
Chapter 2

Analytical fuzzy space geometry I

2.1 Introduction

This chapter continues the study on fuzzy geometry [1, 2, 3, 4, 35]. In [1, 2, 3, 4, 35],

Ghosh and Chakraborty have investigated the basic concepts of fuzzy plane geometry

using the theory of same and inverse points. In this article, we study a few basic

concepts on fuzzy space geometry. Throughout the chapter, by space we mean the

three-dimensional Euclidean space (R3-space).

The basis on which the entire construction of fuzzy plane geometry by Ghosh and

Chakraborty [1, 2, 3, 4, 35] is laid is the concept of same-and-inverse points. The idea

of same and inverse points with respect to a pair of fuzzy points was figured out in [1]

by finding a fuzzy point as a collection of normal and convex fuzzy sets along the lines

passing through the core of the fuzzy points. It is reported in [1] that if the fuzzy sets

along the same direction are combined by the extension principle, then two types of

combinations can be found: effective combinations (combinations of same or inverse

points) and redundant combinations. After identifying redundant combinations, the

concepts of the same points and inverse points have been introduced in [1].

31
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2.2 Motivation and Contributions

It is observed in [1, 2, 3] that the ideas of same and inverse points are truly effective

to construct fuzzy plane geometrical elements. Furthermore, in [87], it is reported

that the theory of the same points can massively reduce the computational cost.

Moreover, fuzzy geometry has been successfully applied in many realistic fields (see

Subsection). Thus, there is a need to advance the theory of fuzzy geometry. Due

to this need, in this paper, we attempt to develop fuzzy space geometrical elements

with the help of the same and inverse points.

The main contribution and novelty of this chapter are as follows.

(i) We introduce a three-variable reference function (see Subsection 2.3.1) by which

space fuzzy points are represented in a unified way (Theorem 2.3.1). Accord-

ingly, we define an S-type space fuzzy point (Definition 2.3.2) to represent a

fuzzy point with the help of a reference function. Importantly, it is shown that

on the omission of two variables, a three variable reference function S reduces

to an LR-reference function for fuzzy numbers (Note 2). Also, by extending

the number of variables from three to n, the reference function will act as a

reference function for a fuzzy point in Rn.

(ii) With the help of S-type representation of space fuzzy points, we give an explicit

expression of the same and inverse points (see Subsections 2.3.3.4 and 2.3.3.5)

for two general S-type space fuzzy points. As the concepts of same and inverse

points are the basis for this study, the identification of explicit expressions

facilitates the computations of membership functions of the proposed fuzzy

geometrical entities and fuzzy distance.
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(iii) With the help of the same and inverse point theory, the concepts of fuzzy line

segments and fuzzy distance for fuzzy space geometry are introduced. It is

noteworthy that the proposed space fuzzy line segment and fuzzy distance are

based on S-type representation fuzzy points. In contrast, the fuzzy line segment

and fuzzy distance in the R2-plane are not based on reference functions. Thus,

the proposed ideas are not a straightforward extension of the existing two-

dimensional entities.

(iv) With the help of the explicit expressions of same and inverse points, we provide

the explicit step-wise procedure to find the fuzzy distance between two fuzzy

points (Algorithm 2.4.1), to compute the membership value of a point in the

fuzzy distance (Algorithm 2.4.2), to execute space fuzzy line segment joining

two fuzzy points (Algorithm 2.5.1), and the evaluation of the membership value

of a point in space fuzzy line segment (Algorithm 2.5.2).

2.3 Space fuzzy point

In this section, we propose a reference function of three variables to represent space

fuzzy points. We further define the concepts of the same and inverse points for space

fuzzy points. Next, we give general expressions of the same and inverse points with

the help of three-variable reference functions.

Definition 2.3.1. (Space fuzzy point). A space fuzzy point at (a, b, c) ∈ R3, de-

noted P̃ (a, b, c), is a fuzzy set in R3 whose membership function has the following

properties:

(i) µ
(
(x, y, z)

∣∣∣P̃ (a, b, c)) = 1 only at (x, y, z) = (a, b, c), and

(ii) P̃ (a, b, c)(α) is a compact and convex subset of R3, for all α in [0, 1].
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Example 2.3.1. The fuzzy set P̃ (a, b, c) in R3 that has the membership function

µ
(
(x, y, z)

∣∣∣P̃ (a, b, c))

=


1−

√(
x−a
p

)2

+
(
y−b
q

)2

+
(
z−c
r

)2
if
(
x−a
p

)2

+
(
y−b
q

)2

+
(
z−c
r

)2 ≤ 1

0 otherwise

is a space fuzzy point. For any α ∈ (0, 1], the α-cut of the space fuzzy point P̃ (a, b, c)

is the ellipsoid

P̃ (a, b, c)(α) =

{
(x, y, z) ∈ R3 :

(
x−a
p

)2

+
(
y−b
q

)2

+
(
z−c
r

)2 ≤ (1− α)2
}
,

which is evidently a convex and compact subset of R3.

Space fuzzy points are basic elements to develop fuzzy space geometry. For a unified

representation of space fuzzy points, we construct a reference function in R3. After

that, we formulate a space fuzzy point by a reference function.

2.3.1 A reference function of three variables

A function S : R3 → [0, 1] which

1. is non-increasing along any direction (d1, d2, d3) emanated from (0, 0, 0),

2. is symmetric about (0, 0, 0) and about the axes on any line L : x
d1

= y
d2

= z
d3

passing through origin, i.e., for any λ ∈ R:

S(λd1, λd2, λd3) = S(−λd1,−λd2,−λd3)

= S(−λd1, λd2, λd3) = S(λd1,−λd2, λd3) = S(λd1, λd2,−λd3), and

3. satisfies either of the following two conditions:
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(i) S(0, 0, 0) = 1 and there exists a norm ∥ · ∥ : R3 → [0,∞) such that on

the unit sphere S2 = {(x, y, z) ∈ R3 : ∥(x, y, z)∥ = 1}, the function value

of S is zero, i.e., S(S2) = {S(x, y, z) : (x, y, z) ∈ S2} = {0}, or

(ii) S(0, 0, 0) = 1, S(x, y, z) > 0 for all (x, y, z) in R3, and lim
x→+∞

S(x, y, z) =

lim
y→+∞

S(x, y, z) = lim
z→+∞

S(x, y, z) = 0

is called a reference function of three variables.

Few examples of three-variable reference functions are

(a) S(x, y, z) = max {0, 1− (|x|+ |y|+ |z|)p} with p > 0,

(b) S(x, y, z) = max
{
0, 1− (|x|p + |y|p + |z|p)

1
p

}
with p > 0,

(c) S(x, y, z) = max{0, 1− ∥(x, y, z)∥} where ∥ · ∥ is any norm in R3,

(d) S(x, y, z) = exp(−(|x|+ |y|+ |z|)),

(e) S(x, y, z) = exp(−(x2 + y2 + z2)), etc.

Note 2. We observe that in the omission of any two of the three variables x, y, and

z, the definition of the reference function of three variables reduces to the definition

of reference function for a fuzzy number (Definition 1.3.3). For instance, if we omit

y and z in the definition of the reference function S, then S becomes non-increasing

in [0,∞), symmetric about ‘0’ and the conditions (3i) and (3ii) for S reduce to the

following conditions:

(i) S(0) = 1 and S(1) = 0, or

(ii) S(0) = 1, S(x) > 0 for all x, and lim
x→+∞

S(x) = 0,
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respectively. Hence, S qualifies all the conditions of Definition 1.3.3. Thus, the

definition of reference function of three-variables is a true generalization of the Def-

inition 1.3.3 of reference function for fuzzy numbers. Furthermore, it is noticeable

that just by extending the number of variables from three to n, we will get an

n-variable reference function for a fuzzy point in Rn.

2.3.2 Representation of a space fuzzy point by a reference

function

Definition 2.3.2. (S-type space fuzzy point). A space fuzzy point P̃ is called an S-

type space fuzzy point at (a, b, c) if there exists a three-variable reference function

S and a homeomorphism Tα : ∂P̄ (α) → S2(α) with Tα(0, 0, 0) = (0, 0, 0) for all

α ∈ [0, 1] such that

µ
(
(x, y, z)

∣∣∣P̃) = α = S(Tα(x− a, y − b, z − c)),

where ∂P̄ (α) is the set of all boundary points of the convex set

P̄ (α) =
{
(x− a, y − b, z − c) : (x, y, z) ∈ P̃ (α)

}

and S2(α) is the sphere {(x, y, z) ∈ R3 : ∥(x, y, z)∥ = α} with respect to a norm ∥ · ∥

on R3.
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Example 2.3.2. (Ellipsoid base S-type space fuzzy point). Consider the fuzzy point

P̃ (0, 1, 0) whose membership function is given by

µ
(
(x, y, z)

∣∣∣P̃ (0, 1, 0))
=


1−

{(
x
2

)2
+ (y − 1)2 +

(
z
3

)2}
if
(
x
2

)2
+ (y − 1)2 +

(
z
3

)2 ≤ 1

0 otherwise.

We note that

(i) ∂P̃ (0, 1, 0)(α) = {(x, y, z) ∈ R3 :
(
x
2

)2
+ (y − 1)2 +

(
z
3

)2
= (1− α)2},

(ii) the unit sphere with respect to the usual Euclidean norm is S2 = {(x, y, z) ∈

R3 : x2 + y2 + z2 = 1},

(iii) for each α ∈ [0, 1), the translated P̃ (α) by the translation (x, y, z)→ (x, y, z)−

(0, 1, 0) is

P̄ (α) = {(x, y, z) :
(
x
2

)2
+ (y)2 +

(
z
3

)2 ≤ (1− α)2},

(iv) the map Tα(x, y, z) =
(

xα
2(1−α) ,

yα
1−α ,

zα
3(1−α)

)
is a homeomorphism from ∂P̄ (α)

to S2(α), and

(v) with the reference function S(x, y, z) = max {0, 1− (x2 + y2 + z2)},

µ
(
(x, y, z)

∣∣∣P̃ (0, 1, 0)) = S(Tα(x, y − 1, z)).

Thus, P̃ (0, 1, 0) is an S-type space fuzzy point.

Theorem 2.3.1. A fuzzy set P̃ on R3 is a space fuzzy point if and only if there

exists a three-variable reference function S : R3 → [0, 1] and a homeomorphism
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T : ∂P̄ (α)→ S2(α) with Tα(0, 0, 0) = (0, 0, 0) for all α ∈ [0, 1) and

µ
(
(x, y, z)

∣∣∣P̃) = S(Tα(x− a, y − b, z − c)), (2.1)

where

(i) ∂P̄ (α) is the set of all boundary points of P̄ (α), the translated P̃ (α) by the

translation (x, y, z)→ (x, y, z)− (a, b, c),

(ii) S is a monotonic non-increasing function and is continuous from right on any

ray emanated from (a, b, c) and

(iii) S2(α) is the sphere {(x, y, z) ∈ R3 : ∥(x, y, z)∥ = α} of R3 with respect to a

norm ∥ · ∥ : R3 → [0,∞).

