
Chapter 7

Analysis of unsteady two-phase

peristaltic flow in a tube of

exponentially changing cross

sectional area: Application to sliding

hiatus hernia

7.1 Introduction

Peristalsis is the predominant mechanism of pumping within the bodies of hu-

mans and animals. Unlike piston pumps used in engineering applications, the

combination of the sequence of alternative contractions and relaxations of the
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vessel-wall due to the propagation of waves makes it unique. The wave genera-

tion is a reflex phenomenon and is made up of longitudinal and circular muscles

of the tubular vessel.

Oesophagus is one of such vessels where transportation is due to peri-

stalsis. Under normal conditions, the oesophagus is a uniform circular cylindrical

tube. But whenever the abdomen protrudes through the hiatus, the oesopha-

gus dysfunctions and the oesophagus is dimensionally changed. This disorder is

called hiatal herniation in medical science.

Hiatal hernia is of two types: one of them is sliding hiatal hernia which

has some symptoms but is not a serious dysfunction as it discovers normalcy soon

after protrusion while the other one, known as para-hiatal hernia, is a serious case

and needs clinical correction. In case of sliding hiatal hernia, the oesophagus may

be somewhere diverging and converging somewhere else or may be a combination

of the two. Pandey and Singh (2019) investigated the flow of Herschel-Bulkley

fluids in tubes of variable cross-section with application to sliding hiatal hernia.

The intake in oesophagus may be purely water but mostly it is a mix-

ture of fluid and solid particles. Such a swallowing was modelled by Pandey and

Singh (2018) for a uniform tube based on Drew’s model (1979) for particle-fluid

suspension by using a perturbation technique. Drew [(1979), (1983)] had pre-

sented a two-phase flow model and discussed the stability of a Stokes layer of

a particle-fluid mixture. The wall equation they considered was the one formu-

lated theoretically by Pandey et al. (2017) in which the wave amplitude increases

while propagating to match the high pressure in the distal oesophagus. The fact

was experimentally discovered by Kahrilas et al. (1995).
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The inferences drawn by Pandey and Singh (2018) are useful. They

contradicted previous conclusions [Srivastava and Srivastava (1989), Misra and

Pandey (1994)] and propounded that solid particles move faster than the fluid

near the boundary of the vessel while they are slower than the fluid away from

the boundary, which conforms the physics of such a flow. This is due to the fact

that no-slip condition cannot be used on solid particles. However, due to the

complexity involved, the series solutions were restricted to the first order of the

perturbation parameter.

Apart from experimental investigation of the two-dimensional peristaltic

flow of solid particles with different geometries initiated by Hung and Brown

(1976), a similar theoretical study of the particle-fluid suspension was done by

Srivastava and Srivastava (1989) who reported that the critical reflux pressure is

lower for the particle-fluid suspension than that for the particle-free fluid. It is

further observed that the mean flow reversal is strongly dependent on the particle

concentration and the presence of particles in the fluid favours reversal of flow.

Misra and Pandey (1994) subsequently studied axisymmetric flows. Jimenez-

Lozano et al. (2011) presented an analysis of the axisymmetric peristaltic flow

of a solid-liquid mixture in order to investigate the mechanics of ureteral peri-

stalsis in the presence of solid particles as in ureteral lithiasis. Mekheimer (2008)

theoretically analyzed peristaltic motion of a particle-fluid suspension through

a uniform and non-uniform annulus. Some recent publications discussing dif-

ferent aspects based on Drew’s model are worth mentioning [Bhatti and Zeeshan

(2016), Bhatti et al. (2016a, 2017b, 2017c, 2018d, 2016e), Zeeshan et al. (2017)].

Pandey and Singh (2019), who tried to study sliding hiatal hernia, inves-

tigated the flow of Herschel-Bulkley fluids in tubes of variable cross-section. In

case of cross sectional changes, we generally consider divergence or convergence
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of a tube of linear nature. However, such biological tissues altered in shape are

generally not linear. The new shape may be fitted with an exponential curve.

Therefore an exponential shape for modelling seems to be more appropriate.

We plan to construct a mathematical model for hiatal hernia. With the

considerations in the discussion given above, we investigate the unsteady flow

of solid particles suspended in a Newtonian fluid through a tube with exponen-

tially varying cross sectional area by duly considering the convective acceleration

terms. The flow is induced by peristaltic waves of dilating amplitude formu-

lated by Pandey et al. (2017). The perturbation solution too involves higher order

terms.

7.2 Mathematical Formulation

We consider an axisymmetric flow of a mixture of small solid particles and an in-

compressible Newtonian viscous fluid in a circular cylindrical tube whose cross-

sectional area changes with its length.

Oesophageal wall equation given by Pandey et al. (2017) requires some

modification as given below to incorporate exponential change in the cross sec-

tion along the tube length:

h̃(x̃, ω̃, t̃) = aeb̃x̃ − φ̃ eω̃x̃ cos2 π
λ

(x̃ − ct̃), (7.1)

where h̃, x̃, t̃, a, b̃, φ̃, ω̃, λ and c are the radial displacement of the wall,

axial coordinate, time, the radius of the tube, the tube gradient parameter which

changes the cross section depending on the length of the tube, wave amplitude,
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the wave amplitude dilation parameter, the wavelength and the wave velocity

respectively.

