
Chapter 4

Transportation of particulate

suspension in a Newtonian fluid by

dilating peristaltic waves in a tube of

uniform cross-section: Application

to flows in normal oesophagus

4.1 Introduction

Solid particles, in practice, are dragged by fluids they are suspended in. There are

several flows in nature similar to it. A few of them are physiological flows such

as swallowing, blood flows, transportation in intestines, flows of infected urine

in the ureters etc. In industries and nuclear plants, we use similar mechanism for
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transportation. In food industries as well, this technique of transportation is of

immense help.

Peristaltic transport in a channel of a fluid with suspended solid par-

ticles was modelled by Hung and Brown (1976) for various geometric and dy-

namic effects. Drew (1979; 1983) presented a two-phase model for a mixture

of dispersed small particles in a fluid as the working medium. Srivastava and

Srivastava (1989) used Drew’s model (1979) to model a two-phase particle-fluid

mixture flowing peristaltically in a channel. They obtained closed form solu-

tion using perturbation technique. A model for diseased urine flowing peristalti-

cally through the ureters was further investigated by Misra and Pandey (1994).

Jimenez-Lozano et al. (2011) also presented a peristalticmodel for uretersthat

deals with the flow mechanics of a particle-fluid mixture. Another model for

peristaltic flow in uniform and non-uniform annuli with particle-fluid mixture

was reported by Mekheimer and Abdelmaboud (2008). A series of recent publi-

cations in peristalsis shows how popular the Drew’s model is (Bhatti and Zeeshan,

2016a; Bhatti et al., 2016; Bhatti et al., 2017a; Zeeshan et al., 2017; Bhatti et al.,

2017b; Bhatti et al., 2018) and rheological flow of blood (Bhatti et al., 2016b; Zee-

shan et al., 2018).

Food gulped through the mouth swallows through the pharynx into the

oesophagus during deglutition. The journey culminates when the bolus enters

into the stomach by peristaltic contractions of the wall. Many of the masticated

food are as particulate suspension dragged by an aqueous solution. Pasta prod-

ucts in sauces, yogurts with fruits, fruit preserves with seeds, vegetable soups,

fruit in syrup, sugarcane juice with kiwifruit, some other homemade food items

(Martinez-Padilla, 2009) are a few instances. Generally, these food items pos-

sess non-Newtonian nature but once the volume fraction of suspended particles
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is small, they behave almost as a Newtonian fluid. Suspensions are defined as

heterogeneous or homogeneous substance with rigid or deformable particles sus-

pended therein. Swallowing of food suspensions is a two-phase flow model

Achalasia causes inadequate lower sphincter relaxation of oesophagus.

This hinders oesophageal clearance. Patients may be treated with drugs or by op-

eration (Spechler and Castell, 2001). This analysis aims at finding an alternative

complementary way.

A particulate matter cannot move itself but may be dragged by the fluid

suspending it. Since the two phases will have different velocities, the analysis

may probe which one leads and which one lags behind and some more queries.

Pandey and Singh (2018) attempted to model oesophageal swallowing

of particulate suspension in a Newtonian fluid to examine the impact of the pres-

ence and concentration of suspended particles in the food. They assumed the

peristaltic model of dilating wave amplitude discovered by Pandey et al. (2017)

which creates higher pressure in the distal oesophagus. They used a regular per-

turbation technique, for dimensionless quantities, in terms of the wave number

in which the wave number is small but not zero. Flow variables were presented

in power series of the wave number to obtain closed form solutions up to the first

order to put aside evaluation of involved terms of the higher order equations. We

tried to evaluate the second order terms to make the solutions more accurate in

quantitative terms, easy to accept and also to observe if absence of the second

order terms left the solutions crude.



Chapter 4. Transportation of particulate suspension in ... 70

Figure 4.1: The schematic diagram of wall positions of oesophagus when a peri-
staltic wave of slightly dilating amplitude propagates along it with
velocity c.

4.2 Mathematical Formulation

We consider the following wave motion formulated by Pandey et al. (2017) to

propagate along the walls of the oesophagus considered as a circular cylindrical

tube:

h̃(x̃, ω̃, t̃) = a− φ̃ eω̃x̃ cos2 π
λ

(x̃ − ct̃), (4.1)

where h̃, x̃, t̃, a, φ̃, ω̃, λ and c stand respectively for the radial wall dis-

placement, axial coordinate, time coordinate, tube-radius, wave amplitude, am-

plitude dilation parameter, wavelength and wave velocity (Figure 4.1).

The following are the governing equations separately for the fluid and

the suspended particles formulated in the two–phase model of Drew (1979):

Fluid phase equations:

∂
∂x̃

[(1−C)ũf ] +
1
r̃
∂
∂r̃

[(1−C)r̃ ṽf ] = 0, (4.2)
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ρf (1−C)
(∂ṽf
∂t̃

+ ũf
∂ṽf
∂x̃

+ ṽf
∂ṽf
∂r̃

)
= −(1−C)

∂p̃

∂r̃
+µs(C)(1−C)

{
∂2ṽf
∂x̃2

+
∂
∂r̃

(1
r̃

∂(r̃ ṽf )

∂r̃

)}
+CS(ṽp − ṽf ), (4.3)

ρf (1−C)
(∂ũf
∂t̃

+ ũf
∂ũf
∂x̃

+ ṽf
∂ũf
∂r̃

)
= −(1−C)

∂p̃

∂x̃
+µs(C)(1−C)