Proof. The result is followed from Definition 2.3.1 and the definition of three-variable

reference function, and from the facts that

(i) P̃ (α) is a closed convex set for all α ∈ [0, 1],

(ii) S2(α) is the set of all boundary points of the closed convex set {(x, y, z) ∈ R3 :

∥(x, y, z)∥ ≤ α}, and

(iii) boundaries of two closed convex sets in R3 with nonempty interiors are home-

omorphic.

Note 3. Theorem 2.3.1 proves that any fuzzy point in R3 is an S-type fuzzy point.

Thus, in the rest of the articles, we use the term ‘S-type fuzzy point’ to mean a

fuzzy point in R3.



Chapter 2. Analytical fuzzy space geometry I 39

Note 4. If we apply Theorem 2.3.1 on a continuous fuzzy point P̃ (a, b, c) whose

membership function is monotonically strictly decreasing along any ray emanated

from (a, b, c), then the membership function µ of P̃ can be represented by

µ
(
(x, y, z)

∣∣∣P̃ (a, b, c)) = f(x− a, y − b, z − c),

where f = S ◦ T is a bijective map. The function f is bijective since so is S along

any ray emanated from (a, b, c) and T is a homeomorphism.

2.3.3 Same and inverse points

To define the concepts of the same and inverse points, we need the following idea

of a fuzzy number along a line passing through the core of an S-type space fuzzy

point.

2.3.3.1 Fuzzy numbers along a line

Let Ñ be a fuzzy number. In R3, the z-axis can be imagined as the real line.

Considering the z-axis as the universal set, the membership function of the fuzzy

number Ñ can be presented by

µ
(
(x, y, z)

∣∣∣Ñ)
=


µ
(
z
∣∣∣Ñ)

if x = 0 and y = 0

0 otherwise.

Next, we define a fuzzy number along a line passing through the core of an S-type

space fuzzy point. This formulation will help us to visualize an S-type space fuzzy

point as a collection of normal and convex fuzzy sets along different lines passing

through the core of the S-type space fuzzy point.
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Definition 2.3.3. (Fuzzy number along a line passing through the core point of an S-

type space fuzzy point). Let P̃ (a, b, c) be an S-type space fuzzy point by a reference

function S. Let L1 be a line passing through the core point (a, b, c) with direction

cosines (lx, ly, lz), i.e.,

L1 :
x−a
lx

= y−b
ly

= z−c
lz
.

Evidently, the intersection P̃ (a, b, c)
⋂
L1 is a normal and convex fuzzy set on L1. We

refer this normal and convex fuzzy set as a fuzzy number along L1. The membership

function of ÑL1 = P̃ (a, b, c)
⋂
L1 is given by

µ
(
(x, y, z)

∣∣∣ÑL1

)
=


µ
(
(x, y, z)

∣∣∣P̃ (a, b, c)) if (x, y, z) ∈ L1

0 elsewhere.

In the following, we show that corresponding to the fuzzy number ÑL1 , there is a

fuzzy number on the z-axis.

We apply the following transformations on the line L1 so that it coincides with the

z-axis.

Step 1: (Translate the origin to (a, b, c)). Apply the translation matrix T(a,b,c) (say)

on L1 and get L2 = T(a,b,c)L1 (see (b) in Figure 2.1), where T(a,b,c) =

1 0 0 −a

0 1 0 −b

0 0 1 −c

0 0 0 1


. By representing a point (x, y, z) in L1 by the column

vector (x, y, z, 1)T , we note that the translation matrix T(a,b,c) translates a

point (a+ klx, b+ kly, c+ klz) on L1 to (klx, kly, klz), where k is a constant.

Step 2: (Apply rotations to make the line L2 coincident with the z-axis).
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Figure 2.1: The steps for the transformation of the line L1 to z-axis

(i) Let

Rx =



1 0 0 0

0 cos θx − sin θx 0

0 sin θx cos θx 0

0 0 0 1


,

where sin θx =
ly√
l2y+l

2
z

and cos θx =
lz√
l2y+l

2
z

(Figure 2.2). Note that Rx

gives a rotation with respect to x-axis by an angle θx. Thus, by Rx, a
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Figure 2.2: Angle of rotations about x-axis and y-axis

point (klx, kly, klz) on L2 is mapped to the point

(
klx, 0, k

(
l2y√
l2y+l

2
z

+ l2z√
l2y+l

2
z

))
.

Accordingly, by the rotation Rx, L2 is transformed to

L3 :
x
lx
= z(

l2y√
l2y+l

2
z

+
l2z√
l2y+l

2
z

) , y = 0

(see (c) in Figure 2.1).

(ii) On L3 apply the rotation

Ry =



cos θy 0 − sin θy 0

0 1 0 0

sin θy 0 cos θy 0

0 0 0 1


,
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where sin θy = lx, cos θy =
√
l2y + l2z (refer to Figure 2.2).

Note that Ry gives a rotation with respect to y-axis by an angle θy. Thus,

by Ry, a point (
klx, 0, k

(
l2y√
l2y+l

2
z

+ l2z√
l2y+l

2
z

))
on L3 is transformed to (0, 0, k). Here the rotated line L4 = RyL3 coincides

with z-axis (see (d) in Figure 2.1).

Let Ñ z
L1

be the fuzzy set on z-axis that is obtained by applying the above three trans-

formations (T(a,b,c), Ry and Rx) on ÑL1 . Then, we note that membership function

of Ñ z
L1

is defined by

µ
(
(0, 0, z)

∣∣∣Ñz
L1

)
=


µ
(
(u, v, w)

∣∣∣ÑL1

)
if (0, 0, z, 1) = RyRxT(a,b,c)(u, v, w, 1),

u−a
lx

= v−b
ly

= w−c
lz

,

0 otherwise.

(2.2)

As ÑL1 is a normal and convex fuzzy set, the fuzzy set Ñ z
L1

on z-axis, is also so.

Hence, Ñ z
L1

is a fuzzy number on z-axis. We note that by varying L1 to another

line L that passes through (a, b, c), we will get a fuzzy number ÑL = P̃ (a, b, c)
⋂
L

that corresponds a fuzzy number, Ñ z
L say, on z-axis. Accordingly, the fuzzy point

P̃ (a, b, c) can be observed as a collection of fuzzy numbers ÑL’s along different lines

L’s, i.e.,

P̃ (a, b, c) =
⋃
{ÑL : L is a line passing through (a, b, c)}.

Example 2.3.3. Let P̃ (0, 0, 0) be an S-type space fuzzy point with the membership

function

µ
(
(x, y, z)

∣∣∣P̃ (0, 0, 0)) =


1−

√
x2 + y2 + z2 if x2 + y2 + z2 ≤ 1

0 otherwise.
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Consider the line

L1 :
x
1√
3

= y
1√
3

= z
1√
3

that passes through the core point of P̃ .

Let T(0,0,0) = I4, the identity matrix of order 4,

Rx =



1 0 0 0

0 1√
2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1


and Ry =



√
2
3

0 − 1√
3

0

0 1 0 0

1√
3

0
√

2
3

0

0 0 0 1


.

Then,

RyRxT(0,0,0) =



√
2
3
− 1√

6
− 1√

6
0

0 1√
2
− 1√

2
0

1√
3

1√
3

1√
3

0

0 0 0 1


.

Note that RyRxT(0,0,0) transforms

(i) L1 to the z-axis, and

(ii) the fuzzy number ÑL1 = P̃ (0, 0, 0)
⋂
L1 to the fuzzy number Ñ z

L with the

following membership function

µ
(
(0, 0, z)

∣∣∣Ñz
L

)
= µ

(
(u, v, w)

∣∣∣ÑL1

)
=


1− z if (0, 0, z, 1) = RyRx(u, v, w, 1),

u
1√
3

= v
1√
3

= w
1√
3

,

0 otherwise.
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2.3.3.2 Addition operation of two S-type space fuzzy points

Let P̃1(a1, b1, c1) and P̃2(a2, b2, c2) be two S-type space fuzzy points. For a given

θ ∈ [0, 2π] and φ ∈
[
0, π

2

]
, consider a line that passes through (a1, b1, c1):

L1
θφ : x−a1

sinφ cos θ
= y−b1

sinφ sin θ
= z−c1

cosφ
.

We note that the intersection of P̃1(a1, b1, c1) and L1
θφ constitutes a fuzzy number

along L1
θφ. Thus, the fuzzy point P̃1(a1, b1, c1) can be viewed as a collection of fuzzy

numbers along the lines L1
θφ for varied θ ∈ [0, 2π] and φ ∈

[
0, π

2

]
as follows:

P̃1(a1, b1, c1) =
⋃

θ∈[0,2π]

⋃
φ∈[0, π2 ]

Ñ1
θφ,

where Ñ1
θφ is the fuzzy number P̃1(a1, b1, c1)

⋂
L1
θφ along L1

θφ. We refer here the

Figure 2.3. In Figure 2.3, φ is the angle between the positive z′-axis and the line

L1
θφ, and θ is the angle between the projected line L1

θφ on the x′y′-plane and the

positive x′-axis.

Similarly,

P̃2(a2, b2, c2) =
⋃

θ∈[0,2π]

⋃
φ∈[0, π2 ]

Ñ2
θφ,

where Ñ2
θφ is the fuzzy number P̃2(a2, b2, c2)

⋂
L2
θφ along the line L2

θφ : x−a2
sinφ cos θ

=

y−b2
sinφ sin θ

= z−c2
cosφ

.

We define an addition of two S-type space fuzzy points P̃1 and P̃2 by

P̃1 + P̃2 =
⋃

θ∈[0,2π]

⋃
φ∈[0, π

2
]

(
Ñ1
θφ ⊕ Ñ2

θφ

)
. (2.3)
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Figure 2.3: Fuzzy number Ñ1
θφ along the line L1

θφ on the support of an S-type
space fuzzy point

Ghosh and Chakraborty [1] provided a work on effective and redundant combinations

for efficiently computing an addition of two fuzzy numbers and addition of two fuzzy

points in R2. In next subsection, we give a study for identifying the effective and

redundant combinations for the addition (2.3) of two S-type space fuzzy points.

2.3.3.3 Separation of effective combinations for the addition of two S-

type space fuzzy points

The following Lemma 2.3.1 and Theorem 2.3.2 are useful to separate out the effective

and redundant combinations to compute P̃1 + P̃2 in (2.3).