Figure 7.1: Schematic diagram of wall positions of oesophagus, based on the
equation (7.9), when a peristaltic wave of slightly dilating amplitude
propagates along it with velocity c.

The following are the governing equations of the two-phase unsteady

flow due to Drew [1979] in the cylindrical polar coordinates:

Fluid phase:

∂
∂x̃

[(1−C)ũf ] +
1
r̃
∂
∂r̃

[(1−C)r̃ ṽf ] = 0, (7.2)

ρf (1−C)
(∂ṽf
∂t̃

+ ũf
∂ṽf
∂x̃

+ ṽf
∂ṽf
∂r̃

)
= −(1−C)

∂p̃

∂r̃
+µs(C)(1−C)

{
∂2ṽf
∂x̃2

+
∂
∂r̃

(1
r̃

∂(r̃ ṽf )

∂r̃

)}
+CS(ṽp − ṽf ), (7.3)
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ρf (1−C)
(∂ũf
∂t̃

+ ũf
∂ũf
∂x̃

+ ṽf
∂ũf
∂r̃

)
= −(1−C)

∂p̃

∂x̃
+µs(C)(1−C)

{
∂2ũf
∂x̃2

+
1
r̃
∂
∂r̃

(
r̃
∂ũf
∂r̃

)}
+CS(ũp − ũf ), (7.4)

Particulate phase

∂
∂x̃

(Cũp) +
1
r̃
∂
∂r̃

(Cr̃ṽp) = 0, (7.5)

ρpC
(∂ṽp
∂t̃

+ ũp
∂ṽp
∂x̃

+ ṽp
∂ṽp
∂r̃

)
= −C

∂p̃

∂r̃
+CS(ṽf − ṽp), (7.6)

ρpC
(∂ũp
∂t̃

+ ũp
∂ũp
∂x̃

+ ṽp
∂ũp
∂r̃

)
= −C

∂p̃

∂x̃
+CS(ũf − ũp), (7.7)

where ũf , ṽf , ũp, ṽp, ρf , ρp, C, ρf (1−C), ρpC, p̃, and µs(C) represent re-

spectively axial velocity of the fluid phase, radial velocity of the fluid phase, axial

velocity of the particulate phase, radial velocity of the particulate phase, actual

density of the fluid, actual density of the particulate material, volume fraction

of the solid particles in the mixture, the fluid phase density, the particle phase

density, pressure, drag coefficient of the interaction for the force exerted by one

phase on the other and the effective viscosity of suspension.

For the present problem, the expression for the drag coefficient for a

small particle at low Reynolds number, S = (9µ0)/(4rp2), and Einstein’s formula,

µe = µ0µr , will be used, where µ0 is the viscosity of fluid, rp is the radius of particle

and µr(C) = 1 + 5/2C, [Mekheimer et al. (2008)].
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For the further analysis, the dimensionless parameters are introduced as

follows:

x =
x̃
λ
, r =

r̃
a
, t =

ct̃
λ
, uf =

ũf
c
, vf =

ṽf
cδ
, up =

ũp
c
,

vp =
ṽp
cδ
, δ =

a
λ
, h =

h̃
a
, b = b̃λ, ρ =

ρp
ρf
, φ =

φ̃

a
,

p =
p̃aδ

µsc
, Re0 =

acρf
µ0

, Q =
Q̃

πa2c
, ω = ω̃λ, Re = δRe0, M =

9
4

(
a
rp

)2

(7.8)

where δ, Re0, Re and M are respectively the wave number, the Reynolds

number, the modified Reynolds number and the drag parameter.

In terms of these non-dimensional quantities reduce the wall equation

(7.1) and governing equations (7.2)-(7.7) to

h(x,ω,t) = ebx −φeωx cos2π(x − t), (7.9)

∂
∂x

[(1−C)uf ] +
1
r
∂
∂r

[(1−C)rvf ] = 0, (7.10)

δ3Re0(1−C)
(∂vf
∂t

+uf
∂vf
∂x

+ vf
∂vf
∂r

)
= −µr(1−C)

∂p

∂r
+µr(1−C)

{
δ4∂

2vf
∂x2

+ δ2 ∂
∂r

(1
r

∂(rvf )

∂r

)}
+ δ2CS(vp − vf ), (7.11)
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δRe0(1−C)
(∂uf
∂t

+uf
∂uf
∂x

+ vf
∂uf
∂r

)
= −µr(1−C)

∂p

∂x
+µr(1−C)

{
δ2∂

2uf
∂x2

+
1
r
∂
∂r

(
r
∂uf
∂r

)}
+CM(up −uf ), (7.12)

∂
∂x

(Cup) +
1
r
∂
∂r

(Crvp) = 0, (7.13)

ρCRe0δ
3
(∂vp
∂t

+up
∂vp
∂x

+ vp
∂vp
∂r

)
= −Cµr

∂p

∂r
+CMδ2(vf − vp), (7.14)

ρCRe0δ
(∂up
∂t

+up
∂up
∂x

+ vp
∂up
∂r

)
= −Cµr

∂p

∂x
+CM(uf −up). (7.15)

For achieving a useful solution of a system of differential equations,

boundary conditions are required. However, in a practical scenario such as one

undertaken here solid particles and physics of fluid have to be perfectly appro-

priate. For example, no solid particle can stick to a solid boundary otherwise the

definition of rigidity will be violated. Actually, it is dragged by the fluid which

sticks to the boundary. Therefore, we cannot impose the no-slip condition on the

solid particles at the tubular wall. The non-dimensional boundary conditions, to

be introduced on the fluid particles and solid particles for the sake of solution of

the problem may be put as follows.
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uf =0 at r = h,
∂uf
∂r

