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5.1 Introduction

A peristaltic pump is a device for pumping fluids, generally from a region of

lower to higher pressure, by means of a contraction wave travelling along a tube-

like structure. This travelling-wave phenomenon is referred to as “peristaltis”.

Peristalsis originated naturally as a means of pumping physiological fluids from

one place in the body to another and is the primary pumping mechanism in swal-

lowing (and indeed all the way through the alimentary canal) (cf. J. G. Brasseur

(1987)). Examples include the movement of food through the digestive system,

passage of urine from the kidney to the bladder. Peristaltic transport deals with

a given train of waves moving with invariable speed on the elastic boundaries. It

pumps bio-fluids against the pressure rise. Peristaltic waves occur in the oesoph-

agus, stomach, vas deferens, fallopian tube, intestines and in many other parts

of human body. A major industrial and clinical application of this principle is

in the design of the diabetic pump, blood pumps in heart- lung machines, roller

and finger pumps. It also has other industrial applications such as transport of

corrosive fluids and sanitary fluid transport for which contact of the fluid with

the machinery components is forbidden.

The dome-shaped muscle which separates the abdomen and chest is

called diaphragm. The oesophagus passes through an opening (the hiatus) in the

diaphragm to connect to the stomach. When elements of the abdominal cavity

bulge up through the oesophageal hiatus into the part of the thoracic cavity be-

tween the lungs, it is called hiatus hernia (Figure 5.1). One of the recognized the-

ories of the origin of this hiatus hernia is that intra-abdominal pressure increases

above the normal value to increase the normal gradient between intra-thoracic

and intra-abdominal pressure. Consequently, the oesophagogastric junction is
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(a) (b)

Figure 5.1: Diagrams for (a) Normal oesophagus and (b) Oesopha-
gus suffering from sliding hiatus hernia. (Source of fig-
ure 5.1 https://www.melbournegastrosurgery.com.au/

surgery-for-gastric-reflux-hiatus-hernia/)

pushed up into hiatus ( cf. Christensen and Miftakhov (2000)). Due to this her-

niation oesophagus diverges at the distal end. This model investigates the effect

of this divergence of oesophagus on swallowing of such food stuffs which have

micropolar fluid nature.

We focus our study on sliding hiatus hernia which is very common and

is defined as a significant axial prolapsed of a portion of the stomach through

the diaphragmatic oesophageal hiatus. It is usually described as a more than 2

cm separation of the upward displaced oesophagogastric junction and diaphrag-

matic impression (cf. Weyenberg (2013)).

The lower oesophageal sphincter is a thickened area of the circular mus-

cle layer of the distal oesophagus, in humans extending over an axial length of 2 -

https://www.melbournegastrosurgery.com.au/surgery-for-gastric-reflux-hiatus-hernia/
https://www.melbournegastrosurgery.com.au/surgery-for-gastric-reflux-hiatus-hernia/
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4 cm. The main function of the lower oesophageal sphincter is to generate a high-

pressure zone to save from harm the oesophagus against reflux from caustic gas-

tric contents. During swallowing or belching, its muscle must relax temporarily

in order to permit passage of ingested food or intra-gastric air. Swallow-induced

relaxation is part of primary peristalsis (cf. Boeckxstaens (2005)).

Micro polar fluids contain micro constituents which can undergo rota-

tion, the presence of which can affect the hydrodynamics of the flow such that

it can be distinctly non-Newtonian. Physically, micro polar fluids may represent

fluids consisting of rigid, randomly oriented (or spherical) particles suspended in

a viscous medium, where the deformation of fluid particles is ignored (cf. Grze-

gorz Lukaszewicz). Micro-polar fluids are the very common type of fluids such as

blood, some edible solutions, polymer solutions, colloidal solutions, drilling flu-

ids in oil industries, some food materials such as the solutions of roasted cereal

powders consumed in Indian sub continent (cf. Bourne (2002)).