Lemma 2.3.1. Let P̃1(a1, b1, c1) and P̃2(a2, b2, c2) be two S-type space continuous

fuzzy points whose membership functions are strictly monotonic along the rays em-

anated from their respective core points. Let

L1
θφ : x−a1

sinφ cos θ
= y−b1

sinφ sin θ
= z−c1

cosφ
= λ1 ≥ 0
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and

L2
θφ : x−a2

sinφ cos θ
= y−b2

sinφ sin θ
= z−c2

cosφ
= λ2 ≥ 0

be two rays emanated from (a1, b1, c1) and (a2, b2, c2), respectively. If (x1, y1, z1) and

(x2, y2, z2) are two points in L1
θφ

⋂
P̃1(0) and L2

θφ

⋂
P̃2(0), respectively, such that

µ
(
(x1, y1, z1)

∣∣∣P̃1

)
= µ

(
(x2, y2, z2)

∣∣∣P̃2

)
= α, then

µ
(
(x1 + x2, y1 + y2, z1 + z2)

∣∣∣P̃1 + P̃2

)
= α.

Proof. The point (x1, y1, z1) and (x2, y2, z2) can be represented by

(x1, y1, z1) = (a1 + λ1 sinφ cos θ, b1 + λ1 sinφ sin θ, c1 + λ1 cosφ)

and

(x2, y2, z2) = (a2 + λ2 sinφ cos θ, b2 + λ2 sinφ sin θ, c2 + λ2 cosφ),

for some constants λ1 and λ2.

Consider two points

(x′1, y
′
1, z

′
1) = (a1 + λ′1 sinφ cos θ, b1 + λ′1 sinφ sin θ, c1 + λ′1 cosφ)

and

(x′2, y
′
2, z

′
2) = (a2 + λ′2 sinφ cos θ, b2 + λ′2 sinφ sin θ, c2 + λ′2 cosφ)

in L1
θφ

⋂
P̃1(0) and L

2
θφ

⋂
P̃2(0), respectively, such that

(x′1, y
′
1, z

′
1) ̸= (x1, y1, z1) and (x′2, y

′
2, z

′
2) ̸= (x2, y2, z2)
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but

(x′1 + x′2, y
′
1 + y′2, z

′
1 + z′2) = (x1 + x2, y1 + y2, z1 + z2).

Thus,

x′1 + x′2 = x1 + x2, y′1 + y′2 = y1 + y2, z
′
1 + z′2 = z1 + z2.

This implies λ′1 + λ′2 = λ1 + λ2. Here, two cases may arise:

(i) λ1 ≥ λ′1, i.e., λ2 ≤ λ′2 or

(ii) λ1 ≤ λ′1, i.e., λ2 ≥ λ′2.

In each of the cases, either λ′1 ≥ λ1 or λ′2 ≥ λ2. Since

µ
(
(λ1 sinφ cos θ, λ1 sinφ sin θ, λ1 cosφ)

∣∣∣P̃1

)

and

µ
(
(λ2 sinφ cos θ, λ2 sinφ sin θ, λ2 cosφ)

∣∣∣P̃2

)
are non-increasing along L1

θφ and L
2
θφ, respectively, in any of the cases: either λ′1 ≥ λ1

or λ′2 ≥ λ2, we have

µ
(
(x1 + x2, y1 + y2, z1 + z2)

∣∣∣P̃1 + P̃2

)
= sup

λ′1+λ
′
2=λ1+λ2

min
{
µ
(
(λ′1 sinφ cos θ, λ′1 sinφ sin θ, λ′1 cosφ)

∣∣∣P̃1

)
,

µ
(
(λ′2 sinφ cos θ, λ′2 sinφ sin θ, λ′2 cosφ)

∣∣∣P̃2

)}
≤ α
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and the maximum is attained for (x1, y1, z1) and (x2, y2, z2). This yields the result

that

µ
(
(x1 + x2, y1 + y2, z1 + z2)

∣∣∣P̃1 + P̃2

)
= α.

Theorem 2.3.2. Let P̃1(a1, b1, c1) and P̃2(a2, b2, c2) be two continuous S-type space

fuzzy points whose membership functions are strictly monotonic along the rays em-

anated from their respective core points. Let

L1
θφ : x−a1

sinφ cos θ
= y−b1

sinφ sin θ
= z−c1

cosφ
= λ1 ≥ 0

and

L2
θφ : x−a2

sinφ cos θ
= y−b2

sinφ sin θ
= z−c2

cosφ
= λ2 ≥ 0

be two rays emanated from (a1, b1, c1) and (a2, b2, c2) on the supports of the S-type

space fuzzy points P̃1 and P̃2, respectively. If

(x1, y1, z1) = (a1 + λ1 sinφ cos θ, b1 + λ1 sinφ sin θ, c1 + λ1 cosφ)

and

(x2, y2, z2) = (a2 + λ2 sinφ cos θ, b2 + λ2 sinφ sin θ, c2 + λ2 cosφ)

are two points in L1
θφ

⋂
P̃1(0) and L

2
θφ

⋂
P̃2(0), respectively, then exists two points

(x⋆1, y
⋆
1, z

⋆
1) = (a1 + λ′1 sinφ cos θ, b1 + λ′1 sinφ sin θ, c1 + λ′1 cosφ)

and

(x⋆2, y
⋆
2, z

⋆
2) = (a2 + λ′2 sinφ cos θ, b2 + λ′2 sinφ sin θ, c2 + λ′2 cosφ)

in L1
θφ

⋂
P̃1(0) and L

2
θφ

⋂
P̃2(0), respectively, where λ

′
1, λ

′
2 are constants such that:
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(i) µ
(
(x⋆1, y

⋆
1, z

⋆
1)
∣∣∣P̃1

)
= µ

(
(x⋆2, y

⋆
2, z

⋆
2)
∣∣∣P̃2

)
,

(ii) x1 + x2 = x⋆1 + x⋆2, y1 + y2 = y⋆1 + y⋆2, z1 + z2 = z⋆1 + z⋆2 , and

(iii) µ
(
(x1 + x2, y1 + y2, z1 + z2)

∣∣∣P̃1 + P̃2

)
= µ

(
(x⋆1, y

⋆
1, z

⋆
1)
∣∣∣P̃1

)
= µ

(
(x⋆2, y

⋆
2, z

⋆
2)
∣∣∣P̃2

)
.

Proof. We note that on L1
θφ, the membership function of P̃1 reduces to

ϕ1(λ1) := µ
(
(λ1 sinφ cos θ, λ1 sinφ sin θ, λ1 cosφ)

∣∣∣P̃1

)
, λ1 ≥ 0,

which is a monotonic strictly decreasing function.

Similarly,

ϕ2(λ2) := µ
(
(λ2 sinφ cos θ, λ2 sinφ sin θ, λ2 cosφ)

∣∣∣P̃2

)
, λ2 ≥ 0,

is a monotonic strictly decreasing function.

We note that both ϕ1 and ϕ2 are bijective and hence ϕ−1
1 and ϕ−1

2 exist and they are

continuous and strictly non-increasing on [0, 1].

Consider the function f = ϕ−1
1 + ϕ−1

2 . Then, obviously, f is strictly non-increasing

and continuous on [0, 1].

Let k = λ1 + λ2 and α be the value of f−1(k). For this α, we consider the constants

λ′1 and λ′2 defined by λ′1 = ϕ−1
1 (α) and λ′2 = ϕ−1

2 (α).

Addition of these constants is

λ′1 + λ′2 = f(α) = k.
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As ϕ−1
1 is strictly non-increasing on [0, 1] and ϕ−1

1 (0) = (a1, b1, c1), we note that

λ′1 ≥ 0. Similarly, λ′2 ≥ 0.

Corresponding to these λ′1 and λ′2,

(x⋆1, y
⋆
1, z

⋆
1) = (a1 + λ′1 sinφ cos θ, b1 + λ′1 sinφ sin θ, c1 + λ′1 cosφ)

and

(x⋆2, y
⋆
2, z

⋆
2) = (a2 + λ′2 sinφ cos θ, b2 + λ′2 sinφ sin θ, c2 + λ′2 cosφ)

are two points on L1
θφ and L2

θφ, respectively. According to Lemma 2.3.1, we obtain

µ
(
(x1 + x2, y1 + y2, z1 + z2)

∣∣∣P̃1 + P̃2

)
= µ

(
(x⋆

1, y
⋆
1 , z

⋆
1)
∣∣∣P̃1

)
= µ

(
(x⋆

2, y
⋆
2 , z

⋆
2)
∣∣∣P̃2

)
= α,

which proves the theorem.

Example 2.3.4. Let P̃1(3, 3, 3) and P̃2(1, 1, 1) be two continuous S-type space fuzzy

points with the reference functions

S1(x, y, z) = S2(x, y, z) = max{0, 1−
√
x2 + y2 + z2}

and membership functions

µ
(
(x, y, z)

∣∣∣P̃1(3, 3, 3)
)

=


1−

√
1
3
{(x− 3)2 + (y − 3)2 + (z − 3)2} if (x− 3)2 + (y − 3)2 + (z − 3)2 ≤ 3

0 otherwise
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and

µ
(
(x, y, z)

∣∣∣P̃2(1, 1, 1)
)

=


1−

√
3
5
(x− 1)2 + 1

5
(y − 1)2 + 1

5
(z − 1)2 if 3(x− 1)2 + (y − 1)2 + (z − 1)2 ≤ 5

0 otherwise.

Consider θ = 45◦ and φ = 54.73◦, and accordingly the rays

L1
θφ : x−3

−0.5
= y−3

0.5
= z−3

−0.5
= λ1 ≥ 0

and

L2
θφ : x−1

−0.5
= y−1

0.5
= z−1

−0.5
= λ2 ≥ 0

which pass through the cores of the fuzzy points P̃1 and P̃2, respectively.

Consider two points

(x1, y1, z1) ≡ (2.45, 3.55, 2.45) = (3− 0.5λ1, 3 + 0.5λ1, 3− 0.5λ1)

and

(x2, y2, z2) ≡ (0.55, 1.45, 0.55) = (1− 0.5λ2, 1 + 0.5λ2, 1− 0.5λ2)

in L1
θφ

⋂
P̃1(0) and L

2
θφ

⋂
P̃2(0), respectively, for λ1 = 1.1 and λ2 = 0.9.

Here, λ1 + λ2 = 2 > 0. We observe that there exist

(2.5, 3.5, 2.5) = (3− 0.5λ′1, 3 + 0.5λ′1, 3− 0.5λ′1)
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and

(0.5, 1.5, 0.5) = (1− 0.5λ′2, 1 + 0.5λ′2, 1− 0.5λ′2)

in L1
θφ

⋂
P̃1(0) and L

2
θφ

⋂
P̃2(0), respectively, for λ

′
1 = 1 and λ′2 = 1 such that:

(i) µ
(
(2.5, 3.5, 2.5)

∣∣∣P̃1

)
= µ

(
(0.5, 1.5, 0.5)

∣∣∣P̃2

)
= 0.5,

(ii) 2.45 + 0.55 = 2.5 + 0.5, 3.55 + 1.45 = 3.5 + 1.5, 2.45 + 0.55 = 2.5 + 0.5, and

(iii) µ
(
(3, 5, 3)

∣∣∣P̃1 + P̃2

)
= µ

(
(2.5, 3.5, 2.5)

∣∣∣P̃1

)
= µ

(
(0.5, 1.5, 0.5)

∣∣∣P̃2

)
= 0.5.

