c) is contained along any coordinate axis (say, z-axis). Here,

the notation ∆i → 0 for the volumes of P̃i(0) refers to the smallest possible support

(θ → 0, φ→ 0), for i = 1, 2, 3.

The S-type space fuzzy points P̃1, P̃2 and P̃3 are continuous in (3.15). Since there

are many continuous fuzzy points P̃1 (on the x-axis), P̃2 (on the y-axis) and P̃3 (on
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Figure 3.4: In the limiting case, the fuzzy set on L converges to c̃

the z-axis), consider all possible Π̃3P that can be formulated by passing through the

same points of P̃1, P̃2 and P̃3 (see Definition 3.4.1).

When P̃1 = ã (i.e., ∆1 → 0), all the fuzzy numbers along the different directions on

P̃1(0) will converge to ã. The same phenomena happens for P̃2 and P̃3.

This phenomena is described as follows.

Let P̃ (0, 0, c) be an S-type space fuzzy point located at distance c̃ from O (see Figure

3.4). Let L be a line passing through (0, 0, c) on the support of P̃ , and u1θφ and u2θφ

be two points on the line L (depicted in Figure 3.4). In the limiting case, we attempt

to decrease the volume of P̃ such that the distance between O and P̃ will remain

unchanged (c̃). Apparently, when θ → 0, φ→ 0, the points u1θφ and u2θφ will tend to
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the points c1 and c2, respectively, such that,

lim
θ→0
φ→0

u1θφ = c1 and lim
θ→0
φ→0

u2θφ = c2.

Thus, we have the following definition of Π̃I by (3.15).

Definition 3.4.3. (Intercept form (Π̃I)). Let ã, b̃ and c̃ be three fuzzy numbers that

are x-intercept, y-intercept and z-intercept, respectively, of a fuzzy plane Π̃I . The

fuzzy plane Π̃I can be formulated as Π̃3P , where P̃1(a, 0, 0) = ã along the x-axis,

P̃2(0, b, 0) = b̃ along the y-axis, and P̃3(0, 0, c) = c̃ along the z-axis.

Thus, if a ∈ ã(0), b ∈ b̃(0) and c ∈ c̃(0) are the three same points with α ∈ [0, 1],

then the membership value of a point in Π̃I(0) can be formulated as

µ
(
(x, y, z)

∣∣∣Π̃I

)
= sup{α :

x

a
+

y

b
+

z

c
= 1,where a ∈ ã(0), b ∈ b̃(0) and

c ∈ c̃(0) are three same points with membership value α}.

For any α ∈ [0, 1], the α-cuts of Π̃I is given by

Π̃I(α) =
∨
{Π : Π is the plane with x-intercept a ∈ ã(α), y-intercept b ∈ b̃(α)

and z-intercept c ∈ c̃(α), and a, b and c are the same points}. (3.16)

Example 3.4.2. (Intercept form (Π̃I)). Let ã = b̃ = c̃ = (3/4/5) be three fuzzy

numbers. The points ‘3+α, 3+α and 3+α’, or ‘5−α, 5−α and 5−α’ are the same

points of ã, b̃ and c̃, respectively, with the membership value α ∈ [0, 1]. The support

of Π̃I is the collection of crisp planes that pass through the points (3 + α, 0, 0),

(0, 3 + α, 0) and (0, 0, 3 + α), or (5 − α, 0, 0), (0, 5 − α, 0) and (0, 0, 5 − α) of ã(0),
b̃(0) and c̃(0), respectively. More precisely,
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Π̃I(0) =
⋃

α∈[0,1]

{
(x, y, z) :

x

3 + α
+

y

3 + α
+

z

3 + α
= 1, or

x

5− α
+

y

5− α
+

z

5− α
= 1

}

=
{
(x, y, z) :

x

3
+

y

3
+

z

3
≥ 1,

x

5
+

y

5
+

z

5
≤ 1, x, y, z ≥ 0

}
,

and Π̃I(1) :
x

4
+

y

4
+

z

4
= 1.

The membership value of a crisp plane Π ∈ Π̃I(0) is evaluated by the following

theorem.

Theorem 3.4.4. Let ã, b̃ and c̃ be three fuzzy numbers that are x-intercept, y-

intercept and z-intercept, respectively, of the fuzzy plane Π̃I . Let Π be a crisp

plane in Π̃I(0) and there be three same points (a, 0, 0), (0, b, 0) and (0, 0, c) with

respect to ã, b̃ and c̃, respectively, with

µ
(
(a, 0, 0)

∣∣∣Π̃I

)
= µ

(
(0, b, 0)

∣∣∣Π̃I

)
= µ

(
(0, 0, c)

∣∣∣Π̃I

)
= α

such that Π :
x

a
+
y

b
+
z

c
= 1. Then

µ
(
Π
∣∣∣Π̃I

)
= α.

Proof. The proof is similar to that of Theorem 3.4.1.

The following Algorithm 3.4.2 demonstrates how to find the membership grade of a

point in the fuzzy plane Π̃I .
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Algorithm 3.4.2: Algorithm to evaluate µ
(
(x, y, z)

∣∣∣Π̃I

)
Input: Given three LR-type fuzzy numbers ã = (m1 − ℓ1/m1/m1 + r1)L1R1 ,

b̃ = (m2 − ℓ2/m2/m2 + r2)L2R2 and c̃ = (m3 − ℓ3/m3/m3 + r3)L3R3 that

are x-intercept, y-intercept and z-intercept, respectively, of the fuzzy

plane Π̃I , where L1, L2, L3, R1, R2 and R3 are the reference functions.

The membership value µ
(
(x, y, z)

∣∣∣Π̃I

)
for a given (x, y, z) has to be calculated.

Output: The membership value µ
(
(x, y, z)

∣∣∣Π̃I

)
= αsup.