The study of the mechanism of peristalsis, in mechanical and physiolog-

ical situation has been the object of scientific research from the long time. Since

the first investigation of Latham (1966), several theoretical and experimental at-

tempts have been made to understand peristaltic action in different situations. In

the early studies of peristalsis, most of the theoretical investigations and clinical

observations took time to gain momentum (cf. (1968), (1969)). These investiga-

tions are carried out by considering fluid as Newtonian and tube or channel as

having uniform cross-sectional area. With the development of medical and phys-

ical sciences, it has been recognized that the bio-fluids do not behave like Newto-

nian fluids and fail to give a better understanding when a peristaltic mechanism

is involved in small blood vessels, intestine, transport of spermatozoa in the cer-

vical canal. It has now been accepted that most of the physiological fluids behave
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like the non-Newtonian fluids. Peristalsis in a male reproductive system was

observed experimentally and numerically by Batra (1974), Guha et al. (1975),

Gupta et al. (1976) and Srivastava et al. (1985). Guha et al. (1975) studied the

transport of the spermatic fluid in the vas deferens of monkey and reported that

the transportation during ejaculation is mainly due to contraction of the ampulla

and filling during the non-ejaculatory phase is due to peristalsis and epididymal

pressure. Srivastava et al. (cf. (1985), (1982)) modelled the peristaltic flow in

the vas deferens by considering it a non-uniform diverging tube and a channel.

They examined a more realistic model by investigating power-law fluid flow in

a non-uniform tube and blood as a Casson fluid flowing inside small capillaries

and blood vessels. Misra and Pandey (1995) modelled axisymmetric peristaltic

motion of a Newtonian viscous incompressible fluid through a flexible tube of

changing cross-section, where the nonlinear convective acceleration terms were

supposed to be not negligible compared to the viscous terms. Their reports were

more ascribable than the previous reports for spermatic flow reported by Guha

et al. (1975). Eytan et al. (cf. (1999), (2001)) investigated the effect of peristalsis

in embryo transport within the uterine cavity. They discussed in detail the phe-

nomenon of trapping and how the particle reflux impedes the embryo implan-

tation at the fundus. Hariharan et al. (2008) studied the peristaltic transport of

non-Newtonian fluid in a diverging tube with different waveforms and concluded

that square wave has the best pumping characteristics of all the wave forms and

the triangular wave has the worst characteristics.

Li and Brasseur (1993) studied the transport of food bolus in the oe-

sophagus with integral and non-integral number of waves. Misra and Pandey

(2001) gave a more suitable model with modified wall equation for oesophageal

swallowing. Pandey and Chaube (cf. (2011), (2010)) investigated the peristaltic
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transport of Maxwell and viscoelastic fluid in a channel and a tube of varying

cross sections respectively. Kahrilas et al. (1995) reported an experimental inves-

tigation of high- pressure zone located in the lower part of the oesophagus whose

length varies from a normal oesophagus to an oesophagus which suffers from

a hiatus hernia. In another experimental investigation, Xia et al. (2009) mea-

sured oesophageal wall thickness in contracted and dilated states through CT im-

ages of adult patients without oesophageal diseases. On the basis of this, Pandey

et al. (2017) concluded that in the dilated state the upper oesophagus is thicker

while in the contracted state the lower oesophagus is thicker and modelled the

oesophageal swallowing with peristaltic waves of exponentially increasing wave

amplitude for a Newtonian fluid. Several kinds of literature are available that ex-

plain the mathematics of peristalsis and its effect on the fluid flow in a diverging

tube with non-Newtonian fluid. This investigation is different from those of pre-

vious investigations. Because, due to sliding hiatus hernia the cross-sectional area

of the oesophagus does not keep on uniform throughout its length, and conse-

quently, it gets diverged at the distal end. Sometime it may be diverged and then

converged near the distal end. In light of this, the purpose of the present analysis

is to put forward the effect of sliding hiatus hernia on the oesophageal swallowing

with dilating peristaltic wave amplitude for non-Newtonian fluid (micro-polar

fluid).

5.2 Mathematical Formulation

We consider the flow of micro-polar fluid in a tube of length of l̃ caused by con-

tinuous contraction waves that propagate on the walls of the tube (cf. Figure 5.2)

and are given by
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h̃(x̃, ω̃, t̃) = a+ b̃x̃ − φ̃ eω̃x̃ cos2 π
λ

(x̃ − ct̃), (5.1)

where h̃, x̃, t̃, a, b̃, φ̃, λ, ω̃ and c respectively stand for radial displace-

ment of the wall, axial coordinate, time, radius of the tube, constant whose mag-

nitude depend on the length of the tube or gradient parameter, amplitude of the

wave, wavelength, damping parameter and wave velocity.