Here, according to the notations of Theorem 2.3.2, (x⋆1, y
⋆
1, z

⋆
1) ≡ (2.5, 3.5, 2.5) and

(x⋆2, y
⋆
2, z

⋆
2) ≡ (0.5, 1.5, 0.5).

Note 5. Theorem 2.3.2 describes that in computing the addition P̃1 + P̃2 of two

continuous S-type space fuzzy points P̃1 and P̃2, to find the membership value of a

point (x1 + x2, y1 + y2, z1 + z2), there are many possible pair of points

(x′1, y
′
1, z

′
1) = (a1 + λ′1 sinφ cos θ, b1 + λ′1 sinφ sin θ, c1 + λ′1 cosφ)

and

(x′2, y
′
2, z

′
2) = (a2 + λ′2 sinφ cos θ, b2 + λ′2 sinφ sin θ, c2 + λ′2 cosφ)

in L1
θφ

⋂
P̃1(0) and L

2
θφ

⋂
P̃2(0), respectively, for which

(x′1 + x′2, y
′
1 + y′2, z

′
1 + z′2) = (x1 + x2, y1 + y2, z1 + z2).

The collection of pairs which satisfy either of the following conditions:

(i) µ
(
(x′1, y

′
1, z

′
1)
∣∣∣P̃1

)
̸= µ

(
(x′2, y

′
2, z

′
2)
∣∣∣P̃2

)
or
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(ii) λ′1 ≤ 0, λ′2 ≥ 0 or λ′1 ≥ 0, λ′2 ≤ 0

are redundant pairs to find the membership value of (x1 + x2, y1 + y2, z1 + z2) in

P̃1 + P̃2. Hence, we call the pair of points (x⋆1, y
⋆
1, z

⋆
1) and (x⋆2, y

⋆
2, z

⋆
2) as in Theorem

2.3.2 as the effective pairs with respect to the S-type space fuzzy points P̃1 and P̃2.

In the addition of two fuzzy points P̃1 and P̃2:

P̃1 + P̃2 =
⋃

θ1,θ2∈[0,2π]

⋃
φ1,φ2∈[0, π2 ]

(
Ñ1
θ1φ1
⊕ Ñ2

θ2φ2

)
.

We observe that we need to calculate
(
Ñ1
θ1φ1
⊕ Ñ2

θ2φ2

)
for various θ1, θ2 ∈ [0, 2π]

and φ1, φ2 ∈ [0, π
2
]. However,

(
Ñ1
θ1φ1
⊕ Ñ2

θ2φ2

)
is not a fuzzy number along a line if

θ1 ̸= θ2 or φ1 ̸= φ2.

An S-type space fuzzy point can be viewed as a collection of fuzzy sets along any

line passing through the core of the S-type space fuzzy point. To view addition of

two S-type space fuzzy points as an S-type space fuzzy point, we considered only

the combinations
(
Ñ1
θφ ⊕ Ñ2

θφ

)
, θ ∈ [0, 2π] and φ ∈

[
0, π

2

]
, i.e., we take

P̃1 + P̃2 =
⋃

θ∈[0,2π]

⋃
φ∈[0, π2 ]

(
Ñ1
θφ ⊕ Ñ2

θφ

)
.

According to Theorem 2.3.2 and Note 5, to calculate

⋃
θ∈[0,2π]

⋃
φ∈[0, π2 ]

(
Ñ1
θφ ⊕ Ñ2

θφ

)
,

only the effective combinations are to be combined. This observation moderates to

define same and inverse points with respect to continuous fuzzy points in R3.
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Definition 2.3.4. (Same points). Let P̃1(a1, b1, c1) and P̃2(a2, b2, c2) be two S-type

space fuzzy points with continuous membership functions which are strictly decreas-

ing along the rays emanated from their respective core points. Consider two points

(x1, y1, z1) and (x2, y2, z2) on the supports of P̃1 and P̃2, respectively. Let

L1 :
x−a1
p1

= y−b1
q1

= z−c1
r1

be the line joining (x1, y1, z1) and (a1, b1, c1), and

L2 :
x−a2
p2

= y−b2
q2

= z−c2
r2

be the line joining (x2, y2, z2) and (a2, b2, c2). The points

(x1, y1, z1) = (a1 + λ1p1, b1 + λ1q1, c1 + λ1r1)

and

(x2, y2, z2) = (a2 + λ2p2, b2 + λ2q2, c2 + λ2r2),

where λ1, λ2 are constants, are said to be same points with respect to P̃1(a1, b1, c1)

and P̃2(a2, b2, c2), respectively, if:

(i) λ1 ≤ 0 and λ2 ≤ 0, or λ1 ≥ 0 and λ2 ≥ 0,

(ii) µ1

(
(x1, y1, z1)

∣∣∣P̃1

)
= µ2

(
(x2, y2, z2)

∣∣∣P̃2

)
, and

(iii) the direction ratios of L1 and L2 are identical, i.e., p1
p2

= q1
q2

= r1
r2
.

Example 2.3.5. (Same points). Let us consider the fuzzy points P̃1(3, 3, 3) and

P̃2(1, 1, 1) in Example 2.3.4. Consider a pair of points (2.5, 3.5, 2.5) and (0.5, 1.5, 0.5)
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from P̃1(0) and P̃2(0), respectively. The line joining (2.5, 3.5, 2.5) and (3, 3, 3) is

L1 :
x−3
0.5

= y−3
−0.5

= z−3
0.5
.

The line joining (0.5, 1.5, 0.5) and (1, 1, 1) is

L2 :
x−1
0.5

= y−1
−0.5

= z−1
0.5
.

The points

(2.5, 3.5, 2.5) = (3 + 0.5λ1, 3− 0.5λ1, 3 + 0.5λ1)

and

(0.5, 1.5, 0.5) = (1 + 0.5λ2, 1− 0.5λ2, 1 + 0.5λ2)

on L1 and L2, respectively, are such that

(i) λ1 = −1 ≤ 0 and λ2 = −1 ≤ 0,

(ii) µ
(
(2.5, 3.5, 2.5)

∣∣∣P̃1(3, 3, 3)
)
= µ

(
(0.5, 1.5, 0.5)

∣∣∣P̃2(1, 1, 1)
)
= 0.5, and

(iii) direction ratios of L1 and L2 are identical.

Therefore, the points (2.5, 3.5, 2.5) and (0.5, 1.5, 0.5) are same points with respect

to the P̃1(3, 3, 3) and P̃2(1, 1, 1).

2.3.3.4 General expression of same points with respect to two continuous

S-type space fuzzy points

Let P̃1(a1, b1, c1) and P̃2(a2, b2, c2) be two continuous S-type space fuzzy points with

continuous membership functions which are strictly decreasing along the rays em-

anated from their respective core points. Then, according to Note 4, there exists
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two bijective functions f1 and f2 such that

µ
(
(x, y, z)

∣∣∣P̃1

)
= f1(x− a1, y − b1, z − c1) and µ

(
(x, y, z)

∣∣∣P̃2

)
= f2(x− a2, y − b2, z − c2).

Let α ∈ [0, 1] and (x1, y1, z1) and (x2, y2, z2) be two same points of membership

value α with respect to P̃1 and P̃2, respectively. Let the line joining (x1, y1, z1)

and (a1, b1, c1) be L1
θφ, and the line joining (x2, y2, z2) and (a2, b2, c2) be L2

θφ. As

(x1, y1, z1) and (x2, y2, z2) are same points, we have θ1 = θ2 and φ1 = φ2. Let

θ = θ1 = θ2, φ = φ1 = φ2, and the equations of L1
θφ and L2

θφ be

L1
θφ : (x, y, z) = (a1, b1, c1) + λ1(sinφ cos θ, sinφ sin θ, cosφ)

and

L2
θφ : (x, y, z) = (a2, b2, c2) + λ2(sinφ cos θ, sinφ sin θ, cosφ),

respectively. As (x1, y1, z1) be a point of the membership value α, we have

ϕ1(λ1) := f1 (x1 − a1, y1 − b1, z1 − c1) = f1 (λ1 sinφ cos θ, λ1 sinφ sin θ, λ1 cosφ) = α.

Then, evidently, ϕ1 is bijective for λ1 ≥ 0 and λ1 = ϕ−1
1 (α). This yields that the

point (x1, y1, z1) with membership value α on P̃1 can be represented as

(
u1

)α
θφ

:
(
a1 + ϕ−1

1 (α)(sinφ cos θ), b1 + ϕ−1
1 (α)(sinφ sin θ), c1 + ϕ−1

1 (α)(cosφ)
)
. (2.4)

Similarly, (x2, y2, z2) on P̃2 can be expressed by

(
u2

)α
θφ

:
(
a2 + ϕ−1

2 (α)(sinφ cos θ), b2 + ϕ−1
2 (α)(sinφ sin θ), c2 + ϕ−1

2 (α)(cosφ)
)
, (2.5)

where

ϕ2(λ2) := f2 (λ2 sinφ cos θ, λ2 sinφ sin θ, λ2 cosφ) .
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Example 2.3.6. Let P̃1(0, 0, 0) and P̃2(0, 1, 0) be two S-type space fuzzy points with

membership functions

µ
(
(x, y, z)

∣∣∣P̃1(0, 0, 0)
)
=


1−

√(
x
2

)2
+
(
y
2

)2
+ z2 if

(
x
2

)2
+
(
y
2

)2
+ z2 ≤ 1

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃2(0, 1, 0)
)

=


1−

√
(x
2
)2 + (y − 1)2 +

(
z
2
3

)2

if (x
2
)2 + (y − 1)2 +

(
z
2
3

)2

≤ 1

0 otherwise.

The lines L1
θφ : x

1
= y

2
= z

1
and L2

θφ : x
1
= y−1

2
= z

1
are the lines that pass through the

core points of P̃1 and P̃2, respectively, for θ = 63.44◦ and φ = 65.90◦. The points

(
u1
)α
θφ

:
(

2
3

√
(1− α), 4

3

√
(1− α), 2

3

√
(1− α)

)

and (
u2
)α
θφ

:

(√
2
13
(1− α), 1 + 2

√
2
13
(1− α),

√
2
13
(1− α)

)
are the same points with respect to P̃1 and P̃2, respectively, with membership value

α. One can note that

ϕ1(λ1) = 1− 9λ2

4
and ϕ2(λ2) = 1− 13λ2

2
.