Initialize αsup ← 0

loop:

for α = 0 to 1; step size δα do

Compute the same points

uα1 = m1 − ℓ1L−1
1 (α), uα2 = m2 − ℓ2L−1

2 (α), uα3 = m3 − ℓ3L−1
3 (α)

and

vα1 = m1 + r1R
−1
1 (α), vα2 = m2 + r2R

−1
2 (α), vα3 = m3 + r3R

−1
3 (α)

Compute

fp1 =
x
uα1

+ y
uα2

+ z
uα3

fp2 =
x
vα1

+ y
vα2

+ z
vα3

if fp1 = 1or fp2 = 1 then

if αsup < α then
αsup ← α

else

goto loop

end

end

end

return µ
(
(x, y, z)

∣∣∣Π̃I

)
= αsup

Example 3.4.3. (Evaluation of the membership values in Π̃I(0)).

Let ã = (2− ℓ1/2/2+r1)L1R1 , b̃ = (3− ℓ2/3/3+r2)L2R2 and c̃ = (4− ℓ3/4/4+r3)L3R3
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be three fuzzy numbers with ℓ1 = r1 = 2, ℓ2 = 1, r2 = 2, ℓ3 = 3 and r3 = 5, where

the reference functions are

L1(x) =


0 if x ≤ −1,
√
1 + x if −1 ≤ x ≤ 0,

R1(x) = max{0, 1 − x}, L2(x) = R2(x) = max{0, 1 − x}, and L3(x) = R3(x) =

max{0, 1− x2}.

The general expression of the same points of ã, b̃ and c̃ are

uα1 : 2 + 2(1− α2), uα2 : 3 + (1− α), uα3 : 4 + 3(
√
1− α)

or

vα1 : 2− 2(1− α), vα2 : 3− 2(1− α), vα3 : 4− 5(
√
1− α),

respectively. The following Table 3.5 displays the membership grades of some num-

bers in the fuzzy plane Π̃I by execution of the Algorithm 3.4.2.

(x, y, z) Membership value Step size

(3.9800, 0, 0) 0.1000 δα = 0.0474

(0.9450, 1.0790, 1.8195) 0.7632 δα = 0.0474

(2, 0, 0) 1 δα = 0.0474

Table 3.5: Membership grades of some numbers of Π̃I produced by Algorithm
3.4.2 for Example 3.4.3

Observation 3.4.1. Let ã, b̃ and c̃ be x-intercept, y-intercept and z-intercept, of

the fuzzy plane Π̃I1 , respectively. Let p̃, q̃ and r̃ be x-intercept, y-intercept and

z-intercept, of the fuzzy plane Π̃I2 , respectively. For α ∈ [0, 1], consider the α-cuts
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of ã, b̃, c̃, p̃, q̃, r̃ as ã(α) = [a1(α), a2(α)], b̃(α) = [b1(α), b2(α)], c̃(α) = [c1(α), c2(α)],

p̃(α) = [p1(α), p2(α)], q̃(α) = [q1(α), q2(α)] and r̃(α) = [r1(α), r2(α)], respectively.

Note that the core of Π̃I1 and Π̃I2 intersect with each other. Let

x

a1(α)
+

y

b1(α)
+

z

c1(α)
= 1 and

x

a2(α)
+

y

b2(α)
+

z

c2(α)
= 1

be the boundary of α-cut of Π̃I1 , for some α ∈ [0, 1].

Let

x

p1(α)
+

y

q1(α)
+

z

r1(α)
= 1 and

x

p2(α)
+

y

q2(α)
+

z

r2(α)
= 1

be the boundary of α-cut of Π̃I2 , for some α ∈ [0, 1].

Let

γα1 :

{
(x, y, z) :

x

a1(α)
+

y

b1(α)
+

z

c1(α)
= 1,

x

p1(α)
+

y

q1(α)
+

z

r1(α)
= 1

}
,

γα2 :

{
(x, y, z) :

x

a1(α)
+

y

b1(α)
+

z

c1(α)
= 1,

x

p2(α)
+

y

q2(α)
+

z

r2(α)
= 1

}
,

γα3 :

{
(x, y, z) :

x

a2(α)
+

y

b2(α)
+

z

c2(α)
= 1,

x

p1(α)
+

y

q1(α)
+

z

r1(α)
= 1

}
,

and

γα4 :

{
(x, y, z) :

x

a2(α)
+

y

b2(α)
+

z

c2(α)
= 1,

x

p2(α)
+

y

q2(α)
+

z

r2(α)
= 1

}

be the lines of intersection of boundaries of α-cuts of Π̃I1 and Π̃I2 . One can see that

the intersection of the boundaries of α-cuts of these two fuzzy planes is the surface

S which is bounded by the surfaces

Sα
1 (λ) = {(x, y, z) : (x, y, z) = λx1 + (1− λ)x2, where x1 ∈ γα

1 and x2 ∈ γα
2 for 0 ≤ λ ≤ 1},

Sα
2 (λ) = {(x, y, z) : (x, y, z) = λx3 + (1− λ)x4, where x3 ∈ γα

3 and x4 ∈ γα
4 for 0 ≤ λ ≤ 1},
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Sα
3 (λ) = {(x, y, z) : (x, y, z) = λx1 + (1− λ)x3, where x1 ∈ γα

1 and x3 ∈ γα
3 for 0 ≤ λ ≤ 1},

and

Sα
4 (λ) = {(x, y, z) : (x, y, z) = λx2 + (1− λ)x4, where x2 ∈ γα

2 and x4 ∈ γα
4 for 0 ≤ λ ≤ 1}.

The surface S can be perceived as the boundary of α-cuts of a space fuzzy line L̃

since it is a closed and connected subset of R3, for α ∈ [0, 1].