The governing equations of the flow of micro-polar fluid in the absence

of body forces and body couple are given by

∂ũ
∂x̃

+
1
r̃

(
∂(r̃ ṽ)
∂r̃

)
=0, (5.2)

ρ

(
∂ũ

∂t̃
+ ũ

∂ũ
∂x̃

+ ṽ
∂ũ
∂r̃

)
=−

∂p̃

∂x̃
+ k

1
r̃

∂(r̃w̃)
∂r̃

+ (µ+ k)
(
∂2ũ

∂x̃2 +
1
r̃
∂
∂r̃

(
r̃
∂ũ
∂r̃
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, (5.3)
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∂ṽ
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∂ṽ
∂r̃

)
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∂r̃
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∂x̃
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(
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(
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∂r̃
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, (5.4)

ρσ̃

(
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+ ũ

∂w̃
∂x̃

+ ṽ
∂w̃
∂r̃

)
=− 2kw̃+ k

(
∂ṽ
∂x̃
− ∂ũ
∂r̃

)
+γ

(
∂2w̃

∂x̃2 +
∂
∂r̃

(
1
r̃

∂(r̃w̃)
∂r̃

))
+ (α + β +γ)∇̃(∇̃.w̃). (5.5)

where ũ, ṽ, w̃, r̃, ρ, σ̃ are axial velocity, radial velocity, micro-polar vec-

tor, radial coordinate, fluid density, micro-gyration parameter, respectively and

µ, k, α, β, γ are material constants and satisfy the following conditions:

2µ+ k ≥ 0, k ≥ 0, 3α + β +γ ≥ 0, γ ≥| β |, (5.6)
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Figure 5.2: The diagram, based on equation (5.12), represents the propagation of
a progressive wave along the walls of the tube containing fluid, which
undergoes contraction and relaxation but no expansion beyond the
boundary.

For the subsequent analysis, the dependent variables are non - dimen-

sionalized as follow.

x =
x̃
λ
, r =

r̃
a
, t =

ct̃
λ
, u =

ũ
c
, v =

ṽ
cδ
, δ =

a
λ
, w =

aw̃
c
, h =

h̃
a
, b =

b̃λ
a
,

l =
l̃
λ
, φ =

φ̃

a
, σ =

σ̃

a2 , p =
p̃a2

µcλ
, Re =

ρcaδ

µ
, Q =

Q̃

πa2c
, ω = λω̃, (5.7)

where δ = a
λ is wave number; Re is the Reynolds number and Q is vol-

ume flow rate.

After introducing the non dimensional parameters equations from (5.2)

- (5.5) becomes as follow:
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∂x

+
1
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N

(
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∂x

+ v
∂w
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δ2∂v
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∂
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(
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Employing long wavelength and low Reynolds number approximations,

the non-dimensional equations obtained from above equations reduce to

∂u
∂x

+
1
r

(
∂(rv)
∂r

)
=0, (5.8)

∂p

∂x
=

1
1−N

{N
r

∂(rw)
∂r

+
1
r
∂
∂r

(
r
∂u
∂r

)}
, (5.9)

∂p

∂r
=0, (5.10)

2w+
∂u
∂r
− 2−N

m2
∂
∂r

(
1
r

∂(rw)
∂r

)
=0. (5.11)

where N = k
(µ+k) is the coupling number i.e. a measure of particle cou-

pling with its surroundings (0 ≤ N ≤ 1),m =

√
a2k(2µ+ k)
γ(µ+ k)

, is the micro-polar

parameter and α,β do not appear in the governing as the micro-rotation vector
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is solenoidal, i.e. ∇ · −→w = 0. In the limiting case, k → 0 i.e., N → 0, the gov-

erning equations for the micro-polar fluid reduce to the governing equations for

Newtonian fluid.

h(x,ω,t) = 1 + bx −φeωx cos2π(x − t), (5.12)

The boundary conditions imposed on the governing equations are as fol-

low

u(x,r, t)
∣∣∣
r=h

=0, v(x,r, t)
∣∣∣
r=h

=
∂h
∂t
,

v(x,r, t)
∣∣∣
r=0

=0,
∂u(x,r, t)

∂r

∣∣∣
r=0

=0, (5.13)

w(x,r, t)
∣∣∣
r=0

=0, w(x,r, t)
∣∣∣
r=h

=0. (5.14)