Example 2.3.7. (Same points on two fuzzy points with ellipsoidal base). Let P̃1(a1, b1, c1)

and P̃2(a2, b2, c2) be two space fuzzy points with bases

{(x, y, z) :
(
x−a1
p1

)2

+
(
y−b1
q1

)2

+
(
z−c1
r1

)2

≤ 1}
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and

{(x, y, z) :
(
x−a2
p2

)2

+
(
y−b2
q2

)2

+
(
z−c2
r2

)2

≤ 1},

respectively. Let the membership functions of P̃1 and P̃2 be

µ
(
(x, y, z)

∣∣∣P̃1(a1, b1, c1)
)

=


1−

√(
x−a1
p1

)2

+
(
y−b1
q1

)2

+
(
z−c1
r1

)2

if
(
x−a1
p1

)2

+
(
y−b1
q1

)2

+
(
z−c1
r1

)2

≤ 1

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃2(a2, b2, c2)
)

=


1−

√(
x−a2
p2

)2

+
(
y−b2
q2

)2

+
(
z−c2
r2

)2

if
(
x−a2
p2

)2

+
(
y−b2
q2

)2

+
(
z−c2
r2

)2

≤ 1

0 otherwise,

respectively. The expressions of same points with respect to P̃1 and P̃2 are

(
u1
)α
θφ

:
(
a1 +

(1−α)Aθφ

Rθφ
, b1 +

(1−α)Bθφ

Rθφ
, c1 +

(1−α)Cθφ

Rθφ

)

and (
u2
)α
θφ

:
(
a2 +

(1−α)Aθφ

Sθφ
, b2 +

(1−α)Bθφ

Sθφ
, c2 +

(1−α)Cθφ

Sθφ

)
,

respectively, where Aθφ = sinφ cos θ, Bθφ = sinφ sin θ, Cθφ = cosφ,

Rθφ =
√

sin2 φ cos2 θ
p21

+ sin2 φ sin2 θ
q21

+ cos2 φ
r21

and

Sθφ =
√

sin2 φ cos2 θ
p22

+ sin2 φ sin2 θ
q22

+ cos2 φ
r22

.
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Figure 2.4 depicts the locations of (u1)
α
θφ and (u2)

α
θφ.
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Figure 2.4: Same and inverse points for two continuous space fuzzy points P̃1

and P̃2

Definition 2.3.5. (Addition of two S-type space fuzzy points). Let P̃1 and P̃2 be

two S-type space fuzzy points. Addition of these two S-type space fuzzy points is

denoted by P̃1 + P̃2 and its membership function is defined by

µ
(
(x, y, z)

∣∣∣P̃1 + P̃2

)
= sup

{
α : (x, y, z) = (x1 + x2, y1 + y2, z1 + z2), where (x1, y1, z1) ∈ P̃1(0)

and (x2, y2, z2) ∈ P̃2(0) are same points with membership value α
}
.

Definition 2.3.6. (Scalar multiplication of an S-type space fuzzy point). Let λ ∈ R.

The scalar multiplication of an S-type space fuzzy point P̃ (a, b, c) by λ, denoted
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λP̃ (a, b, c), is defined by the membership function:

µ
(
(x, y, z)

∣∣∣λP̃ (a, b, c))

=



µ
((

x
λ
, y
λ
, z
λ

)∣∣∣P̃ (a, b, c)) if λ ̸= 0,

sup
(u,v,w)∈R3

µ
(
(u, v, w)

∣∣∣P̃ (a, b, c)) if λ = 0, (x, y, z) = (0, 0, 0),

0 if λ = 0, (x, y, z) ̸= (0, 0, 0).

Theorem 2.3.3. If P̃1 and P̃2 are two continuous S-type space fuzzy points, then

(i) λP̃1 is an S-type space fuzzy point for any λ ∈ R,

(ii) P̃1 + P̃2 is an S-type space fuzzy point, and

(iii) the linear combination λ1P̃1 + λ2P̃2 is also an S-type space fuzzy point, where

λ1, λ2 ∈ R.

Proof. Similar to Theorem 3.1 in [1].

From Theorem 2.3.3 and Definition 2.3.5, we notice that for a given pair of S-type

space fuzzy points P̃1 and P̃2, the computation

P̃1 − P̃2 = λ1P̃1 + λ2P̃2 with λ1 = 1 and λ2 = −1

can be done by the same points of P̃1 and −P̃2. In the below the same points of P̃1

and −P̃2 are referred to inverse points. This idea of inverse points is used later, in

Section 2.4, to evaluate the distance between a pair of fuzzy points.

Definition 2.3.7. (Inverse points with respect to continuous S-type space fuzzy points).

Let P̃1(a1, b1, c1) and P̃2(a2, b2, c2) be two continuous S-type space fuzzy points with

the reference functions S1 and S2, respectively, for i = 1, 2. Two points (x1, y1, z1)
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and (x2, y2, z2) on the supports of P̃1 and P̃2, respectively, are called inverse points

with respect to P̃1 and P̃2 if (x1, y1, z1) and (−x2,−y2,−z2) are same points with

respect to P̃1(a1, b1, c1) and −P̃2(a2, b2, c2), where −P̃2 is λP̃2, with λ = −1.

Example 2.3.8. (Inverse points). Let us consider the fuzzy points P̃1(3, 3, 3) and

P̃2(1, 1, 1) in Example 2.3.4. Consider the points (2.5, 3.5, 2.5) and (−1.5,−0.5,−1.5)

from P̃1(3, 3, 3)(0) and −P̃2(1, 1, 1)(0), respectively.

The line joining (2.5, 3.5, 2.5) and (3, 3, 3) is

L1 :
x−3
0.5

= y−3
−0.5

= z−3
0.5
.

The line joining (−1.5,−0.5,−1.5) and (−1,−1,−1) is

L2 :
x+1
0.5

= y+1
−0.5

= z+1
0.5
.

Note that

(2.5, 3.5, 2.5) = (3 + 0.5λ1, 3− 0.5λ1, 3 + 0.5λ1) for λ1 = −1

and

(−1.5,−0.5,−1.5) = (−1 + 0.5λ2,−1− 0.5λ2,−1 + 0.5λ2) for λ2 = −1.

The points (2.5, 3.5, 2.5) and (−1.5,−0.5,−1.5) are same points with respect to P̃1

and −P̃2 since

(i) λ1 = −1 ≤ 0 and λ2 = −1 ≤ 0,

(ii) µ
(
(2.5, 3.5, 2.5)

∣∣∣P̃1(3, 3, 3)
)
= µ

(
(−1.5,−0.5,−1.5)

∣∣∣−P̃2(1, 1, 1)
)
= 0.5, and

(iii) direction ratios of L1 and L2 are identical.
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Hence, by the Definition 2.3.7, the points (2.5, 3.5, 2.5) and (1.5, 0.5, 1.5) are inverse

points with respect to the P̃1(3, 3, 3) and P̃2(1, 1, 1).

2.3.3.5 General expression of inverse points with respect to two contin-

uous S-type space fuzzy points

Consider two continuous fuzzy points P̃1(a1, b1, c1) and P̃2(a2, b2, c2) with continuous

membership functions which are strictly decreasing along the rays emanated from

their respective core points.

The expression of inverse points with respect to P̃1 and P̃2 are

(
u1
)α
θφ

:
(
a1 + ϕ−1

1 (α)(sinφ cos θ), b1 + ϕ−1
1 (α)(sinφ sin θ), c1 + ϕ−1

1 (α)(cosφ)
)

and

(
v2
)α
θφ

:
(
a2 − ϕ−1

2 (α)(sinφ cos θ), b2 − ϕ−1
2 (α)(sinφ sin θ), c2 − ϕ−1

2 (α)(cosφ)
)
,

respectively , where ϕ1 and ϕ2 are the functions as described in the first paragraph

of the Subsection 2.3.3.4.

Example 2.3.9. (Inverse points on two fuzzy points with ellipsoidal base). Let us

consider two fuzzy points P̃1(a1, b1, c1) and P̃2(a2, b2, c2) in Example 2.3.7. The

expressions of inverse points with respect to P̃1 and P̃2 are

(
u1
)α
θφ

:
(
a1 +

(1−α)Aθφ

Rθφ
, b1 +

(1−α)Bθφ

Rθφ
, c1 +

(1−α)Cθφ

Rθφ

)

and (
v2
)α
θφ

:
(
a2 − (1−α)Aθφ

Sθφ
, b2 − (1−α)Bθφ

Sθφ
, c2 − (1−α)Cθφ

Sθφ

)
,
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respectively, where Aθφ = sinφ cos θ, Bθφ = sinφ sin θ, Cθφ = cosφ,

Rθφ =
√

sin2 φ cos2 θ
p21

+ sin2 φ sin2 θ
q21

+ cos2 φ
r21

and

Sθφ =
√

sin2 φ cos2 θ
p22

+ sin2 φ sin2 θ
q22

+ cos2 φ
r22

.

Figure 2.4 depicts the locations of (u1)
α
θφ and (v2)

α
θφ. In Figure 2.4, the points (v1)

α
θφ

and (u2)
α
θφ are also inverse points with respect to P̃1 and P̃2.

Example 2.3.10. Consider two fuzzy points P̃1(0, 0, 0) and P̃2(0, 1, 0) with the refer-

ence functions

S1(x, y, z) = S2(x, y, z) = max{0, 1− (x2 + y2 + z2)}

in Example 2.3.6. For any given α ∈ [0, 1], the points

(
u1
)α
θφ

:
(

2
3

√
(1− α), 4

3

√
(1− α), 2

3

√
(1− α)

)

and (
v2
)α
θφ

:

(
−
√

2
13
(1− α), 1− 2

√
2
13
(1− α),−

√
2
13
(1− α)

)
are inverse points of the P̃1 and P̃2, respectively, with membership value α; here,

θ = 63.44◦ and φ = 65.90◦.

2.4 Fuzzy distance

In this section, we define the fuzzy distance between two continuous S-type space

fuzzy points and the coincidence of two S-type space fuzzy points by the idea of the
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same and inverse points.

Definition 2.4.1. (Fuzzy distance between two continuous S-type space fuzzy points).

The fuzzy distance between two continuous S-type space fuzzy points P̃1 and P̃2,

denoted D̃(P̃1, P̃2), is defined by the membership function:

µ
(
d
∣∣∣D̃(P̃1, P̃2)

)
= sup{α : where d = d(u, v), u ∈ P̃1(0) and v ∈ P̃2(0) are inverse

points of membership value α}.

Theorem 2.4.1. For two continuous S-type space fuzzy points P̃1 and P̃2,

(i) D̃
(
P̃1, P̃2

)
(α) = {d(u, v) : u ∈ P̃1(α) and v ∈ P̃2(α) are inverse points of

membership value α} for all α ∈ (0, 1].

(ii) D̃ is a fuzzy number in R.

Proof. Similar to Theorem 4.1 in [1].