Now, the space fuzzy line L̃ is evaluated by the membership function

µ
(
(x, y, z)

∣∣∣L̃) = min
{
µ
(
(x, y, z)

∣∣∣Π̃I1

)
, µ

(
(x, y, z)

∣∣∣Π̃I2

)}
. (3.17)

The core of the L̃ is the straight line

γ :

{
(x, y, z) :

x

ã(1)
+

y

b̃(1)
+

z

c̃(1)
= 1,

x

p̃(1)
+

y

q̃(1)
+

z

r̃(1)
= 1

}
.

To illustrate, let us consider the fuzzy plane Π̃I1 as in Example 3.4.3. The x-

intercept, y-intercept and z-intercept of Π̃I1 are the fuzzy numbers ã = (2−ℓ1/2/2+

r1)L1R1 , b̃ = (3 − ℓ2/3/3 + r2)L2R2 and c̃ = (4 − ℓ3/4/4 + r3)L3R3 , respectively.

Let p̃ = q̃ = r̃ = (2/3/4) be three fuzzy numbers along x-axis, y-axis and z-

axis, respectively. Let Π̃I2 be the fuzzy plane whose x-intercept, y-intercept and z-

intercept are p̃, q̃ and r̃, respectively. For α ∈ [0, 1], ã(α) = [2−2(1−α), 2+2(1−α2)],

b̃(α) = [3 − 2(1 − α), 3 + (1 − α)], c̃(α) = [4 − 5(
√
1− α), 4 + 3(

√
1− α)], p̃(α) =

[2+α, 4−α], q̃(α) = [2+α, 4−α] and r̃(α) = [2+α, 4−α]. Note that the intersection

of Π̃I1(1) and Π̃I2(1) is {(x, y, z) : x = λ, y = 3− 3λ, z = 2λ, where λ ∈ R}.

Suppose we have to determine the membership grade at (3.9800, 0, 0) ∈ L̃(0) by

(3.17), where L̃ is determined by the intersection of Π̃I1 and Π̃I2 . The membership
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grade is given by

µ
(
(3.9800, 0, 0)

∣∣∣L̃) = min
{
µ
(
(3.9800, 0, 0)

∣∣∣Π̃I1

)
, µ

(
(3.9800, 0, 0)

∣∣∣Π̃I2

)}
= min{0.1000, 0.0200}

= 0.0200.

The following subsection illustrates the construction of a fuzzy plane that passes

through a given S-type space fuzzy point and perpendicular to a given crisp direc-

tion.

3.4.3 Fuzzy plane passing through an S-type space fuzzy

point and perpendicular to a given crisp direction

(Π̃Pn)

Let an S-type space fuzzy point P̃ and a crisp direction be given. A fuzzy plane,

Π̃Pn say, is to be formulated that passes through P̃ . We can visualize the fuzzy

plane Π̃Pn as the collection of the crisp planes that pass through a point in P̃ (0)

and perpendicular to the given crisp direction.

Definition 3.4.4. (Fuzzy plane (Π̃Pn)). Let P̃ (a, b, c) be an S-type space fuzzy point,

and (n1, n2, n3) be a given crisp direction. The membership value of (x, y, z) ∈

Π̃Pn(0) is formulated by

µ
(
(x, y, z)

∣∣∣Π̃Pn

)
= sup{α : (x, y, z) lies on the plane passing through

(p, q, r) ∈ P̃ (α) and perpendicular to the given crisp

direction (n1, n2, n3)}.
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More precisely,

µ
(
(x, y, z)

∣∣∣Π̃Pn

)
= sup{α : (x, y, z) belongs to the plane n1(x− p) + n2(y − q) + n3(z − r) = 0,

where (p, q, r) ∈ P̃ (α)}.

For any α ∈ [0, 1], the α-cuts of Π̃Pn is given by

Π̃Pn(α) =
∨
{Π : Π is the plane passing through (p, q, r) ∈ P̃ (α) and

perpendicular to the given crisp direction (n1, n2, n3)}. (3.18)

Example 3.4.4. (Fuzzy plane (Π̃Pn)). Let P̃ (1, 2, 3) be an S-type space fuzzy point

with the membership function

µ
(
(x, y, z)

∣∣∣P̃ (1, 2, 3))
=


1−

√
(x−1)2

4
+ (y−2)2

4
+ (z−3)2

4
if (x−1)2

4
+ (y−2)2

4
+ (z−3)2

4
≤ 1

0 otherwise,

and let

(
1√
3
,
1√
3
,
1√
3

)
be a given crisp direction. The support of P̃ is

{
(x, y, z) : (x− 1)2 + (y − 2)2 + (z − 3)2 ≤ 4

}
.

A generic point of the membership value α ∈ [0, 1] in P̃ is

(1 + 2(1− α) sinφ cos θ, 2 + 2(1− α) sinφ sin θ, 3 + 2(1− α) cosφ),
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θ ∈ [0, 2π], φ ∈ [0, π]. Then, the support of the fuzzy plane Π̃Pn is

Π̃Pn(0) =
⋃

α∈[0,1]

⋃
φ∈[0,π]

⋃
θ∈[0,2π]

{
(x, y, z) :

1√
3
(x− (1 + 2(1− α) sinφ cos θ))

+
1√
3
(y − (2 + 2(1− α) sinφ sin θ)) +

1√
3
(z − (3 + 2(1− α) cosφ)) = 0

}
.