5.3 Solution of the Problem

Integration of equation (5.9) once with respect to r yields

∂u
∂r

= (1−N )
r
2
∂p

∂x
−Nw+

C1

r
, (5.15)

Further, integrating equation (5.11) twice with respect to r and also us-

ing equation (5.15), we obtained non-homogeneous Bessel equation as:

∂2w

∂r2 +
1
r
∂w
∂r
−
(
m2 +

1
r2

)
w =

m2

2−N

{
(1−N )

r
2
∂p

∂x
+
C1

r

}
,
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The general solution of above equation as follows

w = C2I1(mr) +C3K1(mr)− 1
2−N

{
(1−N )

r
2
∂p

∂x
+
C1

r

}
, (5.16)

whereC1,C2,C3 are arbitrary functions independent of r and I1(mr),K1(mr)

are respectively the modified Bessel functions of the first and second kind of the

first order.

Then applying fourth boundary condition of equation (5.13) and the

boundary conditions (5.14). Then equations (5.15) and (5.16) become

∂u
∂r

=
1−N
2−N

∂p

∂x

{
r − Nh

2
I1(mr)
I1(mh)

}
, (5.17)

w =
1−N

2(2−N )
∂p

∂x

{HI1(mr)
I1(mh)

− r
}
. (5.18)

and further integrating equation (5.17) and applying the no-slip condi-

tion of equation (5.13), the axial velocity is found as

u =
1−N

2(2−N )
∂p

∂x

{
r2 − (1 + bx)(1 + bx −φeωx

−φeωx cos2π(x − t))−
φ2e2ωx

4
(1 + 4cos2π(x − t) + cos2 2π(x − t))

+
Nh
m

(
I0(mh)− I0(mr)

I1(mh)

)}
, (5.19)



Chapter 5. Transportation of micro-polar fluids by means... 114

where I0(mr), I0(mh) are the modified Bessel functions of the first kind

and the zeroth order.

The radial velocity is derived from equation (5.11), by substituting u from equa-

tion (5.19) and integrating it once with respect to r. The regularity condition,

given in equation (5.13), determines the constant term and gives the radial veloc-

ity as

v =
1−N

2(2−N )

[{
b+

φeωx

2
(2π sin2π(x − t)−ωcos2π(x − t)−ω)

}∂p
∂x

{
rh

− N
m

{
r
2
∂
∂x

(
hI0(mh)
I1(mh)

)
− I1(mr)

m
∂
∂x

(
h

I1(mh)

)}}
−
∂2p

∂x2

{r3

4
− rh

2

2
+

Nh
mI1(mh)

(
r
2
I0(mh)− I1(mh)

m

)}]
, (5.20)

In order to get pressure gradient, we apply the radial velocity of the wall,

given in equation (5.13), on equation (5.20). This gives

h
∂h
∂t

=
1−N

2(2−N )

[{
b+

φeωx

2
(2π sin2π(x − t)−ωcos2π(x − t)−ω)

}∂p
∂x

{
H3

− Nh
m

{h
2
∂
∂x

(
hI0(mh)
I1(mh)

)
− I1(mh)

m
∂
∂x

(
h

I1(mh)

)}}
+
∂2p

∂x2

{
h4

4
+
Nh2

2m2

(
2− mhI0(mh)

I1(mh)

)}]
, (5.21)

Integrating of which, with respect to x, yields the pressure gradient as
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∂p

∂x
=

8(2−N )
1−N[

C(t) + πφ
4

∫ x
0
eωx{(2φeωx − 4(bx+ 1))sin2π(x − t) +φeωx sin4π(x − t)}ds

h4 + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

) ]
, (5.22)

Again integrating it from 0 to x, the pressure difference is obtained as

p(x, t)− p(0, t) =
8(2−N )

1−N[∫ x

0

C(t) + πφ
4

∫ s
0
eωx{(2φeωx − 4(bx+ 1))sin2π(x − t) +φeωx sin4π(x − t)}ds1

h4 + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

) ds

]
,

(5.23)

Putting x = l in equation (5.23), the pressure difference between the inlet

and the outlet of the tube is obtained as

p(l, t)− p(0, t) =
8(2−N )