Example 2.4.1. (Fuzzy distance). Let P̃1(1, 0, 1) and P̃2(2, 0, 2) be two S-type space

fuzzy points with the following membership functions

µ
(
(x, y, z)

∣∣∣P̃1(1, 0, 1)
)

=


1− 2

√
{(x− 1)2 + y2 + (z − 1)2} if (x− 1)2 + y2 + (z − 1)2 ≤ 1

4

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃2(2, 0, 2)
)

=


1− 2

√
{(x− 2)2 + y2 + (z − 2)2} if (x− 2)2 + y2 + (z − 2)2 ≤ 1

4

0 otherwise.
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For each α ∈ [0, 1], the inverse points with respect to P̃1 and P̃2 with the membership

value α are

(
u1
)α
θφ

:
(
1 + (1−α) sinφ cos θ

2
, (1−α) sinφ sin θ

2
, 1 + (1−α) cosφ

2

)

and (
v2
)α
θφ

:
(
2− (1−α) sinφ cos θ

2
,− (1−α) sinφ sin θ

2
, 2− (1−α) cosφ

2

)
,

respectively, where 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

The distance between (u1)
α
θφ and (v2)

α
θφ is

d
((
u1
)α
θφ
,
(
v2
)α
θφ

)
=

√
2 + (1− α)2 − 2(1− α)(sinφ cos θ + cosφ).

We observe that

inf
φ∈[0,π], θ∈[0,2π]

d
((
u1
)α
θφ
,
(
v2
)α
θφ

)
=

√
2 + (1− α)2 − 2.8284(1− α),

and

sup
φ∈[0,π], θ∈[0,2π]

d
((
u1
)α
θφ
,
(
v2
)α
θφ

)
=

√
2 + (1− α)2 + 2.8284(1− α).

Let the fuzzy distance between P̃1 and P̃2 is D̃. Then, the membership value of any

d ∈
[√

2 + (1− α)2 − 2.8284(1− α),
√

2 + (1− α)2 + 2.8284(1− α)
]

in D̃ is at least α, i.e., µ(d|D̃) ≥ α. Thus, D̃ has the membership function:

µ(d|D̃) =


d− 0.4142 if 0.4142 ≤ d ≤ 1.4142,

2.4142− d if 1.4142 ≤ d ≤ 2.4142,

0 elsewhere.
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In the below, we give an algorithm to execute the fuzzy distance D̃ between two

continuous S-type space fuzzy points P̃1 and P̃2.

Algorithm 2.4.1: To evaluate the fuzzy distance D̃ between two S-type space

fuzzy points

Input: Given two S-type space fuzzy points P̃1(a1, b1, c1) and P̃2(a2, b2, c2) with continuous

membership functions which are strictly decreasing along the rays emanated from

their respective core points. We denote

ϕi(λi) = fi (λi sinφ cos θ, λi sinφ sin θ, λi cosφ) for λi ≥ 0, i = 1, 2.

Output: Fuzzy distance D̃
(
P̃1, P̃2

)
=

∨
α∈[0,1]

D̃(α).

For α = 0 to 1; step size δα

dαmin = M , a very large number

dαmax = −M

For θ = 0 to 2π; step size δθ

dθmin = M

dθmax = −M

For φ = 0 to π; step size δφ

Compute

λ1 = ϕ−1
1 (α)

λ2 = ϕ−1
2 (α)

Compute the inverse points(
u1

)α
θφ

=
(
a1 + (sinφ cos θ)ϕ−1

1 (α), b1 + (sinφ sin θ)ϕ−1
1 (α), c1 + (cosφ)ϕ−1

1 (α)
)

(
v2
)α
θφ

=
(
a2 − (sinφ cos θ)ϕ−1

2 (α), b2 − (sinφ sin θ)ϕ−1
2 (α), c2 − (cosφ)ϕ−1

2 (α)
)

Calculate the distance

dαφ ← d
((

u1
)α
θφ

,
(
v2
)α
θφ

)
if dαφ > dθmax then

dθmax ← dαφ

end

if dθmin > dαφ then

dθmin ← dαφ

end
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end
if dθmax > dαmax then

dαmax ← dθmax

end
if dαmin > dθmin then

dαmin ← dθmin

end

end

At the end of loop, D̃(α)← [dαmin, d
α
max]

end

return D̃(P̃1, P̃2) =
∨

α∈[0,1]
D̃(α)

In the following example, we apply Algorithm 2.4.1 on three pairs of S-type space

fuzzy points and calculate the fuzzy distances.

Example 2.4.2. Consider first pair of fuzzy points P̃1(1, 2, 1) and P̃2(−1, 0, 5) with

membership functions

µ
(
(x, y, z)

∣∣∣P̃1(1, 2, 1)
)

=


1−

√
(x− 1)2 + 1

4
(y − 2)2 + (z − 1)2 if (x− 1)2 + 1

4
(y − 2)2 + (z − 1)2 ≤ 1

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃2(−1, 0, 5)
)

=


1−

√
(x+ 1)2 + (y

2
)2 + (z − 5)2 if (x+ 1)2 + (y

2
)2 + (z − 5)2 ≤ 1

0 otherwise.
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Here, the supports of P̃1 and P̃2 have empty intersection. The general expressions

of the inverse points with respect to P̃1 and P̃2 are

(
1 + 2(1−α) sinφ cos θ

Rα
θφ

, 2 + 2(1−α) sinφ sin θ
Rα

θφ
, 1 + 2(1−α) cosφ

Rα
θφ

)

and (
−1− 2(1−α) sinφ cos θ

Rα
θφ

,−2(1−α) sinφ sin θ
Rα

θφ
, 5− 2(1−α) cosφ

Rα
θφ

)
,

respectively, where

Rα
θφ =

√
4 sin2 φ cos2 θ + sin2 φ sin2 θ + 4 cos2 φ.

Consider second pair of fuzzy points Q̃1(1, 2, 1) and Q̃2(−1, 0, 5) with membership

functions

µ
(
(x, y, z)

∣∣∣Q̃1(1, 2, 1)
)

=


1−

√
(x− 1)2 + (y − 2)2 + 4(z − 1)2 if (x− 1)2 + (y − 2)2 + 4(z − 1)2 ≤ 1

0 otherwise

and

µ
(
(x, y, z)

∣∣∣Q̃2(−1, 0, 5)
)
= exp

(
−1

4
(x+ 1)2 − 4y2 − (z − 5)2

)
.

Here, the intersection of the supports of the fuzzy points Q̃1 and Q̃2 is nonempty.

The general expressions of the inverse points with respect to Q̃1 and Q̃2 are

(
1 + 0.5(1−α) sinφ cos θ

Rα
θφ

, 2 + 0.5(1−α) sinφ sin θ
Rα

θφ
, 1 + 0.5(1−α) cosφ

Rα
θφ

)
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and −1−
(√

log
1
α

)
sinφ cos θ

Sα
θφ

,−

(√
log

1
α

)
sinφ sin θ

Sα
θφ

, 5−

(√
log

1
α

)
cosφ

Sα
θφ

 ,

respectively, with membership value α ∈ (0, 1], where

Rα
θφ =

√
0.25 sin2 φ cos2 θ + 0.25 sin2 φ sin2 θ + cos2 φ

and

Sαθφ =

√
0.25 sin2 φ cos2 θ + 4 sin2 φ sin2 θ + cos2 φ.

Consider third pair of fuzzy points R̃1(1, 2, 1) and R̃2(1, 2, 1) with membership func-

tions

µ
(
(x, y, z)

∣∣∣R̃1(1, 2, 1)
)

=


1− 1

2

√
(x− 1)2 + (y − 2)2 + (z − 1)2 if (x− 1)2 + (y − 2)2 + (z − 1)2 ≤ 4

0 otherwise

and

µ
(
(x, y, z)

∣∣∣R̃2(1, 2, 1)
)
= exp

(
−1

9
((x− 1)2 + (y − 2)2 + (z − 1)2

)
.

Here, the support of R̃1 is a subset of the support of R̃2. The general expressions of

the inverse points with respect to R̃1 and R̃2 are

(1 + 2(1− α) sinφ cos θ, 2 + 2(1− α) sinφ sin θ, 1 + 2(1− α) cosφ)
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and

(
1− 3

(√
log 1

α

)
sinφ cos θ, 2− 3

(√
log 1

α

)
sinφ sin θ, 1− 3

(√
log 1

α

)
cosφ

)
,

respectively, with membership value α ∈ (0, 1].

The following Table 2.1 gives the α-cuts of the fuzzy distances D̃(P̃1, P̃2), D̃(Q̃1, Q̃2)

and D̃(R̃1, R̃2) executed by the proposed Algorithm 2.4.1 with step sizes δα = 0.1,

δθ = 0.0706 and δφ = 0.0353.

α D̃(P̃1, P̃2)(α) D̃(Q̃1, Q̃2)(α) D̃(R̃1, R̃2)(α)

0.1 [2.8773, 7.4201] [2.8633, 7.6378] 6.3523

0.2 [3.0906, 7.1077] [3.1466, 7.1684] 5.4059

0.3 [3.3060, 6.8047] [3.3615, 6.8343] 4.6918

0.4 [3.5227, 6.5088] [3.5485, 6.5574] 4.0717

0.5 [3.7428, 6.2206] [3.7247, 6.3042] 3.4977

0.6 [3.9650, 5.9396] [3.8980, 6.0687] 2.9442

0.7 [4.1912, 5.6669] [4.0716, 5.8403] 2.3917

0.8 [4.4219, 5.4030] [4.2571, 5.6083] 1.8171

0.9 [4.6573, 5.1474] [4.4730, 5.3545] 1.1738

1.0 4.8990 4.8990 0

Table 2.1: α-cuts of D̃(P̃1, P̃2), D̃(Q̃1, Q̃2) and D̃(R̃1, R̃2) by Algorithm 2.4.1
for Example 2.4.2

The following Figures 2.5 and 2.6 depict the membership functions of D̃(P̃1, P̃2),

D̃(Q̃1, Q̃2) and D̃(R̃1, R̃2) obtained from Table 2.1. From Figures 2.5 and 2.6, we

observe the following.
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(a) Fuzzy distance D̃(P̃1, P̃2) (b) Fuzzy distance D̃(Q̃1, Q̃2)

Figure 2.5: Fuzzy distance D̃(P̃1, P̃2) and D̃(Q̃1, Q̃2) by Algorithm 2.4.1 for
Example 2.4.2

• For each different pairs of the S-type space fuzzy points in Example 2.4.2, the

graphs of D̃(P̃1, P̃2), D̃(Q̃1, Q̃2) and D̃(R̃1, R̃2) support the Theorem 2.4.1.

• For the fuzzy point R̃1 and R̃2, the graph D̃(R̃1, R̃2) is the fuzzy number 0̃,

i.e., µ
(
0
∣∣∣D̃)

= 1.

Figure 2.6: Fuzzy distance D̃(R̃1, R̃2) by Algorithm 2.4.1 for Example 2.4.2

Next, we provide an Algorithm 2.4.2 to evaluate the membership value of a point in

the fuzzy distance D̃ between two S-type space fuzzy points.
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Algorithm 2.4.2: To evaluate the membership value of a point in the fuzzy

distance D̃ between two S-type space fuzzy points

Input: Given two S-type space fuzzy points P̃1(a1, b1, c1) and P̃2(a2, b2, c2)

with continuous membership functions which are strictly decreasing

along the rays emanated from their respective core points. We denote

ϕi(λi) = fi (λi sinφ cos θ, λi sinφ sin θ, λi cosφ) for λi ≥ 0, i = 1, 2.