Proposition 3.4.1. Let P̃ (a, b, c) be an S-type space fuzzy point, and (n1, n2, n3)

be a given crisp direction. Let Π̃Pn be a fuzzy plane that passes through P̃ and

perpendicular to the given crisp direction (n1, n2, n3). Let (x0, y0, z0) ∈ Π̃Pn(0),

and Π be a plane passing through (x0, y0, z0) and perpendicular to the given crisp

direction (n1, n2, n3). Let (xc, yc, zc) be the closest point on P̃ ∩ Π from the core

point of P̃ . Then,

µ
(
(x0, y0, z0)

∣∣∣Π̃Pn

)
= µ

(
(xc, yc, zc)

∣∣∣P̃) .
Proof. Define a fuzzy set D̃ with membership value as

µ
(
d
∣∣∣D̃)

= sup{α : d = d((x, y, z), (a, b, c))}, (3.19)

where (x, y, z) ∈ P̃ ∩Π, µ
(
(x, y, z)

∣∣∣P̃) = α and ‘d’ is the Euclidean distance. The

fuzzy set D̃ is convex since P̃ is convex. Let d is the Euclidean distance between the

points (xc, yc, zc) and (a, b, c), i.e., d = d((xc, yc, zc), (a, b, c)). Choose an arbitrary

point (x′, y′, z′) ∈ P̃ ∩ Π and let d′ = d((x′, y′, z′), (a, b, c)). Since (xc, yc, zc) is the

closest point on the P̃ ∩Π from the core point of P̃ , we have d′ ≥ d ≥ 0. As D̃ is

convex, we have

µ
(
d
∣∣∣D̃)

≥ min{µ
(
d′
∣∣∣D̃)

, µ
(
0
∣∣∣D̃)
},
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i.e., µ
(
d
∣∣∣D̃)

≥
(
d′
∣∣∣D̃)

. Clearly by (3.19), µ
(
(xc, yc, zc)

∣∣∣P̃) ≥ µ
(
(x′, y′, z′)

∣∣∣P̃).
So, by Definition 3.4.4, we have

µ
(
(x0, y0, z0)

∣∣∣Π̃Pn

)
= sup

(x,y,z)∈P̃ (0)∩Π
µ
(
(x, y, z)

∣∣∣P̃) = µ
(
(xc, yc, zc)

∣∣∣P̃) .

Example 3.4.5. Consider the fuzzy point P̃ (1, 2, 3) as in Example 3.4.4, and(
1√
3
,
1√
3
,
1√
3

)
is the given crisp direction. Suppose that the membership value at

(0, 2, 0) ∈ Π̃Pn(0) has to be obtained. Let

Π :
x√
3
+

(y − 2)√
3

+
z√
3
= 0

be the plane passing through the point (0, 2, 0) and perpendicular to the given

direction

(
1√
3
,
1√
3
,
1√
3

)
. The point

(
−1

3
,
2

3
,
5

3

)
on P̃ (0)∩Π is closest to the core

point (1, 2, 3). Hence, by the Proposition 3.4.1, the membership value of (0, 2, 0) is

µ
(
(0, 2, 0)

∣∣∣Π̃Pn

)
= µ

((
−1

3
,
2

3
,
5

3

)∣∣∣∣P̃) = 0.089.

Here, as per the notations of the Proposition 3.4.1, (x0, y0, z0) ≡ (0, 2, 0) and

(xc, yc, zc) ≡
(
−1

3
,
2

3
,
5

3

)
.

The following Algorithm 3.4.3 demonstrates how to find the membership grade of a

number in the fuzzy plane Π̃Pn.
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Algorithm 3.4.3: Algorithm to evaluate µ
(
(x0, y0, z0)

∣∣∣Π̃Pn

)
Input: Given a continuous fuzzy point P̃ (a, b, c) whose membership function is

strictly decreasing along the rays emanated from the core point, and

n = (n1, n2, n3) is a given crisp direction.

Given a point (x0, y0, z0) whose membership value in Π̃Pn is to be calculated.

Output: The membership value µ
(
(x0, y0, z0)

∣∣∣Π̃Pn

)
= α.

Compute

k =
n1a+ n2b+ n3c− n1x0 − n2y0 − n3z0

n2
1 + n2

2 + n2
3

(xc, yc, zc) = (a+ kn1, b+ kn2, c+ kn3)

α = µ
(
(xc, yc, zc)

∣∣∣P̃)
return µ

(
(x0, y0, z0)

∣∣∣Π̃Pn

)
= α

Example 3.4.6. (Evaluation of the membership values in Π̃Pn(0)). Let P̃ (0, 0, 0) be

an S-type space fuzzy point with the membership function

µ
(
(x, y, z)

∣∣∣P̃ (0, 0, 0)) =


1−

√
x2 + y2 + z2 if x2 + y2 + z2 ≤ 1

0 otherwise.

The support of P̃ is {
(x, y, z) : x2 + y2 + z2 ≤ 1

}
,

and let (0, 0, 1) be a given crisp direction. The following Table 3.6 displays the

membership grades of some numbers in the fuzzy plane Π̃Pn by execution of the

Algorithm 3.4.3.
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(x, y, z) Membership Value

(0, 0, 0.5) 0.5000

(1, 0.2, 0.25) 0.7500

(0, 1, 0.93) 0.0700

(0, 0.2, 0.8) 0.2000

Table 3.6: Membership grades of some numbers of Π̃Pn produced by Algorithm
3.4.3 for Example 3.4.6

3.4.4 Symmetric fuzzy plane (Π̃S)

In classical Euclidean geometry, the equation of a plane in normal form is lx+my+

nz = p, where (l,m, n) is the direction cosine of the normal to the plane and p is the

perpendicular distance from the origin to the plane. If we vary the distance p of the

plane lx+my + nz = p from the origin, it gives another plane parallel to the plane

lx + my + nz = p. Let p̃ be a fuzzy number. For each p ∈ p̃(0), there is a plane

parallel to the plane lx +my + nz = p. Hence, to define a symmetric fuzzy plane,

denoted as Π̃S, we need only a fuzzy number p̃, and the direction cosine (l,m, n) of

the normal to the plane.

Definition 3.4.5. (Symmetric fuzzy plane (Π̃S)). Let lx +my + nz = p be a plane

and p̃ = (p− ℓ/p/p+ r)LR be a fuzzy number. A symmetric fuzzy plane, denoted as

Π̃S, can be defined by the membership value

µ
(
(x, y, z)

∣∣∣Π̃S

)
= µ(p|p̃),

where p = lx+my + nz.
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For any α ∈ [0, 1], the α-cuts of the Π̃S is given by

Π̃S(α) =
∨
{(x, y, z) : lx+my + nz = p, where p ∈ p̃(α)}.