1−N[∫ l

0

C(t) + πφ
4

∫ x
0
eωx{(2φeωx − 4(bx+ 1))sin2π(x − t) +φeωx sin4π(x − t)}ds

h4 + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

) ds

]
,

(5.24)

where C(t) is a function of t which is evaluated as
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C(t) =

8(2−N )
1−N ∆pl(t)−

∫ l
0

πφ
4

∫ x
0 e

ωx{(2φeωx−4(bx+1))sin2π(x−t)+φeωx sin4π(x−t)}ds

h4+ 4Nh2

m2

(
1−mhI0(mh)

2I1(mh)

) dx

∫ l
0

1

h4+ 4Nh2

m2

(
1−mhI0(mh)

2I1(mh)

)dx , (5.25)

where ∆pl(t) = p(l, t)− p(0, t) is the pressure difference between the inlet

and outlet of the tube.

The volume flow rate is defined as

Q(x, t) =
∫ h

0
2ur dr,

this yields, on performing the integration, the following expression

Q(x, t) =
N − 1

4(2−N )
∂p

∂x

{
h4 +

4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)}
, (5.26)

The time-averaged volume flow rate is obtained by averaging the volume

flow rate for one time period. This gives

Q̃ =
N − 1

4(2−N )

∫ 1

0

∂p

∂x

{
h4 +

4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)}
dt, (5.27)

The time-averaged volume flow rate can be given in terms of the flow

rate in the wave frame, and also in the laboratory frame, as
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Q̃ =q+ 1 + b2x2 − 2bx − (1− bx)φeωx +
3
8
φ2e2ωx,

=Q − 4bx+ (2bx+ (1 + 2bx)cos2π(x − t))φeωx

+
1

32
(9− 4cos4π(x − t)− 16cos2π(x − t))φ2e2ωx, (5.28)

This helps us express the pressure gradient in terms of the time-averaged

volume flow rate. With some manipulations equation (5.26) and (5.28) give

∂p

∂x
=

4(2−N )
N − 1

Q̃+ 4bx − (2bx+ (1 + 2bx)cos2π(x − t))φeωx − 1
32(9− 4cos4π(x − t)

−16cos2π(x − t))φ2e2ωx

h4 + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)

, (5.29)

On integration, which yields pressure difference, in terms of the time-

averaged volume flow rate, as

p(x)− p(0) =
4(2−N )
N − 1

∫ x

0

Q̃+ 4bx − (2bx+ (1 + 2bx)cos2π(x − t))φeωx − 1
32(9− 4cos4π(x − t)

−16cos2π(x − t))φ2e2ωx

h4 + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)

ds, (5.30)
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which gives x = l for

p(l)− p(0) =
4(2−N )
N − 1

∫ l

0

Q̃+ 4bx − (2bx+ (1 + 2bx)cos2π(x − t))φeωx 1
32(9− 4cos4π(x − t)

−16cos2π(x − t))φ2e2ωx

h4 + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)

ds, (5.31)

5.4 Result and discussions

In sequence to explore the effects of numerous parameters such as coupling num-

ber, micro-polar parameter and dilation wave amplitude on swallowing of a mi-

cropolar fluid, we plot graphs for local pressure along the axis. The case consid-

ered here is free pumping which is attained only by provision zero pressure at

the two ends of the oesophagus i.e. ∆pl(t) = 0, (pl(t) = p(l, t) − p(0, t)). When a

non-Newtonian fluid swallows, practically at a time only one bolus moves in the

oesophagus. Therefore, for the descriptive expression, we deal with single bo-

lus swallowing in the oesophagus although it can accommodate as many as three

boluses at a time as per our discussion.

The fundamental motive is the pressure distribution along the axis when

a bolus travels down the oesophagus towards the cardiac sphincter. Since the

mathematical model involves expressions that cannot be integrated by classical

methods, the only way out is to go for the numerical solution. Moreover, the

values of all the non-dimensional parameters are merely suitable assumptions to

facilitate the qualitative investigation.
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(5.3a) t = 0.00 (5.3b) t = 0.25