We denote the fuzzy distance between P̃1 and P̃2 by D̃.

Given d ∈ R for which the membership value µ
(
d
∣∣∣D̃)

has to be calculated.

Output: The membership value µ
(
d
∣∣∣D̃)

.

Initialize αsup ← 0

loop:

For α = 0 to 1; step size δα

For θ = 0 to 2π; step size δθ

For φ = 0 to π; step size δφ

Compute

λ1 = ϕ−1
1 (α)

λ2 = ϕ−1
2 (α)

Compute the inverse points

(u1)
α
θφ =(

a1 + (sinφ cos θ)ϕ−1
1 (α), b1 + (sinφ sin θ)ϕ−1

1 (α), c1 + (cosφ)ϕ−1
1 (α)

)
(v2)

α
θφ =(

a2 − (sinφ cos θ)ϕ−1
2 (α), b2 − (sinφ sin θ)ϕ−1

2 (α), c2 − (cosφ)ϕ−1
2 (α)

)
Calculate the distance

dα ← d
(
(u1)

α
θφ , (v

2)
α
θφ

)
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if d = dα then
if αsup < α then

αsup ← α
else

goto loop
end

end

end

end

end

return µ
(
d
∣∣∣D̃)

= αsup

Example 2.4.3. (Evaluation of the membership values of some points in the fuzzy

distance D̃
(
P̃1, P̃2

)
). Consider the fuzzy points P̃1(1, 2, 1) and P̃2(−1, 0, 5) of Ex-

ample 2.4.2. Table 2.2 shows the membership value of some number in the fuzzy

distance D̃
(
P̃1, P̃2

)
, obtained by executing Algorithm 2.4.2.

d Membership value Step sizes

6.023 0.5615 δα = 0.0231, δθ = 0.1611 and δφ = 0.0806

4.5231 0.8405 δα = 0.0114, δθ = 0.0849 and δφ = 0.0425

5.0000 0.9571 δα = 0.0107, δθ = 0.0748 and δφ = 0.0374

Table 2.2: Membership values of some points of D̃
(
P̃1, P̃2

)
(0) produced by

Algorithm 2.4.2 for Example 2.4.3

Next, we define the degree of fuzzy coincidence, say ζ, of two S-type space fuzzy

points.
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Definition 2.4.2. (Coincidence of two S-type space fuzzy points). The degree of fuzzy

coincidence (ζ) of two S-type space fuzzy points P̃1 and P̃2 is defined by:

ζ =



0 if P̃1(1) ̸= P̃2(1),

1 if P̃1 = P̃2,

1− sup
(x,y,z)∈R3

∣∣∣µ(
(x, y, z)

∣∣∣P̃1

)
− µ

(
(x, y, z)

∣∣∣P̃2

)∣∣∣ if P̃1(1) = P̃2(1) but P̃1 ̸= P̃2.

Example 2.4.4. Let P̃1(0, 0, 0) and P̃2(0, 0, 0) be two S-type space fuzzy points

with the membership functions µ1((x, y, z)|P̃1) = max{0, 1 −
√
x2 + y2 + z2} and

µ2((x, y, z)|P̃2) = max{0, 1− 1
3

√
x2 + y2 + z2}. The degree of coincidence of P̃1 and

P̃2 is

1− sup
(x,y,z)∈R3

∣∣∣µ((x, y, z)∣∣∣P̃1

)
− µ

(
(x, y, z)

∣∣∣P̃2

)∣∣∣ = 1√
3
.

Note 6. If the degree of coincidence of two space fuzzy points P̃1 and P̃2 is positive,

then according to Theorem 2.4.1 the fuzzy distance D̃(P̃1, P̃2) between the pair of

fuzzy points P̃1 and P̃2 is the fuzzy number 0̃.

2.5 Space fuzzy line segments

A fuzzy line segment joining two fuzzy points P̃1 and P̃2 is the union of all possible

convex combinations of P̃1 and P̃2, i.e.,

⋃
λ∈[0,1]

(
λP̃1 + (1− λ)P̃2

)
.

Note that Theorem 2.3.2 implies that only the combinations of the same points are

sufficient to evaluate P̃1 + P̃2. These combinations are also sufficient to evaluate the

λP̃1 + (1− λ)P̃2
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for any λ ∈ [0, 1]; the reason has been described in [1]. Therefore, we only need the

same points of S-type space fuzzy points to construct the space fuzzy line segment.

Thus, a space fuzzy line segment is formulated as follows.

Definition 2.5.1. (Space fuzzy line segment joining two S-type space fuzzy points).

Let P̃1 and P̃2 be two S-type space fuzzy points. The space fuzzy line segment

joining the fuzzy points P̃1 and P̃2,
˜̄LP1P2 say, can be formulated by the membership

function:

µ
(
(x, y, z)

∣∣∣˜̄LP1P2

)
= sup{α : where (x, y, z) lies on the line joining the same points u ∈ P̃1(0) and

v ∈ P̃2(0) of membership value α}.

More explicitly,

µ
(
(x, y, z)

∣∣∣˜̄LP1P2

)
= sup{α : (x, y, z) = tu+ (1− t)v, u ∈ P̃1(0) and v ∈ P̃2(0) are same points of

membership value α and t ∈ [0, 1]}. (2.6)

Theorem 2.5.1. (α-cut of ˜̄LP1P2). For any α ∈ [0, 1], the α-cut of the fuzzy line

segment ˜̄LP1P2 is given by

˜̄LP1P2(α) =
∨
{l : l is the line segment joining same points in P̃1(α) and P̃2(α)}.

Proof. The proof is directly followed from (2.6).
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Example 2.5.1. (Space fuzzy line segment). Let P̃1(1, 2, 1) and P̃2(−1, 0, 5) be two

S-type space fuzzy points with the membership functions

µ
(
(x, y, z)

∣∣∣P̃1(1, 2, 1)
)

=


1−

√
(x− 1)2 + (y − 2)2 + (z − 1)2} if (x− 1)2 + (y − 2)2 + (z − 1)2 ≤ 1

0 otherwise

and

µ
(
(x, y, z)

∣∣∣P̃2(−1, 0, 5)
)
=


1−

√
(x+ 1)2 + y2 + (z − 5)2} if (x+ 1)2 + y2 + (z − 5)2 ≤ 1

0 otherwise.

For a particular α ∈ [0, 1], the same points with membership value α ∈ [0, 1] on

P̃1(1, 2, 1) and P̃2(−1, 0, 5) are:

(
u1
)α
θφ

: (1 + (1− α) sinφ cos θ, 2 + (1− α) sinφ sin θ, 1 + (1− α) cosφ)

and

(
u2
)α
θφ

: (−1 + (1− α) sinφ cos θ, (1− α) sinφ sin θ, 5 + (1− α) cosφ) ,

respectively. The space fuzzy line segment ˜̄LP1P2 is the collection of the line segments

whose extremities are the same points of P̃1 and P̃2 for different value of α, θ and

φ, i.e.,

˜̄LP1P2
(0)

=
⋃

α∈[0,1]

⋃
φ∈[0,π]

⋃
θ∈[0,2π]

{
(x, y, z) : x−(1+(1−α) sinφ cos θ)

2 = y−(2+(1−α) sinφ sin θ)
2 = z−(1+(1−α) cosφ)

−4

}
.

The core line is ˜̄LP1P2(1) :
x−1
2

= y−2
2

= z−1
−4
.
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In the following Algorithm 2.5.1, we give the process to obtain a space fuzzy line

segment.

Algorithm 2.5.1: To evaluate the space fuzzy line segment ˜̄LP1P2 joining two

S-type space fuzzy points

Input: Given two S-type space fuzzy points P̃1(a1, b1, c1) and P̃2(a2, b2, c2) with continuous

membership functions which are strictly decreasing along the rays emanated from

their respective core points. We denote

ϕi(λi) = fi (λi sinφ cos θ, λi sinφ sin θ, λi cosφ) for λi ≥ 0, i = 1, 2.

Output: Space fuzzy line segment ˜̄LP1P2
=

∨
α∈[0,1]

˜̄LP1P2
(α).

for α = 0 to 1; with step size δα do

for θ = 0 to 2π with step size δθ do

for φ = 0 to π with step size δφ do

Compute

λ1 = ϕ−1
1 (α)

λ2 = ϕ−1
2 (α)

Compute the same points(
u1

)α
θφ

=
(
a1 + (sinφ cos θ)ϕ−1

1 (α), b1 + (sinφ sin θ)ϕ−1
1 (α), c1 + (cosφ)ϕ−1

1 (α)
)

(
u2

)α
θφ

=
(
a2 + (sinφ cos θ)ϕ−1

2 (α), b2 + (sinφ sin θ)ϕ−1
2 (α), c2 + (cosφ)ϕ−1

2 (α)
)

for t = 0 to 1 with step size δt do

Compute the convex combinations

cαθφ = t
(
u1

)α
θφ

+ (1− t)
(
u2

)α
θφ

end

end

end

At the end of loop, ˜̄LP1P2(α)← cαθφ

end

return ˜̄LP1P2
=

∨
α∈[0,1]

˜̄LP1P2
(α)

The following Algorithm 2.5.2 shows how to find the membership value of a point

in space fuzzy line segment.
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Algorithm 2.5.2: To evaluate the membership value of a point in the space

fuzzy line segment ˜̄LP1P2 joining two continuous S-type space fuzzy points

Input: Given two S-type space fuzzy points P̃1(a1, b1, c1) and P̃2(a2, b2, c2) with continuous
membership functions which are strictly decreasing along the rays emanated from
their respective core points. We denote

ϕi(λi) = fi (λi sinφ cos θ, λi sinφ sin θ, λi cosφ) for λi ≥ 0, i = 1, 2.

Given a point (x, y, z) whose membership value in ˜̄LP1P2
is to be calculated.

Output: The membership value µ
(
(x, y, z)

∣∣∣˜̄LP1P2

)
.

initialize αsup ← 0
loop:
for α = 0 to 1 with step size δα do

for θ = 0 to 2π with step size δθ do
for φ = 0 to π with step size δφ do

Compute
λ1 = ϕ−1

1 (α)
λ2 = ϕ−1

2 (α)
Compute the same points(
u1

)α
θφ

=
(
a1 + (sinφ cos θ)ϕ−1

1 (α), b1 + (sinφ sin θ)ϕ−1
1 (α), c1 + (cosφ)ϕ−1

1 (α)
)(

u2
)α
θφ

=
(
a2 + (sinφ cos θ)ϕ−1

2 (α), b2 + (sinφ sin θ)ϕ−1
2 (α), c2 + (cosφ)ϕ−1

2 (α)
)

for t = 0 to 1 with step size δt do

if (x, y, z) = t
(
u1

)α
θφ

+ (1− t)
(
u2

)α
θφ

then

if αsup < α then
αsup ← α

else
goto loop

end

end

end

end

end

end

return µ
(
(x, y, z)

∣∣∣˜̄LP1P2

)
= αsup

Example 2.5.2. (Evaluation of the membership values of some points in the space

fuzzy line segment ˜̄LP1P2(0)). Consider the fuzzy points P̃1(1, 2, 1) and P̃2(−1, 0, 5)

in Example 2.5.1.