Example 3.4.7. (Symmetric fuzzy plane (Π̃S)). Let 1√
14
x + 2√

14
y + 3√

14
z = 8 be a

plane. Let 8̃ = (8 − ℓ/8/8 + r)LR be a fuzzy number with ℓ = 3, r = 5 whose

reference functions are

L(x) = R(x) =


√
1− x if 0 ≤ x ≤ 1

0 if x > 1.

Accordingly, the membership function of 8̃ is

µ(p|8̃) =



√
1−

(
8− p
3

)
if 5 ≤ p ≤ 8√

1−
(
p− 8

5

)
if 8 ≤ p ≤ 13.

(3.20)

By Definition 3.4.5, the membership function of Π̃S is

µ
(
(x, y, z)

∣∣∣Π̃S

)
= µ(p|8̃) =



√
1−

(
8− p
3

)
if 5 ≤ p ≤ 8√

1−
(
p− 8

5

)
if 8 ≤ p ≤ 13,

where 1√
14
x+ 2√

14
y+ 3√

14
z = p. It can be easily seen that µ

(
(8, 5, 3)

∣∣∣Π̃S

)
= 0.8594.

The following defines the notion of the angle between two fuzzy planes.

Definition 3.4.6. (Angle between two fuzzy planes). Let P̃1, P̃2 and P̃3 be three S-

type space fuzzy points whose cores are not collinear and let Π̃3P be the fuzzy plane
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that passes through P̃1, P̃2 and P̃3. Again, let Q̃1, Q̃2 and Q̃3 be three S-type space

fuzzy points whose cores are not collinear and let Π̃3Q be the fuzzy plane that passes

through Q̃1, Q̃2 and Q̃3. The angle between Π̃3P and Π̃3Q, θ̃ say, can be defined as

µ
(
θ
∣∣∣θ̃) = sup{α : θ is the angle between the planes Π3P and Π3Q that passes

through the same points of P̃1(0), P̃2(0), P̃3(0), and Q̃1(0), Q̃2(0),

Q̃3(0), respectively, with membership value α}.

Theorem 3.4.5. For two fuzzy planes Π̃3P and Π̃3Q that passes through P̃1, P̃2, P̃3,

and Q̃1, Q̃2, Q̃3, respectively,

(i) θ̃(α) = {θ : θ is the angle between the planesΠ3P andΠ3Q that passes through

the same points ofP̃1(0), P̃2(0), P̃3(0), and Q̃1(0), Q̃2(0), Q̃3(0),

respectively,with membership value α}.

(ii) θ̃ is a fuzzy number in R.

Proof. The proof is similar to that of Theorem 4.1 in [117].

Example 3.4.8. (Angle between two fuzzy planes). Consider three fuzzy points

P̃1(0, 0, 0), P̃2(0, 1, 0) and P̃3(0, 0, 1) with membership functions

µ
(
(x, y, z)

∣∣∣P̃1(0, 0, 0)
)
=


1−

√
x2 + y2 + z2 if x2 + y2 + z2 ≤ 1

0 otherwise,
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µ
(
(x, y, z)

∣∣∣P̃2(0, 1, 0)
)
=


1− 1

2

√
x2 + (y − 1)2 + z2 if x2 + (y − 1)2 + z2 ≤ 4

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃3(0, 0, 1)
)
=


1−

√
x2 + y2 + (z − 1)2 if x2 + y2 + (z − 1)2 ≤ 1

0 otherwise.

The general expression of the same points of P̃1, P̃2 and P̃3 are

(
u1
)α
θφ

: ((1− α) sinφ cos θ, (1− α) sinφ sin θ, (1− α) cosφ) ,(
u2
)α
θφ

: (2(1− α) sinφ cos θ, 1 + 2(1− α) sinφ sin θ, 2(1− α) cosφ) ,(
u3
)α
θφ

: ((1− α) sinφ cos θ, (1− α) sinφ sin θ, 1 + (1− α) cosφ) ,

respectively.

Consider another three fuzzy points Q̃1(1, 0, 0), Q̃2(0, 1, 0) and Q̃3(0, 0, 1) with mem-

bership functions

µ
(
(x, y, z)

∣∣∣Q̃1(1, 0, 0)
)
=


1−

√
(x− 1)2 + y2 + z2 if (x− 1)2 + y2 + z2 ≤ 1

0 otherwise,
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µ
(
(x, y, z)

∣∣∣Q̃2(0, 1, 0)
)
=


1−

√
x2 + (y − 1)2 + z2 if x2 + (y − 1)2 + z2 ≤ 1

0 otherwise

and

µ
(
(x, y, z)

∣∣∣Q̃3(0, 0, 1)
)
=


1− 1

2

√
x2 + y2 + (z − 1)2 if x2 + y2 + (z − 1)2 ≤ 4

0 otherwise.

The general expression of the same points of Q̃1, Q̃2 and Q̃3 are

(
v1
)α
θφ

: (1 + (1− α) sinφ cos θ, (1− α) sinφ sin θ, (1− α) cosφ) ,(
v2
)α
θφ

: ((1− α) sinφ cos θ, 1 + (1− α) sinφ sin θ, (1− α) cosφ) ,(
v3
)α
θφ

: (2(1− α) sinφ cos θ, 2(1− α) sinφ sin θ, 1 + 2(1− α) cosφ) ,

respectively.

Let Π̃3P and Π̃3Q be two fuzzy planes passing through P̃1, P̃2, P̃3, and Q̃1, Q̃2, Q̃3,

respectively.