= 0 at r = 0,

vf =0 at r = 0,vf =
∂h
∂t

at r = h,

∂up
∂r

=0,at r = 0,vp = 0 at r = 0. (7.16)

7.3 Method of Solution

A regular perturbation technique is used to analyze the problem and get a series

solution in terms of the wave number δ. Following Jimenez-Lozano (2011), we

introduce the wave number δ << 1 and consider that the particle volume fraction

C is of the form C = δC(1) and hence very small. Further, we seek series solutions

for the fluid velocities (uf , vf ), solid particle velocities (up, vp) and the pressure p

as well of the form

uf (x,r, t) = uf
(0) + δuf

(1) + δ2uf
(2) + ..., (7.17)

vf (x,r, t) = vf
(0) + δvf

(1) + δ2vf
(2) + ..., (7.18)

up(x,r, t) = up
(0) + δup

(1) + δ2up
(2) + ..., (7.19)

vp(x,r, t) = vp
(0) + δvp

(1) + δ2vp
(2) + ..., (7.20)

p(x,r, t) = p(0) + δp(1) + δ2p(2) + ... (7.21)

Substituting the series forms given in equations (7.17)-(7.21) into the

governing equations (7.10)-(7.15), and then collecting terms of like powers of δ

on the two sides, the equations are reduced to a set of linear equations as given
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below:

Zeroth order:

∂
∂x

[uf
(0)] +

1
r
∂
∂r

[rvf
(0)] = 0, (7.22)

∂p(0)

∂r
= 0, (7.23)

∂p(0)

∂x
=

1
r
∂
∂r

(
r
∂uf

(0)

∂r

)
, (7.24)

under the boundary conditions

uf
(0) = 0 at r = h,

∂uf
(0)

∂r
= 0 at r = 0, vf

(0) = 0 at r = 0,vf
(0) =

∂h
∂t

at r = h, (7.25)

First order:

∂
∂x

[uf
(1)] +

1
r
∂
∂r

[rvf
(1)] = 0, (7.26)

∂p(1)

∂r
+

3
2
C(0)∂p

(0)

∂r
= 0, (7.27)
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Re0

(∂uf (0)

∂t
+uf

(0)∂uf
(0)

∂x
+ vf

(0)∂uf
(0)

∂r

)
= −

∂p(1)

∂x
− 3

2
C(1)∂p

(0)

∂x

+
3
2
C(1) 1

r
∂
∂r

(
r
∂uf

(0)

∂r

)
+

1
r
∂
∂r

(
r
∂uf

(1)

∂r

)}
+MC(1)(up

(0) −uf (0)), (7.28)

C(1)
(
∂up

(0)

∂x
+

1
r

(
r
∂(rvp(0))

∂r

))
= 0, (7.29)

C(1)∂p
(0)

∂r
= 0, (7.30)

C(1)∂p
(0)

∂x
=MC(1)(u(0)

f −u
(0)
p ), (7.31)

under the boundary conditions

uf
(1) = 0 at r = h,

∂uf
(1)

∂r
= 0 at r = 0,

vp
(0) = 0 at r = h,vf

(1) = 0 at r = 0,
∂up

(0)

∂r
= 0 at r = 0, (7.32)

Second-order:

∂
∂x

[uf
(2)] +

1
r
∂
∂r

[rvf
(2)] = 0, (7.33)

∂p(2)

∂r
+

3
2
C(1)∂p

(1)

∂r
− 5

2
C(1)2∂p

(0)

∂r
= 0, (7.34)
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Re0

[(∂uf (1)

∂t
+uf

(1)∂uf
(0)

∂x
+uf

(0)∂uf
(1)

∂x
+ vf

(1)∂uf
(0)

∂r
+ vf

(0)∂uf
(1)

∂r

)
−C(1)

(∂uf (0)

∂t
+uf

(0)∂uf
(0)

∂x
+ vf

(0)∂uf
(0)

∂r

)]
=

−
∂p(2)

∂x
− 3

2
C(1)∂p

(1)

∂x
+

5
2
C(1)2∂p

(0)

∂x
+

1
r
∂
∂x

(
r
∂uf

(2)

∂r

)
− 5

2
C(1)2 1

r
∂
∂r

(
r
∂uf

(0)

∂r

)
+

3
2
C(1) 1

r
∂
∂r

(
r
∂uf

(1)

∂r

)
+MC(1)(up

(1) −uf (1)), (7.35)

C(1)
(
∂up

(1)

∂x
+

1
r

∂(rvp(1))

∂r

)
= 0, (7.36)

C(1)∂p
(1)

∂r
+

5
2
C(1)2∂p

(0)

∂r
= 0, (7.37)

ρRe0C
(1)

(∂up(0)

∂t
+up

(0)∂up
(0)

∂x
+ vp

(0)∂up
(0)

∂r

)
= −C(1)∂p

(1)

∂x

− 5
2
C(1)2∂p

(0)

∂x
+MC(1)(uf

(1) −up(1)). (7.38)

under the boundary conditions

uf
(2) = 0 at r = h,

∂uf
(2)

∂r
= 0 at r = 0,vf

(2) = 0 at r = 0,

vp
(1) = 0 at r = 0,

∂up
(1)

∂r
= 0 at r = 0, (7.39)
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We wish to present the analytical consequences in terms of time-averaged

volume flow rate which is defined by Q̃(x) =
∫ 1

0
Q(x, t)dt. The instantaneous

volume flow rate Q(x, t) of the suspension in the fixed (R,X) coordinate sys-

tem is the sum of the instantaneous volume flow rates of the fluid phase, i.e.