The general expressions of the same points with the membership value α ∈ [0, 1] on

P̃1(1, 2, 1) and P̃2(−1, 0, 5) are

(
u1
)α
θφ

: (1 + (1− α) sinφ cos θ, 2 + (1− α) sinφ sin θ, 1 + (1− α) cosφ)
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and

(
u2
)α
θφ

: (−1 + (1− α) sinφ cos θ, (1− α) sinφ sin θ, 5 + (1− α) cosφ) ,

respectively. The following Table 2.3 shows the membership value of some points in

the fuzzy line segment ˜̄LP1P2(0) by execution of Algorithm 2.5.2.

(x, y, z) Membership value Step size

(1.1078, 1.8, 2.2457) 0.1000 δα = 0.2250, δθ = 1.5708, δφ = 0.7854

and δt = 0.1

(1, 2.6750, 1) 0.3250 δα = 0.2250, δθ = 1.5708, δφ = 0.7854

and δt = 0.1

(1.45, 2, 1) 0.5500 δα = 0.2250, δθ = 1.5708, δφ = 0.7854

and δt = 0.1

(1, 2, 1.4) 0.6000 δα = 0.1, δθ = 0.6981, δφ = 0.3491

and δt = 0.1

Table 2.3: Membership value of some points of ˜̄LP1P2(0) produced by Algorithm
2.5.2 for Example 2.5.2

2.6 Comparison

In this section, we compare the proposed formulations with the corresponding ideas

in [7, 21, 30, 31, 37, 38, 40, 41, 39, 43, 44, 46].

• S-type space fuzzy point

According to [21], a singleton set in R3 with a nonzero membership value is

a space fuzzy point. Thus, a space fuzzy point of [21] may not be a normal
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fuzzy set in R3; hence, the core of space fuzzy point may not be a crisp point.

On the other hand, the proposed space fuzzy point (see Definition 2.3.2) is a

normal, convex, and connected fuzzy set in R3.

A fuzzy disk in [30] and a fuzzy ring in [31] are fuzzy points in [1, 5]. A

three-dimensional extension of the two-dimensional fuzzy disk or fuzzy ring in

[30, 31] is a space fuzzy point of [7] with a continuous membership function and

having a circular base. Although space fuzzy points of Qui and Zhang [7] is

very general and it neither considers only continuous membership functions nor

has the possibility of having an empty-core, the expressions of same and inverse

point for a pair of space fuzzy points of [7] is not easy to compute. It is not

easy due to the variety of expressions for the possible membership functions. In

order to ease the computation of the same and inverse points, we have proposed

here the idea of three variable reference functions and have presented a space

fuzzy point by a reference function (Definition 2.3.2). The idea of expressing

a space fuzzy point by three-variable reference functions essentially unifies the

general and wide variety of membership functions. In fact, this unification has

made the computation of the same and inverse points easier and general (see

Subsections 2.3.3.4 and 2.3.3.5). In addition, these general expressions of same

and inverse points facilitated the analysis throughout the paper.

• Fuzzy distance

An extensive list of fuzzy distances and a review of them has been reported by

Bloch [47], where fuzzy distances are classified into two categories. In the first

category, fuzzy distances between a pair of fuzzy sets are measured by compar-

ing the membership functions. The second category of the distances calculates

the distance by combining both spatial and membership functions. The second

category of distances is more appropriate as they produce a fuzzy value, unlike
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crisp values by the first category. In the second category of distances, there are

four different approaches—geometrical, morphological, tolerance-based, and

graph-theoretic. As the proposed definition in this study (Definition 2.4.1)

falls in the second category with the geometrical approach, we compare the

proposed definition with the existing geometrical approaches.

Distance (side length) between two vertices of a fuzzy triangle is crisp in [38].

The diameter, according to [39], of a fuzzy line segment can be considered as

a fuzzy distance between the extremities, but this measurement of distance

is a crisp number. In [44, 46], Hausdorff distances between a pair of fuzzy

sets have been defined, but these measurements of distances are also non-

fuzzy. However, the distance between fuzzy (imprecise) sets is expected to be

imprecise [47].

Qiu and Zhang [7] defined the fuzzy distance between two fuzzy points P̃1 and

P̃2 by

D̃ =
∨

α∈[0,1]

{d : d = d(u, v), where u ∈ P̃1(α) and v ∈ P̃2(α)}. (2.7)

By extension principle [15], this formulation of fuzzy distance is identical (see

[7]) to that in [46] which is defined by

µ
(
r
∣∣∣D̃)

= sup
d(u,v)=r

[
inf

{
µ
(
u
∣∣∣P̃1

)
, µ

(
v
∣∣∣P̃2

)}]
. (2.8)

As per the approach of [43], the distance between P̃1 and P̃2 is defined by

µ
(
r
∣∣∣D̃)

= sup
d(u,v)≤r

[
inf

{
µ
(
u
∣∣∣P̃1

)
, µ

(
v
∣∣∣P̃2

)}]
. (2.9)

All of (2.7), (2.8) and (2.9) produce fuzzy values for distances. Although
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the constraint set of (2.9) is a superset of that in (2.8), the distances (2.9)

and (2.8) between two continuous space fuzzy points P̃1 and P̃2 are identical

(see Theorem 2.1 in [1]) since the membership functions of P̃1 and P̃2 are

monotonically decreasing along any ray emanated from their respective core

points.

In fact, the fuzzy distance for a pair of space fuzzy points P̃1 and P̃2 by each

of (2.7), (2.8) and (2.9) is given by (see [7] for details)

∨
α∈[0,1]

[
d̄αmin, d̄

α
max

]
, (2.10)

where

d̄αmin = min
{
d(u, v) : u ∈ P̃1(α), v ∈ P̃2(α)

}
and

d̄αmax = max
{
d(u, v) : u ∈ P̃1(α), v ∈ P̃2(α)

}
.

By contrast, the proposed distance evaluates the fuzzy distance (Definition

2.4.1 and Algorithm 2.4.1) by

∨
α∈[0,1]

[dαmin, d
α
max] , (2.11)

where

dαmin = min
{
d(u, v) : u ∈ P̃1(α) and v ∈ P̃2(α) are inverse points

}

and

dαmax = max
{
d(u, v) : u ∈ P̃1(α) and v ∈ P̃2(α) are inverse points

}
.
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Evidently,

d̄αmin ≤ dαmin ≤ dαmax ≤ d̄αmax,

and hence the support of the proposed fuzzy distance (2.11) is a subset of the

support of the fuzzy distance (2.10). Therefore, the fuzzy distance evaluated

by Algorithm 2.4.1 is less imprecise than that in [7].

In addition, since the explicit expression of inverse points for a pair of S-

type space fuzzy points is known (see Subsection 2.3.3.5), the expressions dαmin

and dαmax of (2.11) can be computed in terms of α. On the other hand, the

arbitrariness of u ∈ P̃1(α) and v ∈ P̃2(α) in (2.10) makes the computation of

d̄αmin and d̄αmax difficult in terms of α.

It is noteworthy that even for a particular α = α0, the computation of d̄α0
min

and d̄α0
max are difficult since the explicit expression of pertaining objective func-

tion d(u, v) is not tractable. However, the objective function d(u, v) for the

computation of dα0
min and d

α0
max are tractable due to Theorem 2.4.1 and the avail-

ability of the explicit expression of the inverse points of membership value α0

(Subsection 2.3.3.5).

• Space fuzzy line segment

Sides of a space fuzzy triangle in [38] can be considered as space fuzzy line

segments. A fuzzy set in the R3-space whose support is a crisp line segment

and that has a constant membership function is a fuzzy line segment in [21].

The space fuzzy line segment, according to [39], is the shortest path between

two space points with a constant membership function. The core of the fuzzy

line-segments of [38, 21, 39] can possibly be empty, and hence may not be a

crisp line-segment. Moreover, even if the core of the fuzzy line segment in

[38] is nonempty, the membership function of one side of the core is zero. In
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comparison, the proposed space fuzzy line-segment (Definition 2.5.1) neither

has an empty core nor on one side of the core the membership function is zero.

Qui and Zhang [7] defined the space fuzzy line segment joining two space fuzzy

points P̃1 and P̃2 by

˜̄LP1P2 =
∨
{l : l is a line segment joining a point in P̃1(0) to a point in P̃2(0)}.

On the other hand, we have evaluated the fuzzy line segment by

˜̄LP1P2 =
∨
{l : l is a line segment joining same points in P̃1(0) and P̃2(0)}.

According to the proposed Algorithm 2.5.1, the space fuzzy line segment is

formulated by ˜̄LP1P2 =
∨

α∈[0,1]

˜̄LP1P2(α),

where

˜̄LP1P2
(α) =

⋃
λ∈[0,1]

{λu+ (1− λ)v : where u ∈ P̃1(α) and v ∈ P̃2(α) are same points}.

Whereas the fuzzy line segment in [7] collects all line segments joining points

in the supports of the fuzzy points. Our proposed method considers only the

combinations of the same points. Therefore, the support of the proposed fuzzy

line segment is a subset (less imprecise) of that in [7]. In addition, the explicit

expressions (Subsection 2.3.3.4) of the same points for a pair of S-type space

fuzzy point make the evaluation (Algorithm 2.5.1) of the membership function

for ˜̄LP1P2 easier when compared to the formulations in [7].
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2.7 Conclusion

In this paper, we have formulated a basic idea of space fuzzy point with the help

of a three-variable reference function, namely, S-type space fuzzy point. We also

have proposed the idea of the same and inverse points with respect to continuous

S-type space fuzzy points. With the help of these concepts, analysis on the fuzzy

distance between two S-type space fuzzy points, convex combinations of S-type

space fuzzy points, the coincidence of two S-type space fuzzy points and space

fuzzy line segment have been performed. Importantly, since the the proposed ideas

depend on an unified representation of space fuzzy points by three-variable reference

functions, just by extending the number of variables, all the three-dimensional fuzzy

geometrical concepts can find the corresponding concepts in n-dimensional Euclidean

space.

With the help of S-type representation of fuzzy points, the general expressions of the

same and inverse points have been given that are used throughout the paper. Future

studies can find the general explicit expressions of the same and inverse points for

two fuzzy points in Rn. Towards this, one needs an S-type representation of a fuzzy

point in Rn, which can be found by replacing S2 by Sn−1 in the definition of reference

function given in the Section 2.3.1. One can also try to develop the idea of the same

and inverse points for discontinuous fuzzy points.

Our next research on fuzzy space geometry will be continued on the detailed analysis

of fuzzy triangles, fuzzy planes, fuzzy spheres, fuzzy ellipsoids and their properties.

***********
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