The following Table 3.7 and Figure 3.5 show the α-cuts and the membership function

of the angle between two fuzzy planes Π̃3P and Π̃3Q.
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α θ̃(α)

0.1 [35.3499, 101.0759]

0.2 [36.8108, 94.9898]

0.3 [38.4282, 88.7758]

0.4 [40.2120, 82.8473]

0.5 [42.1710, 77.0350]

0.6 [44.3122, 71.5421]

0.7 [46.4788, 66.5157]

0.8 [48.8802, 62.0344]

0.9 [51.6328, 58.1239]

1 54.7356

Table 3.7: α-cuts of the angle between two fuzzy planes Π̃3P and Π̃3Q for
Example 3.4.8
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Figure 3.5: Angle between two fuzzy planes Π̃3P and Π̃3Q for Example 3.4.8

The following defines the distance between an S-type space fuzzy point and a fuzzy

plane.
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Definition 3.4.7. (Distance between an S-type space fuzzy point and a fuzzy plane).

Let P̃ be an S-type space fuzzy point and let Π̃ be a fuzzy plane. The distance

between P̃ and Π̃, denoted as D̃, can be defined by

D̃ =
∨

α∈[0,1]

[dαl , d
α
u ] , (3.21)

where

dαl = inf
{
d(u, v) : u ∈ P̃ (α) and v ∈ Π̃(α)

}
and

dαu = sup
{
d(u, v) : u ∈ P̃ (α) and v ∈ Π̃(α)

}
.

The notion dαl and dαu are adjoined with the membership value α.

Theorem 3.4.6. The distance D̃ between a fuzzy point and a fuzzy plane is a fuzzy

number.

Proof. The proof is similar to that of Theorem 4.1 in [117].

Example 3.4.9. (Distance between an S-type space fuzzy point and a fuzzy plane).

Consider three fuzzy points P̃1(1, 0, 0), P̃2(0, 1, 0) and P̃3(0, 0, 1) as in Example 3.4.8.

Let Π̃3P be the fuzzy plane that passes through the fuzzy points P̃1, P̃2 and P̃3, and

let P̃ (0, 0, 0) be a fuzzy point whose core does not lie in the core plane of Π̃3P . The

membership function of P̃ (0, 0, 0) is

µ
(
(x, y, z)

∣∣∣P̃ (0, 0, 0)) =


1−

√
x2 + y2 + z2 if x2 + y2 + z2 ≤ 1

0 otherwise.

The following Table 3.8 and Figure 3.6 show the α-cuts and the membership function

of the distance between the fuzzy point P̃ and the fuzzy plane Π̃3P .
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α D̃(α)

0.1 [0.0990, 0.7070]

0.2 [0.1751, 0.7071]

0.3 [0.2423, 0.7070]

0.4 [0.3069, 0.7031]

0.5 [0.3666, 0.6935]

0.6 [0.4154, 0.6784]

0.7 [0.4617, 0.6588]

0.8 [0.5046, 0.6360]

0.9 [0.5433, 0.6087]

1 0.5774

Table 3.8: α-cuts of the distance between the fuzzy point P̃ and the fuzzy plane
Π̃3P for Example 3.4.9
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Figure 3.6: Distance between the fuzzy point P̃ and the fuzzy plane Π̃3P for
Example 3.4.9

The following section compares the proposed formulations of the space fuzzy lines,

the shortest distance between symmetric skew fuzzy lines, and the fuzzy planes with

existing formulations [43, 47, 38, 44, 46, 22, 9, 37, 7, 21, 45].
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3.5 Discussion and comparison

In the proposed formulation of the space fuzzy lines and the fuzzy planes, we observe

the following properties:

(i) Space fuzzy line segments are extended bi-infinitely to form the space fuzzy

lines (see Section 3.2).

(ii) The support of the particular form of space fuzzy line (symmetric fuzzy line)

is a right circular cylinder. The axis of this cylinder is the core line L̃S(1) (see

Definition 3.2.1).

(iii) The α-cuts of the space fuzzy lines are closed, connected, and an arc-wise

connected subset of R3 but are not necessarily convex. However, the α-cuts

of the symmetric fuzzy lines are closed, connected, arc-wise connected, and

convex subset of R3 (see (3.8)).

(iv) Space fuzzy lines are always normal fuzzy sets.

(v) The intersection of a plane perpendicular to the core line of the space fuzzy

line is a fuzzy point along that plane (see Theorem 3.2.2).

(vi) The intersection of two space fuzzy lines may not be an S-type space fuzzy

point (see Figure 3.2), but the intersection of two symmetric fuzzy lines is an

S-type space fuzzy point (see Observation 3.2.2).

(vii) The mathematical expressions of the membership functions of fuzzy planes (see

Definitions 3.4.1, 3.4.3, 3.4.4) demonstrate that the fuzzy plane is a collection

of crisp points with varied membership grades, or a collection of crisp planes

joining same points with different membership values.

(viii) A fuzzy plane is always a normal fuzzy set, and its core is a crisp plane.
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(ix) The α-cuts of fuzzy planes are closed, connected and convex subsets of R3 (see

(3.14), (3.16), (3.18)).

(x) The intersection of two fuzzy planes is a space fuzzy line (see Observation

3.4.1).

We have made a remark based on points (vi) and (x) (in p. 143) regarding the

intersection of two space fuzzy lines and two fuzzy planes as per the approach of

[89].

Remark 3.5.1. (i) As per the approach of [89], the fuzzy lines depicted in Figure

3.2 are fuzzily intersecting fuzzy lines since their cores do not intersect even

when extended. Still, some portions of the fuzzy lines intersect in R3. In this

case, as per the notions of [89], the measure of the intersection of two fuzzy

lines (v = 1 − ρ) lies between 0 and 1. Here, ρ = 1 − λ gives the measure of

parallelness, and

λ = sup
(x,y,z)∈R3

{
min

(
µ
(
(x, y, z)

∣∣∣L̃1

)
, µ

(
(x, y, z)

∣∣∣L̃2

))}
(3.22)

gives the height of the fuzzy intersection region. Explicitly, we can see that

0 < v < 1 since the cores of fuzzy lines never intersect (0 < λ < 1 by (3.22)).