Qf (x, t) = 2
∫ h

0
(1 − C)ruf dr, and the particle phase, i.e. Qp(x, t) = 2

∫ h
0
Crupdr,

given by

Q(x, t) =Qf (x, t) +Qp(x, t), (7.40)

For the sake of solution, we use transformation from the unsteady labo-

ratory frame to steady wave frame.

The wave frame parameters, given on the left side of the equality sign,

are related to the corresponding parameters in the laboratory frame, given on the

right side, in the non-dimensional form by

X = x − t,R = r,Ui(R,X) = ui(r,x, t)− 1,Vi(R,X) = vi(x,r, t),q =Q(x, t)− h2. (7.41)

where (R,X), (Ui ,Vi) (with i = f ,p) and q are in the wave frame.

In view of equation (7.41), Q̃(x) = q+
∫ 1

0
h2dt, and accordingly

q =Q(x, t)− h2 = Q̃(x)− e2bx +φe(b+ω)x − 3
8
φ2e2ωx. (7.42)

For Q and Q̃, the regular perturbation expansions are as follows:
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Q =Q(0) + δQ(1) + δ2Q(2) + o(δ3),

Q̃ = Q̃(0) + δQ̃(1) + δ2Q̃(2) + o(δ3),

7.3.1 Solution for the zeroth order system

Integrating equation (7.24) with respect to r, in conjunction with equation (7.23),

and applying the first boundary condition of equation (7.25), we get

∂uf
(0)

∂r
=

1
2
r
∂p(0)

∂x
,

Again integrating with respect to r and using the second boundary con-

dition of equation (7.25), gives

uf
(0) =

1
4
∂p(0)

∂x
(r2 − h2), (7.43)

Under the third boundary condition of equation (7.25), equation (7.22)

together with equation (7.43) yields

vf (0) =
r

16

{
4h
∂h
∂x

∂p(0)

∂x
−
∂2p(0)

∂x2 (r2 − 2h2)
}

(7.44)

while equation (7.25) together with equation (7.44) under the fourth

condition of equation (7.25) gives

∂h
∂t

=
h3

16
∂2p(0)

∂x2 +
h2

4
∂h
∂x

∂p(0)

∂x
,
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which gives the zeroth-order pressure gradient

∂p(0)

∂x
=
G(t) + 16

∫ x
0
h(s, t)∂h(s,t)

∂t ds

h4 , (7.45)

where G(t) is an arbitrary function of t.

Therefore the zero-order system axial pressure gradient will be

p(0)(x, t) = p(0)(0, t) +
∫ x

0

G(t) + 16
∫ x1

0
h(s, t)∂h(s,t)

∂t ds

h4(x1, t)
dx1. (7.46)

The arbitrary function G(t), obtained by putting x = l in equation (7.46),

will be

G(t) =
{p0(l, t)− p0(0, t)} − 16

∫ l
0

∫ x1
0 h(s,t)∂h(s,t)

∂t ds

h4(x1,t)
dx1∫ l

0
1

h4(x1,t)
dx1

(7.47)

Further, the flow rate at the zeroth order system, in view of equation

(7.40), may be given by

Q(0) =Qf
(0) +Qp

(0) = 2
∫ h

0
ruf

(0)dr + 0 = −1
8
∂p(0)

∂x
h4.

Note that, in an aspect of equation (7.42), we have

Q(0) = Q̃(0) − e2bx +φe(b+ω)x − 3
8
φ2e2ωx + h2.

and hence
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∂p(0)

∂x
= −8

{
Q̃(0) − e2bx +φe(b+ω)x − 3

8φ
2e2ωx + h2

h4

}
= P0 (Say) (7.48)

Hence, from equations (7.43), (7.44) and (7.48), the axial and radial ve-

locities of the fluid at zero-order system, in terms of time-averaged volume flow

rate at zero order system, are given by

uf
0 =

1
4
P0(r2 − h2). (7.49)

vf
(0) =

r
16

{
4hP0

∂h
∂x
− ∂P0

∂x
(r2 − 2h2)

}
. (7.50)

7.3.2 Solution of the first-order system

So far the zeroth order solution for the fluid part have been deduced. The partic-

ulate matter, however, requires relations equations (7.29) and (7.31) obtained for

the first order system. Hence, they will be deduced in this section.