5.4.1 Effect of dilating wave amplitude on pressure

The effect of dilating wave amplitude ω on the flow dynamics is sketched in Fig-

ure 5.3. The observation of plot at t = 0.00 to t = 2.00 (Figure 5.3) show that dis-

similar the case of peristaltic wave with constant amplitude (Figures (5.3g)-(5.3i),

corresponding to ω = 0.00 ), the variation between the maximum and the min-

imum pressures becomes larger when wave-amplitude dilates (Figures (5.3g)-

(5.3i), corresponding to ω = 0.02 and ω = 0.04), i.e., pressure distribution for

dilating amplitude is observed to differ from that for constant amplitude. An ob-

servation of Figures (5.3g) and (5.3i) reveal that pressure gradients, correspond-

ing to ω = 0.02 and ω = 0.04 are greater in magnitude in the lower oesophageal

part than that in the upper oesophageal part and also, the pressure rises most

in the lower part of the oesophagus. It confirms the experimental observations

(Kahrilas et al. (1995)) of the high-pressure zone in the lower oesophageal part.

Achalasia causes inadequate lower oesophageal sphincter relaxation. As

a consequence of inadequate lower oesophageal sphincter relaxation oesophageal

clearance is deferred. Therefore, a possible treatment for patients with inade-

quate lower oesophageal sphincter relaxation may be that this is overcome through
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(5.3c) t = 0.50 (5.3d) t = 0.75

(5.3e) t = 1.00 (5.3f) t = 1.25

drugs or operation (Spechler and Castell (2001) ). Our investigation reveals that

swallowing of pseudoplastic fluid requires lesser pressure in compression to that

of micropolar fluid or dilatant fluid. Hence, an outcome of the present analysis

defends feeding of micropolar fluids for patients suffering from achalasia.

5.4.2 Effect of the gradient parameter on pressure

The effect of the gradient parameter on pressure distribution is shown in Figures

5.4. The pressure is measured at different time instants. We set φ = 0.7, ω =
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(5.3g) t = 1.50 (5.3h) t = 1.75

(5.3i) t = 2.00

Figure 5.3: ((a)-(i)) Pressure distribution along axial distance at different time
instant showing the effect of dilation parameter ω. Other parameters
are taken as l = 3, φ = 0.7, N = 0.15, m = 1.0, b = 0.03.

0.001, N = 0.15, m = 1.00 and b is varied in the range 0.00−0.04. At t = 0.00 (Fig-

ure (5.4a)) it is observed that greater the gradient parameter, lower is the fall in

pressure revealing a smaller requirement of pressure. The pressure distribution

curves at t = 0.25 (Figure (5.4b)) show that the pressure rise, for diverging tube

behind the bolus, is greater than that for a uniform tube (b = 0.00) but pressure

fall is lower than that for a uniform tube. The pressure distribution curve shows
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(5.4a) t = 0.00 (5.4b) t = 0.25

(5.4c) t = 0.50 (5.4d) t = 0.75

the similar trends at 0.50 (Figure (5.4c)) and t = 0.75 (Figure (5.4d)) as the previ-

ous. At t = 1.00 (Figure (5.4e)) and t = 2.00 (Figure (5.4i)), when bolus is situated

within the diverged part of the oesophagus, pressure rises here but is less for the

diverging tube in comparison to the uniform tube. The comparison of plots at

t = 0.00 and t = 2.00 (Figure 5.4, corresponding to b = 0.02, 0.04) show that the

difference between the maximum and the minimum pressures becomes smaller

when a tube is non-uniform.

In other words for the diverging tube, the upper oesophageal sphincter

pressure may be larger than that of lower oesophageal sphincter pressure. When
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(5.4e) t = 1.00 (5.4f) t = 1.25

(5.4g) t = 1.50 (5.4h) t = 1.75

bolus is about to enter in the stomach the pressure rise and fall in the diverging

tube are smaller than that in the uniform tube. Therefore, the pressure required

to deliver the bolus in the stomach is smaller for diverging oesophagus than that

of uniform. The interesting observation is that although tube diverges near the

end only, its impact is seen on the pressure distribution right from the beginning

of the oesophagus.
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(5.4i) t = 2.00

Figure 5.4: ((a)-(i)) Pressure distribution along axial distance at different time
instant showing the effect of the gradient parameter b. Other prame-
ters are taken as l = 3, φ = 0.7, ω = 0.001, N = 0.15, m = 1.0

5.4.3 Effect of coupling number on pressure

It also admits that as the coupling effect parameter N increases, pressure gradi-

ent, as well as pressure along the length of the oesophagus, magnifies which may

be physically explained as that internal rotation of the fluid particles increases

pressure; and finally, when N → 0 , i.e., the fluids reduce to Newtonian, the pres-

sure is minimum. This may lead to the conclusion that the oesophagus has to

make additional efforts to swallow a micropolar fluid. A similar observation is

made for all values of t ranging from 0 → 2, i.e., throughout one time period.