(ii) As per the approach of [89], the considered fuzzy lines in Observation 3.2.2 (ii)

are completely intersecting fuzzy lines since their cores intersect. In this case,

as per the notions of [89], the measure of the intersection of two fuzzy lines is

v = 1. This is because the hight of fuzzy intersection region is λ = 1 by (3.22).

(iii) As per the approach of [89], the considered fuzzy planes in Observation 3.4.1

are completely intersecting fuzzy planes since their cores intersect. The hight of

fuzzy intersection region is λ = 1 by (3.22). Hence, the measure of intersection

of two fuzzy planes is v = 1 since ρ = 1− λ = 0.
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Below, we give a point-wise comparison of space fuzzy lines and then of fuzzy planes.

Note 9. All the comparisons of the proposed ideas for space fuzzy lines and the

shortest distance between skew fuzzy lines are made with the formulations of [38,

21, 7] and [7, 38, 47, 43, 44, 46, 45], respectively, when the concepts of [43, 47, 38,

44, 46, 21, 7, 45] are extended in the same way in the fuzzy space geometry.

The point-wise comparison of space fuzzy lines and the shortest distance between

skew fuzzy lines are as follows:

• Space fuzzy line. As per the approach of [38, 21, 7], the definition and

deficiency of space fuzzy line segments (in space-R3) is given in [117]. It is

noted in [117] that the space fuzzy line segment in [117] is more appropriate

than [38, 21, 7], and the proposed space fuzzy line is a union of the space fuzzy

line segments (see Definition 2.5.1 and (3.2) and (3.1)). Hence, the proposed

space fuzzy line is better than the formulations in [38, 21, 7].

• Shortest distance between two skew fuzzy lines. In [117], it is noted

that the fuzzy distance between pair of fuzzy sets proposed in [117] is more

appropriate than the existing formulations [7, 38, 47, 43, 44, 46, 45]. This is

because, in [117], the concept of the same and inverse point has been used. In a

similar manner, the proposed shortest distance between skew fuzzy lines is also

based on the same and inverse point theory. Hence, the proposed formulations

is highly effective than that of [7, 38, 47, 43, 44, 46, 45].

Next, we present interrelations between the proposed different forms of fuzzy planes.

In general, Π̃3P or Π̃I cannot be equivalent to Π̃Pn since all the crisp planes are

parallel in the support of Π̃Pn. However, Π̃3P is an Π̃I and vice versa.

Theorem 3.5.1. Π̃I is an Π̃3P .
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Proof. The proof is similar to that of Theorem 4.0.3 in [2].

In this paper, we have given three approaches to construct the fuzzy plane. The

approach of the fuzzy plane passing through an S-type space fuzzy point and per-

pendicular to a given crisp direction is one of them. In this approach, a question

may arise: why a crisp direction is being taken rather than the fuzzy direction (see

Definition 3.4.4). To answer this question, from the (iii) ( p. 148), we have observed

that if we take a fuzzy direction instead of a crisp direction, the support of the fuzzy

plane may be unbounded. Hence, we have neglected that case in this article.

Let us compare the proposed methodological analysis with existing formulations of

fuzzy planes in [22, 9, 37, 7].

In the literature, Rosenfeld [37] and Ghosh and Chakraborty [9] introduced some

concepts regarding the fuzzy half-plane. The fuzzy half-plane in [37] is either the

entire plane R2, or half-plane bounded by a line, or empty. According to [9], a fuzzy

half-plane can be determined when the fuzzy line L̃ fuzzily separates the whole R2-

plane into two parts. The points on the support of fuzzy (closed) half-plane in [9]

are either on one side of L̃(1) or on it, but no points on the other side. A fuzzy

plane, according to [22], is a thin planer shell with variable thickness containing the

family of crisp planes. The crisp planes are the extension of the family of crisp lines

representing a fuzzy line. All these proposed fuzzy half-planes in [9, 37] and fuzzy

planes in [22] referred to as the fuzzy line in R2-plane. Thus, for α ∈ [0, 1], the α-cuts

of the fuzzy half-planes or fuzzy planes in [22, 9, 37] is a subset of R2-plane, or entire

R2-plane. Therefore, these definitions do not coincide with the conventional plane

definitions in the Euclidean space R3. Whereas a fuzzy plane should be a fuzzy set

in R3, and the core must coincide with a crisp plane’s customary definitions.
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After analyzing all these deficiencies of fuzzy half-planes or fuzzy planes in [22,

9, 37], we have proposed three different forms of the fuzzy planes (see Definitions

3.4.1, 3.4.3, 3.4.4) by extending the definitions of the Euclidean plane (in R3-space)

in the fuzzy environment. Prior to the proposed work, only Qiu and Zhang [7]

demonstrated the fuzzy plane using extension principle [15] by extending the known

ideas in [5, 6]. Additionally, the fuzzy plane, described in [7], follows the definitions

of the Euclidean plane when its attributes are imprecise. However, one can visualize

that three proposed constructions for fuzzy planes are either easier to evaluate the

membership functions or have less spread when compared to those of Qiu and Zhang

in [7]. This is because the proposed fuzzy planes are based on the theory of same

and inverse points (see Definitions 3.4.1, 3.4.3, 3.4.4). A point-wise comparison of

these two different approaches of the fuzzy plane is realized as mentioned below.

(i) (Three-point form).

As per the approach of [7], a fuzzy plane may be defined as

Π̃3P =
∨
{(x, y, z) : (x, y, z) lies on the plane passing through the points in

P̃1(0), P̃2(0) and P̃3(0)}.

However, we have investigated the fuzzy plane as

Π̃3P =
∨
{(x, y, z) : (x, y, z) lies on the plane passing through the same

points of P̃1(0), P̃2(0) and P̃3(0) with membership value α}.