The zeroth order axial velocity of the solid particles is deduced by means

of equations (7.31) and (7.49) as

up
(0) =

1
4

(
r2 − h2 − 4

M

)
P0. (7.51)

Substituting the axial component from equation (7.51) in equation (7.29),

the radial velocity of the particulate phase of the zeroth-order system is derived

under the first boundary condition of equation (7.32) as
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vp
(0) =

r
16

{
4P0h

∂h
∂x
− ∂P0

∂x

(
r2 − 2h2 − 8

M

)}
. (7.52)

Equations (7.26)-(7.28) of the first-order system are solved in the similar

way to obtain the axial and radial velocities of the fluid of the first-order system

given by

uf
(1) =N1(r6 − h6) +N2(r4 − h4) +

(
N3 +

P1 +C(1)P0

4

)
(r2 − h2). (7.53)

vf
(1) = −1

8
∂N1

∂x
(r7 − 4h6r)− 1

6
∂N2

∂x
(r5 − 3rh4)− 1

4

(∂N3

∂x

+
1
4
∂P1

∂x
+
C(1)

4
∂P0

∂x

)
(r3 − 2rh2) +

1
4

(12N1 + 8N2h
3

+ 2N3h+ P1h+ P0hC
(1))

∂h
∂x
r. (7.54)

The expressions for P1, N1, N2 and N3 are given by

P1 =
∂P (1)

∂x
= −6N1h

4 − 16
3
N2h

2 − 4N3 −
P0

h2C
(1)

(
h2 +

8
M

)
− 8Q̃(1)

h4 . (7.55)

N1 =
Re0

1152
P0
∂P0

∂x
. (7.56)
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N2 =
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. (7.57)

N3 = Re0

(
− h

2
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. (7.58)

and

Q̃(1) =Q(1) = −3
4
N1h

8 − 2
3
N2h

6 −
(N3

2
+

1
8
∂P (1)

∂x
+
P0

8
C(1)

)
h4 − P0

M
C(1)h2.

7.3.3 Solution for the second-order system

In this section too, first of all we will formulate the particulate phase velocity

of the first order which requires some of the second order equations. Using the

equations ((7.51)-(7.53)) in equation (7.38), the axial velocity of the solid particles

of the second-order system is given by

up
(1) =N1(r6 − h6) +N2(r4 − h4)−

ρRe0P0

32M
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∂x
r2h2

−
ρRe0P0

8

{
P0(r2 +

4
M

)h
∂h
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4
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8
M
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32
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M
− 5

2M
C(1)P0. (7.59)

Further, equation (7.36), in view of equation (7.59), under the fifth bound-

ary condition equation (7.39), is solved to get the second order radial velocity of

the solid particles as
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The second order axial velocity of the fluid is derived from equation

(7.35) by using equations (7.49), (7.53) and (7.59) under the second boundary

condition of equation (7.39), as

uf
(2) = α1

(
r10 − h10

)
+α2

(
r8 − h8

)
+α3

(
r6 − h6

)
+α4

(
r4 − h4
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(
r2 − h2

)
+

1
8

(
2P2 − 3C(1)P1 − 6C(1)2P0 − 12C(1)N3

)(
r2 − h2

)
. (7.61)
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And then using equation (7.61) in equation (7.33) under the boundary

condition equation (7.39), the second-order radial velocity is given by

vf
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where
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α1 = Re0
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)
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The solutions given in equations (7.17)-(7.21) together constitute the re-

quired results for the fluid and particulate velocities, and the pressure gradient

in terms of time-averaged volume flow rate. Therefore, the axial and radial ve-

locities of the fluid in the fixed frame, and the pressure gradient are as follows:
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(7.69)

For wave number, δ → 0, equations (7.65)-(7.69) reduce to the corre-

sponding equations derived by Shapiro et al. (1969).

7.4 Results and discussion

In order to emphasize the application of the analytical work presented above, in

our model consider the motion of a single food bolus through oesophagus suffer-

ing from hiatus hernia. The diameter and the length of a normal oesophagus is

respectively 1.8-2.1 cm (Joohee et al. (2012)) and 25-30 cm (Lamb et al. (2005)).

Suspended particles are assumed to have a uniform radius 0.04 centimeter. We

further assume that the oesophagus can accommodate three boluses at a time

while swallowing.

The analytical solutions look appropriate in the fixed frame up to the

second order of the time-averaged volume flow rate Q̃ = Q̃0 + δQ̃1 + δ2Q̃(2). Com-

puter codes for the scientific assessment of the analytical results were developed
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by using Q̃(0) = Q̃ − δQ̃1 − δ2Q̃(2) in the equations (7.65)-(7.69). Plots are drawn

for axial, radial velocities as shown in the Figures 7.2-7.15.

7.4.1 Analysis of flow in the relaxed and contracted regions

Figure 7.2 based on the equations (7.59) and (7.65) presents the axial velocities of

fluid and solid particles along the axis of the oesophagus at the radial coordinate

r = 0.30 at time t = 0.00, 0.40, 0.80. Other parameters are set as b = 0.00, ω =

0.00, φ = 0.76, δ = 0.05, C(1) = 8.00, Re0 = 8, Q̃ = 1.60, Q̃(1) = 18, Q̃(2) = 18, M =

2500.

In Figure 7.2, we observe that wherever the tube is relaxed, the velocities

for the fluid and particle phases are positive but negative in the contracted region.

At macro level, the fluid is observed to flow faster than the suspended particles

throughout its journey in the tube. For different time instants, at each contracted

portion of the oesophagus, peaks, indicating the maxima, of the axial velocity

of the fluid are almost equal during the transportation of the bolus in the tube.

We observe similar patterns also for suspended solid particles. It means that the

bolus experiences equal pressure at each contracted portion of the oesophagus at

different instants.

