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PREFACE

Fuzzy space geometry is a study of imprecise locations, imprecise objects or impre-

cise shapes, and their topological properties. In this study, the fuzzy objects have

been visualized geometrically, and the construction procedure has been suggested to

visualize them in the Euclidean space R3. One of the applications of fuzzy objects

can be seen in fuzzy image processing, such as fuzzy object detection. Fuzzy object

detection is another approach to object detection that considers the image to be

fuzzy. In most of the images, where the objects are not clearly defined, that is,

vague/imprecise, etc., in that case, object detection becomes very difficult. As the

objects are vague/imprecise, fuzzy Hough transform is useful in dealing with this

type of problem. The basic idea of this technique is to find fuzzy curves like fuzzy

lines, fuzzy circles, etc., in suitable parameter space.

This thesis is intended to explore fuzzy space geometry and its applications in fuzzy

image processing. Sequentially three chapters (Chapter 2, 3, and 4) cover theoretical

aspects of fuzzy space geometry in R3-space. Chapter 5 includes the application of

fuzzy geometry in which we investigate a technique, namely fuzzy Hough transform,

to detect fuzzy lines and fuzzy circles.

In this thesis, the author discusses fuzzy space geometrical objects (fuzzy distance,

fuzzy lines, fuzzy planes, fuzzy spheres, fuzzy cones, etc.) in R3 and a fuzzy plane

geometrical object detection technique. This thesis contains six chapters. The thesis

is structured as follows.

Chapter 1 is an introduction that describes fuzzy space geometry and the literature

survey of fuzzy geometry and its applications. This chapter provides notations and

basic definitions of fuzzy set theory. Some basic definitions and concepts of fuzzy

xx



plane geometry are also included in this chapter. These concepts play an important

role in the investigation of fuzzy space geometry and its applications.

Chapter 2 introduces basic tools such as S-type space fuzzy point, the concept

of same and inverse points with respect to S-type space fuzzy point, and fuzzy

geometrical elements (fuzzy distance and space fuzzy line segment). A three-variable

reference function, representation of space fuzzy point by a reference function, fuzzy

number along a direction, the addition operation of two space fuzzy points, a general

expression of same and inverse points by a reference function, scalar multiplication

of space fuzzy point, and a linear combination of two space fuzzy points are proposed

in this chapter. Employing the concept of same and inverse points, we define the

fuzzy distance between two space fuzzy points and space fuzzy line segments. All

the provided ideas are supported with numerical examples and necessary pictorial

illustrations.

Chapter 3 explores the construct of space fuzzy lines and three different forms of

fuzzy planes in R3— a three-point form, an intercept form, and a fuzzy plane passing

through an S-type space fuzzy point and perpendicular to a given crisp direction.

We define a space fuzzy line as a bi-infinite extension of a space fuzzy line segment.

Particularly, we also formulate symmetric fuzzy lines. Importantly, the concept of

skew fuzzy lines and the shortest distance between two skew fuzzy lines are discussed

in R3. We introduce the angle between two fuzzy planes and the fuzzy distance

between a fuzzy point and a fuzzy plane. Geometric properties of the proposed space

fuzzy lines and all the proposed forms of fuzzy planes are also explored. Numerical

examples support all formulations and studies.

In chapter 4, the constructions of all the different forms of fuzzy spheres and their

intersection by a crisp plane are explained. The formulation of a fuzzy cone and

its intersection by a crisp plane is also delineated in this chapter. Three different

methodologies to formulate fuzzy spheres depend on the information available for

xxi



the fuzzy sphere, such as a fuzzy point and fuzzy distance or diameter of the fuzzy

sphere or four fuzzy points. We establish the notions of translation and rotation

of a fuzzy point. With the help of these notions, we construct the diameter form

of a fuzzy sphere and a fuzzy cone. This chapter incorporates the concept of a

great fuzzy circle and its rotation. We show that the rotation of a great fuzzy circle

about its diameter is a fuzzy sphere. In this sequel, the notions of the fuzzy cone,

convex fuzzy cone, and its intersection by a crisp plane are initiated here. An idea

of degenerated and non-degenerated fuzzy conics is explored.

Chapter 5 includes the study of the application of fuzzy plane geometrical elements

like fuzzy lines and fuzzy circles. We introduce a technique, say fuzzy Hough trans-

form (FHT), for detecting fuzzy lines and fuzzy circles in the image space. This

technique aims to find imprecise objects within a certain class of imprecise shapes

by a voting procedure. A brief study on the generalized version of the fuzzy Hough

transform is also described. Sequentially, a concept of similarity measure between

two fuzzy shapes is delineated. Moreover, we implement the proposed technique in

authentic images to detect fuzzy lines and fuzzy circles.

Proper care has been taken so that every concept coincides with the conventional

definitions in classical geometry with zero uncertainty. It is also shown that the

proposed concepts of same and inverse points are the basis for this study and facili-

tate the computations of membership functions of all the proposed fuzzy geometrical

entities in R3. The ideas on fuzzy geometry are applied to the detection of fuzzy

geometrical elements in fuzzy image processing.
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