Temporal effects are similar to those observed for Newtonian fluids, power-law

fluids, viscoelastic fluids, visco-plastic fluids and magnetohydrodynamic fluids

(cf. Hariharan (2008), Pandey (2010)). Figures, together with captions, provide

the details (cf. Figure 5.5).
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(5.5a) t = 0.00 (5.5b) t = 0.25

(5.5c) t = 0.50 (5.5d) t = 1.00

5.4.4 Effect of the micropolar parameter on pressure

We further accomplish analysis into the role of the other micropolar parameter

m. It is noticed that the pressure along the entire length of the oesophagus de-

creases as m increases (cf. Figure 5.6). Hence, this parameter has an opposite

effect vis-à-vis coupling number N (cf. Figure 5.5). Since no value of m can leads

to Newtonian nature, no comparison can be made with Newtonian fluids. In fact,

the micropolar fluid has a complicated characteristic that is built up by the com-

bined effects of these two parameters. This may be recorded that once N = 0, m
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(5.5e) t = 1.00 (5.5f) t = 1.25

(5.5g) t = 1.50 (5.5h) t = 1.75

holds to disturb the flow (cf. Equation (5.23)).

5.5 Conclusion and physical interpretations

The objective of this analysis is to pick up the effect of dilating wave amplitude on

the nature of the non-Newtonian fluid. Which is flowing in the oesophagus. Here,

the non-Newtonian nature is characterized by the micropolar parameter and cou-

pling number. All these characteristics give it the name micro-polar fluid. The
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(5.5i) t = 2.00

Figure 5.5: ((a)-(i)) Pressure distribution along axial distance at different time
instant showing the effect of coupling number N . Other paremeters
are teken as l = 3, φ = 0.7, ω = 0.001, m = 1.0, b = 0.03

presence of coupling number and micro-polar parameter requires more pressure

to be exerted by the oesophagus wall on the fluid swallowing inside it. Dragging

by the dilating wave amplitude increases it further. This confirms the experimen-

tal observations (Kahrilas et al. (1995)) of high-pressure zone in the lower part of

the oesophagus.

The micro-polar and Newtonian fluids have qualitatively identical pres-

sure distributions, but differences in magnitudes are very much significant. The

acknowledgement is that coupling numberN and dilation parameter ω increases

pressure along the entire length of the oesophagus, while the other micro-polar

parameter m and gradient parameter b decrease it.

It is also noticed that the magnitude of pressure along the oesophagus

increases with increasing coupling number which reveals that swallowing of mi-

cropolar fluid is easier than that of dilatant fluid. It is also observed that for expo-

nentially increasing wave-amplitude, pressure keeps increasing along the entire

length of the oesophagus; and finally, towards the end of the oesophageal flow,
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(5.6a) t = 0.00 (5.6b) t = 0.25

(5.6c) t = 0.50 (5.6d) t = 0.75

it is at the peak level. It is observed that the pressure distribution is dependent

on the position of the wave that propagates in the oesophagus. The local rate

of change in the pressure difference is found to be much greater when the wave

originates at the inlet and terminates at the outlet of the oesophagus than when

the wave travels in the middle (Figures 5.3 - 5.6). This may be associated with

the fact that the pumping action does not take place along the entire length of

the oesophagus uniformly. The rate of change is higher in the proximity of the

inlet and the outlet. It is further concluded that the pressure difference at a given

axial position is higher for a dilatant fluid than that for a pseudoplastic fluid. The
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(5.6e) t = 1.00 (5.6f) t = 1.25

(5.6g) t = 1.50 (5.6h) t = 1.75

pressure-difference corresponding to a Bingham fluid falls in between these two

values. This is also achieved on the basis of the present investigation that feeding

of micropolar fluids is preferable to the patients suffering from achalasia.

***********
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(5.6i) t = 2.00

Figure 5.6: ((a)-(i)) Pressure distribution along axial distance at different time
instant showing the effect of Micropolar parameter m. Other param-
eters are taken as l = 3, φ = 0.7, ω = 0.001, N = 0.50, b = 0.03
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