7.4.2 Impact of the gradient parameter on flow

We examine the impact of the gradient parameter on the axial velocities of the

fluid and the suspended particles in Figures 7.3-7.5. The diagrams display the

axial velocities of the fluid and solid particles along the axis of the oesophagus
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Figure 7.2: Axial velocity profile of the fluid and solid particles versus the tube
length at the fixed radial distance r = 0.30 and (7.2a) t = 0.00 (7.2b)
t = 0.40 (7.2c) t = 0.80. Other parameters are taken as b = 0.00, ω =
0.00, φ = 0.76, δ = 0.05, C(1) = 8.00, Re0 = 8, Q̃ = 1.60, Q̃(1) = 18,
Q̃(2) = 18, M = 2500.
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at the radial length r = 0.30 for the instants t = 0.00, 0.40, 0.80. Other parame-

ters are set as ω = 0.025, φ = 0.76, δ = 0.05, C(1) = 8.00, Re0 = 8, Q̃ = 1.60, Q̃(1) =

18, Q̃(2) = 18, M = 2500 and b = 0.00, b = 0.04, b = 0.08.

Figures 7.3-7.5 are meant for the comparative study of the impact of the

gradient parameter on the flow dynamics under the wave amplitude dilation. Ini-

tially (Figure 7.3) the tube is considered uniform (i.e., b = 0) with ω = 0.025. The

rest of the parameters are fixed as considered for Figure 7.2. As the bolus pro-

gresses in the oesophagus, flow reversal in the contracted parts lessens in mag-

nitude. But in the relaxed part, the velocities seem to remain either unchanged

or the differences are insignificant. The differences, if any, of the velocities in the

relaxed parts are not significant.

We further assign new values 0.04 and 0.08 to b keeping all other pa-

rameters constant. Observation is that the flow reversal further diminishes in

magnitude and finally disappears (Figures 7.4 and 7.5). Thus we conclude that

any divergence in the tube opposes flow reversal even in the contracted regions

during the flow. This will eventually increase the flow rate in the oesophagus.

This is the case similar to sliding hiatus hernia near the cardiac sphincter.

7.4.3 Effect of the wave-amplitude dilation on flow

Figures (7.6c)-(7.8c) exhibit the axial velocities of the fluid and the particulate

suspension at the radial distance r = 0.30 at times t = 0.00, 0.40, 0.80. Parameters,

other than ω, are the same as considered before. The wave amplitude dilation

parameterω is varied in the range 0.00 - 0.04. In Figures (7.6c)-(7.8c), we examine

the impact of variation of the dilation parameter on the axial velocities of the fluid

and the suspended particles.
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Figure 7.3: Axial velocity profile of the fluid and solid particles versus the tube
length at the fixed radial distance r = 0.30 and (7.3a) t = 0.00 (7.3b)
t = 0.40 (7.3c) t = 0.80. Other parameters are taken as b = 0.00, ω =
0.025, φ = 0.76, δ = 0.05, C(1) = 8.00, Re0 = 8, Q̃ = 1.60, Q̃(1) = 18,
Q̃(2) = 18, M = 2500.
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Figure 7.4: Axial velocity profile of the fluid and solid particles versus the tube
length at the fixed radial distance r = 0.30 and (7.4a) t = 0.00 (7.4b)
t = 0.40 (7.4c) t = 0.80. Other parameters are taken as b = 0.04, ω =
0.025, φ = 0.76, δ = 0.05, C(1) = 8.00, Re0 = 8.00, Q̃ = 1.60, Q̃(1) = 18,
Q̃(2) = 18, M = 2500.
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Figure 7.5: Axial velocity profile of the fluid and solid particles versus the tube
length at the fixed radial distance r = 0.30 and (7.5a) t = 0.00 (7.5b)
t = 0.40 (7.5c) t = 0.80. Other parameters are taken as b = 0.08, ω =
0.025, φ = 0.76, δ = 0.05, C(1) = 8.00, Re0 = 8, Q̃ = 1.60, Q̃(1) = 18,
Q̃(2) = 18, M = 2500.
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Since the tube diverges, its impact is reflected in terms of diminishing

flow reversal in the contracted parts of the tube in Figure (7.6c) in which ω = 0.

The impact of ω is reflected in Figures (7.7c) and (7.8c). This is observed that,

as expected, it further enhances the flow rate which rises with more dilation of

ω (Figures (7.6c)-(7.8c)). This makes swallowing easier in the oesophagus. This

is the case similar to sliding hiatus hernia near the cardiac sphincter. This also

makes swallowing easier in the oesophagus. Quantitatively, no change is noticed

in flow patterns of the fluid and solid velocities.

However, rising dilation of the wave amplitude enhances the flow rate.

However unlike gradient parameter, flow reversal in the contracted parts magni-

fies. Figures (7.7c) and (7.8c) exhibit it very clearly. Here too, no alteration in the

two velocity patterns is observed.