The proposed Definition 3.4.1 shows the fuzzy plane as

Π̃3P =
∨

α∈[0,1]

Π̃3P (α),
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where

Π̃3P (α) = {(x, y, z) : n1(x− u) + n2(y − v) + n3(z − w) = 0, where u ∈ P̃1(α),

v ∈ P̃2(α) and w ∈ P̃3(α) are the same points, and (n1, n2, n3) =

cross(u− v, u− w)}.

In fact, the support of the proposed fuzzy plane Π̃3P is a subset of the support

of a fuzzy plane in [7]. This is because in the proposed method we considers

only the combination of the same points. Hence, the proposed fuzzy plane has

less imprecision than that in [7].

In addition, the evaluation of the membership function for Π̃3P becomes easier

than that in [7] since the explicit expression of the same points is used in the

proposed method.

(ii) (Intercept form).

Intercept form of the fuzzy plane Π̃I is defined (Definition 3.4.3) as the limiting

case of the three-point form of the fuzzy plane. According to the proposed

approach, the fuzzy plane Π̃I is a collection of crisp planes whose intercepts

are the same points of the given ã, b̃ and c̃. The Definition 3.4.3 evaluates the

fuzzy plane Π̃I as

Π̃I =
∨

α∈[0,1]

Π̃I(α),

where

Π̃I(α) = {(x, y, z) :
x

uα1
+

y

uα2
+

z

uα3
= 1 or

x

vα1
+

y

vα2
+

z

vα3
= 1, where uα1 , u

α
2 ,

uα3 and vα1 , v
α
2 , v

α
3 are the same points of ã, b̃ and c̃, respectively}.
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However, Qiu and Zhang [7] considered all the possible crisp planes whose

intercepts are arbitrary points of the given ã(0), b̃(0) and c̃(0). Clearly, in the

proposed consideration of Π̃I , there is a narrower spread than such construction

as in Qiu and Zhang [7]. In the proposed analysis, we find that the proposed

Π̃I across the core plane Π̃I(1) has a bounded imprecise part. In contrast, the

fuzzy plane Π̃I defined in [7] has unbounded support on either side of Π̃I(1).

The membership grade evaluation of a point in Π̃I(0) is easier than that in [7].

This is because the constraint set which we use in the optimization problem

(see Definition 3.4.3) to get the membership value of Π̃I is a proper subset of

that used by Qiu and Zhang [7].

(iii) (A fuzzy plane passing through an S-type space fuzzy point P̃ and

perpendicular to a given crisp direction n (Π̃Pn)).

In the proposed Π̃Pn (Definition 3.4.4), we consider the only crisp direction,

and an S-type space fuzzy point. By Definition 3.4.4, Π̃Pn is a collection of the

crisp planes parallel to the core plane. Thus, the proposed Π̃Pn has a bounded

imprecise part across the core plane Π̃Pn(1).

In contrast, the fuzzy plane passing through a space fuzzy point P̃ and per-

pendicular to a given fuzzy direction Ñ , Π̃PN say, (see definition by Qiu and

Zhang [7]) has unbounded support since a fuzzy direction Ñ is a collection of

crisp directions. Also, for each n ∈ Ñ(0), there exists a fuzzy plane passing

through a space fuzzy point P̃ and perpendicular to a given crisp direction n

(Π̃Pn). More precisely,

Π̃PN =
⋃

n∈Ñ(0)

Π̃Pn,

where the membership function of Π̃Pn is given by the Definition 3.4.4. If the

fuzzy direction Ñ reduces to a crisp direction n, then Π̃Pn = Π̃PN .
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The alternative approaches to construct the fuzzy plane depend on what information

is known about it. The three-point form of the fuzzy plane must be preferred when

the three S-type space fuzzy points are known. It is preferable to use the intercept

form of a fuzzy plane when its three intercepts are known. When an S-type space

fuzzy point and a crisp direction are known, the third approach of the fuzzy plane

(Definition 3.4.4) is preferred. Therefore, the use of different formulations of fuzzy

planes is favoured according to the information available for fuzzy planes in our

study.

3.6 Conclusion

In this paper, we have discussed space fuzzy lines and three different forms of a fuzzy

plane in R3. Notably, new ideas of the skew fuzzy lines and the shortest distance

between skew fuzzy lines are presented. Moreover, the three different forms of fuzzy

planes, namely, three-point form, intercept form, and a fuzzy plane passing through

an S-type space fuzzy point and perpendicular to a given crisp direction, have been

proposed. We have also developed the algorithms for finding the membership values

of all the proposed formulations of the space fuzzy lines and the fuzzy planes and

added suitable numerical examples. The geometric properties of all these proposed

forms of fuzzy planes and their interrelations are also investigated. The intersection

of two space fuzzy lines may not be a space fuzzy point as the α-cuts of space fuzzy

line may not be convex (see Figure 3.2). However, the intersection of two symmetric

fuzzy lines is a fuzzy point (see Observation 3.2.2). Also, the interrelations between

the three-point form and intercept form are found to be equivalent. In a sequel, we

have defined the notion of the angle between two fuzzy planes. Theorem 3.4.5 shows

that the angle between two fuzzy planes is a fuzzy number. Also, we have defined
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the distance between an S-type space fuzzy point and a fuzzy plane, which is a fuzzy

number (see Theorem 3.4.6). A brief analysis of the shortest distance between two

non-symmetric skew fuzzy lines has been given in this paper. However, a detailed

study of the shortest distance between two non-symmetric skew fuzzy lines will be

discussed in the future.

In a future study, the fuzzy space geometrical objects such as fuzzy cones, fuzzy

spheres, fuzzy ellipsoids, and their properties will be formulated in detail. All the

ideas can be extended to an n-dimensional space, n ≥ 4. Future work can focus on

such an extension.

***********
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