Figure (7.9c), based on equations (7.65) and (7.67), presents the radial

profile of the axial velocity of the fluid with suspended particles along the axis of

the oesophagus at an arbitrarily chosen axial position x = 0.651, for the different
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Figure 7.6: Axial velocity profile of the fluid and solid particles versus the tube
length at the fixed radial distance r = 0.30 and (7.6a) t = 0.00 (7.6b)
t = 0.40 (7.6c) t = 0.80. Other parameters are taken as b = 0.08, ω =
0.025, φ = 0.76, δ = 0.05, C(1) = 8.00, Re0 = 8, Q̃ = 1.60, Q̃(1) = 18,
Q̃(2) = 18, M = 2500.
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Figure 7.7: Axial velocity profile of the fluid and solid particles versus the tube
length at the fixed radial distance r = 0.30 and (7.7a) t = 0.00 (7.7b)
t = 0.40 (7.7c) t = 0.80. Other parameters are taken as b = 0.02, ω =
0.003, φ = 0.76, δ = 0.05, C(1) = 8.00, Re0 = 8, Q̃ = 1.60, Q̃(1) = 18,
Q̃(2) = 18, M = 2500.
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Figure 7.8: Axial velocity profile of the fluid and solid particles versus the tube
length at the fixed radial distance r = 0.30 and (7.8a) t = 0.00 (7.8b)
t = 0.40 (7.8c) t = 0.80. Other parameters are taken as b = 0.02, ω =
0.04, φ = 0.76, δ = 0.05, C(1) = 8.00, Re0 = 8, Q̃ = 1.60, Q̃(1) = 18,
Q̃(2) = 18, M = 2500.

instants of time t = 0.00, 0.40, 0.80. Other parameters are set as b = 0.004, ω =

0.002, φ = 0.60, δ = 0.05, C(1) = 4, Re0 = 8, Q̃ = 1.40, Q̃(1) = 18, Q̃(2) = 18, M =

1200. As we observed in Figures 7.2 - 7.8, the fluid moves axially faster than the

suspended particles.

The entire discussion so far was limited to the radial profiles of the ax-

ial velocities of the fluid and the suspended particulate matter at a fixed radial

coordinate r = 0.3. This however does not reflect the influence of the condition

imposed that while fluid does not slip at the tube boundary, the particulate mat-

ter is free to move. To this end, we plot diagrams of the axial fluid and particle

velocities along the radius, shown in Figure (7.9c), for arbitrarily selected time

instants in a diverging tube under dilating peristaltic waves. The observation is

that the axial velocities of the fluid and the particulate matter coincide close to
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the wall and in between that point and the wall boundary, solid particle velocity

overtakes the fluid velocity. Such points together form a closed surface inside

the tube, which varies axially. This closed surface of equal velocities for the two

phases shorten in size with time because of wave amplitude dilation (Figure (7.9c)

(ii, iii)).

To study the impact of the dilating wave amplitude on the axial veloci-

ties of the fluid and the suspended particles from the centre line to the boundary,

we set the various parameters fixed as before except ω, which varied in the range

0− 0.08.

Radial profiles of the axial velocities of two phases at a particular fixed

axial position are plotted in Figures (7.10c)-(7.11c) for t = 0.00, 0.40, 0.80, b =

0.002, δ = 0.055, C(1) = 8, φ = 0.72, Re0 = 8, Q̃ = 1.51, Q̃(1) = 20, Q̃(2) = 20, M =

1200. In figures (7.10c) (i, iii) and (7.11c) (i, iii) we notice that both of the axial

velocities increase with dilating wave amplitude. In figures (7.10c) (ii) and (7.11c)
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Figure 7.9: Radial velocity profile of the axial velocity of the fluid and solid par-
ticles versus the tube length at the at the fixed axial position x = 0.651
and (7.9a) t = 0.00 (7.9b) t = 0.40, (7.9c) t = 0.80. Other parameters
are taken as b = 0.004, ω = 0.002, φ = 0.60, δ = 0.05, C(1) = 4, Re0 = 8,
Q̃ = 1.40, Q̃(1) = 18, Q̃(2) = 18, M = 1200.

(ii), the axial velocities of the fluid and the suspended particles coincide at some

value of x and the two velocity profiles reverse the trends thereafter.

Figure 7.12 reveals the impact of the wave number on the axial velocity

of the fluid at a specific axial position x = 0.30 with other various parameters

set as b = 0.04, ω = 0.002, φ = 0.72, C(1) = 4, Re0 = 8, Q̃ = 1.51, Q̃(1) = 20, Q̃(2) =

20, t = 0.00, M = 1200.

We observe that the axial fluid velocity decreases when the volume frac-

tion increases. Subsequently, comparing the two graphs in Figure 7.12 (i, ii),

we conclude that the axial velocity of particle-fluid suspension for non-zero wave

number is higher than the axial velocity of particle-fluid suspension for zero wave

number.
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Figure 7.10: Radial profile of the axial velocity profile of the fluid versus the
radial distance at the fixed axial position x = 0.30 and time (7.10a)
t = 0.00 (7.10b) t = 0.40, (7.10c) t = 0.80. Other parameters are
taken as b = 0.002, δ = 0.055, C(1) = 8, φ = 0.72 Re0 = 8, Q̃ = 1.51,
Q̃(1) = 20, Q̃(2) = 20, M = 1200. Solid line, dashed line and the solid
line with marker correspond respectively to ω = 0.00, ω = 0.08 and
ω = 0.16.
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Figure 7.11: Radial profile of the axial velocity profile of the particles versus the
radial distance at the fixed axial position x = 0.30 and time (7.11a)
t = 0.00 (7.11b) t = 0.40, (7.11c) t = 0.80. Other parameters are
taken as b = 0.002, δ = 0.055, C(1) = 8, φ = 0.72, Re0 = 8, Q̃ = 1.51,
Q̃(1) = 20, Q̃(2) = 20, M = 1200. Solid line, dashed line and the solid
line with marker correspond respectively to ω = 0.00, ω = 0.08 and
ω = 0.16.
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Figure 7.12: The impact of δ on the relation between the axial velocity of the
fluid and the radial distance for different volume fractions at the
fixed axial position x = 0.30 for (7.12a) δ = 0 (7.12b) δ = 0.07 . Other
parameters are taken as b = 0.04,ω = 0.002, φ = 0.72, C(1) = 4, Re0 =
8, Q̃ = 1.51, Q̃(1) = 20, Q̃(2) = 20, t = 0.00, M = 1200. Solid line,
dashed line and the solid line with marker respectively correspond
to C = 0.0, C = 0.32 and C = 0.64.

Figure 7.13 shows the dependence of the radial fluid velocity, examined

at a specific axial value x = 0.20 at time t = 0.30 for the volume fraction C =

0.00, 0.183, 0.366. We notice that the radial velocity is more distinct in the middle

and decreases as the volume fraction of the suspended particles increases.

7.4.4 Effects of the gradient parameter on the radial profile of

the axial velocity

The gradient parameter b was varied in the range 0.00− 0.66 to study its impact

on the axial velocity of the two phases (Figure 7.14). It was observed that the

annular region in the vicinity of the wall in which the particulate matter takes

over the fluid in terms of velocity reduces in thickness.
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Figure 7.13: Radial velocity profile of the fluid along the radial distance for dif-
ferent volume fraction of particles at x = 0.20 for t = 0.30, b = 0.002,
ω = 0.001, φ = 0.70, Re0 = 4, δ = 0.061, Q̃ = 1.52, Q̃(1) = 20,
Q̃(2) = 20, M = 30. Solid line, dashed line and the solid line
with marker correspond respectively to C = 0.00, C = 0.183 and
C = 0.366.
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Figure 7.14: The impact of gradient parameter b on radial profile of the axial
velocity profile of the fluid versus the radial distance at the fixed
axial position x = 0.651 and gradient parameter (7.14a) b = 0.33
(7.14b) b = 0.66. Other parameters are taken as ω = 0.002, δ = 0.06,
C(1) = 4, φ = 0.60, Re0 = 8, Q̃ = 2.4, Q̃(1) = 18, Q̃(2) = 18, M = 1200,
t = 0.55.
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7.4.5 Effect of the dilation parameter on the radial profile of the

axial velocity

It is observed in the plots given in Figure 7.15 that the particles move slower than

the fluid in the middle of the tube but the trend changes at a point close to the

wall due to freedom of movement given to solid particles at the wall. This is

further observed that any dilation of wave amplitude brings the transition point

farther from the wall.

7.5 Conclusions

By using the regular perturbation technique, a theoretical investigation has been

presented for unsteady peristaltic flow of a particle fluid suspension in an oe-

sophagus suffering from sliding hiatus hernia.

It is concluded that the velocities of the fluid and particle phases are

positive in the relaxed portion of the tube but negative in the contracted region.

The fluid flows, at macro level, faster than the suspended particles throughout its

journey in the tube.

At micro level, the fluid and particulate velocities which are negative

in the contracted parts, become more negative. i.e., the flow reverses more, as

the wave amplitude increases progressively. However, as the bolus progresses in

the oesophagus, flow reversal in the contracted parts lessens in magnitude and

finally disappears. This will eventually increase the flow rate in the oesophagus.

This is the case similar to sliding hiatus hernia near the cardiac sphincter.
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Figure 7.15: The impact of dilation parameter ω on radial profile of the axial
velocity of the particles versus radial distance at the fixed axial po-
sition x = 0.651 and dilation parameter (7.15a) ω = 0.00 (7.15b)
ω = 0.40 (7.15c) ω = 0.80. Other parameters are taken as b = 0.001,
δ = 0.05, C(1) = 4, φ = 0.60, Re0 = 8, Q̃ = 2.4, Q̃(1) = 18, Q̃(2) = 18,
M = 1200, t = 0.20.
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It is concluded that the fluid flows faster than the suspended particles

throughout the journey in the tube around the centre line. Since the fluid sticks

to the wall, the formulation includes imposition of no-slip condition on it; while

giving freedom to the particulate material for movement, the axial velocity of the

suspended particles near the tube wall is higher than that of the fluid.

Dilating wave amplitude enhances the flow rate. However unlike gradi-

ent parameter, flow reversal in the contracted regions magnifies.

It is further observed that the axial velocities of the fluid and the par-

ticulate matter coincide close to the wall and in between that point and the wall

boundary, solid particle velocity overtakes the fluid velocity. Such points together

form a closed surface inside the tube, which varies axially. This closed surface of

equal velocities for the two phases shorten in size with time if wave amplitude

dilates.

We notice that the radial velocity is more distinct in the middle and

decreases as the volume fraction of the suspended particles increases.

The particles move slower than the fluid in the middle of the tube but

the trend changes at a point close to the wall due to freedom of movement given

to solid particles at the wall. This is further observed that any dilation of wave

amplitude brings the transition point farther from the wall.

Our study supports the suggestion of the doctor to the patients suffer-

ing from a disease like achalasia, hiatus hernia, oesophageal stricture and oe-

sophageal tumors to consume lesser solid concentration.

***********
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