{
∂2ũf
∂x̃2

+
1
r̃
∂
∂r̃

(
r̃
∂ũf
∂r̃

)}
+CS(ũp − ũf ), (4.4)

Particle phase equations:

∂
∂x̃

(Cũp) +
1
r̃
∂
∂r̃

(Cr̃ṽp) = 0, (4.5)

ρpC
(∂ṽp
∂t̃

+ ũp
∂ṽp
∂x̃

+ ṽp
∂ṽp
∂r̃

)
= −C

∂p̃

∂r̃
+CS(ṽf − ṽp), (4.6)

ρpC
(∂ũp
∂t̃

+ ũp
∂ũp
∂x̃

+ ṽp
∂ũp
∂r̃

)
= −C

∂p̃

∂x̃
+CS(ũf − ũp), (4.7)

where ũf , ṽf , ũp, ṽp, ρf , ρp, C, ρf (1 −C), ρpC, p̃, S and µs(C) stand

respectively for axial and radial velocities of the fluid phase, axial and radial

velocities of the particle phase, the original fluid-density, the original particle-

material-density, volume fraction of the particulate matter, fluid phase density,

particle phase density, pressure, drag coefficient of interaction for the mutually

exerted force by the two phases and the effective particulate viscosity.
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For the current problem, we use the Stokes drag coefficient for a small

particle at low Reynolds number, S = 9µ0/4rp2, and Einstein’s formula, µe = µ0µr ,

where µ0 is the fluid viscosity, rp is the particle radius and µr(C) = 1+5/2C, (Drew,

1979).

Various parameters are non-dimensionalised as follows:

x =
x̃
λ
, r =

r̃
λ
, t =

ct̃
λ
, uf =

ũf
c
, vf =

ṽf
cδ
, up =

ũp
c
, vp =

ṽp
cδ
, δ =

a
λ
,

h =
h̃
a
, ρ =

ρp
ρf
, φ =

φ̃

a
, p =

p̃aδ

µsc
, Re0 =

acρf
µ0

, Q =
Q̃

πa2c
,

ω = ω̃λ, Re = δRe0, M =
9
4

( a
rp

)2
(4.8)

where δ, Re0, Re andM denote respectively the wave number, the Reynolds

number, the modified Reynolds number and the drag parameter.

Using equation (4.8), the governing equations (4.1) -(4.7) reduce to

h(x,ω,t) = 1−φeωx cos2π(x − t), (4.9)

∂
∂x

[(1−C)uf ] +
1
r
∂
∂r

[(1−C)rvf ] = 0, (4.10)

δ3Re0(1−C)
(∂vf
∂t

+uf
∂vf
∂x

+ vf
∂vf
∂r

)
= −µr(1−C)

∂p

∂r
+µr(1−C)

{
δ4∂

2vf
∂x2

+ δ2 ∂
∂r

(1
r

∂(rvf )

∂r

)}
+ δ2CS(vp − vf ), (4.11)
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δRe0(1−C)
(∂uf
∂t

+uf
∂uf
∂x

+ vf
∂uf
∂r

)
= −µr(1−C)

∂p

∂x
+µr(1−C)

{
δ2∂

2uf
∂x2

+
1
r
∂
∂r

(
r
∂uf
∂r

)}
+CM(up −uf ), (4.12)

∂
∂x

(Cup) +
1
r
∂
∂r

(Crvp) = 0, (4.13)

ρCRe0δ
3
(∂vp
∂t

+up
∂vp
∂x

+ vp
∂vp
∂r

)
= −Cµr

∂p

∂r
+CSδ2(vf − vp), (4.14)

ρCRe0δ
(∂up
∂t

+up
∂up
∂x

+ vp
∂up
∂r

)
= −Cµr

∂p

∂x
+CS(uf −up). (4.15)

Non-dimensional boundary conditions for the current problem are as

follows:

uf = 0 at r = h,
∂uf
∂r

= 0 at r = 0,
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vf = 0 at r = 0,vf =
∂h
∂t

at r = h,

∂up
∂r

= 0,vp = 0 at r = 0. (4.16)

4.3 Perturbation Solution

The regular perturbation expansion in terms of the wave number δ(<< 1), is used

to solve the problem under the assumptions that particle volume fraction C is low

and is of the form C = δC(1). We assume the solutions for the fluid and particle

velocities and the pressure of the form

uf (x,r, t) = uf
(0) + δuf

(1) + δ2uf
(2) + ..., (4.17)

vf (x,r, t) = vf
(0) + δvf

(1) + δ2vf
(2) + ..., (4.18)

up(x,r, t) = up
(0) + δup

(1) + δ2up
(2) + ..., (4.19)

vp(x,r, t) = vp
(0) + δvp

(1) + δ2vp
(2) + ..., (4.20)

p(x,r, t) = p(0) + δp(1) + δ2p(2) + ... (4.21)

Using equations (4.17) - (4.21) into the equations (4.10) - (4.15), and

comparing the coefficients of like powers of δ, we get a set of equations as:

The zeroth-order system of equations is

∂
∂x

[uf
(0)] +

1
r
∂
∂r

[rvf
(0)] = 0, (4.22)
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∂p(0)

∂r
= 0, (4.23)

∂p(0)

∂x
=

1
r
∂
∂r

(
r
∂uf

(0)

∂r

)
, (4.24)

Under the boundary conditions:

uf
(0) = 0 at r = h,

∂uf
(0)

∂r
= 0 at r = 0,

vf
(0) = 0 at r = 0,vf

(0) =
∂h
∂t

at r = h, (4.25)

The first-order system of equations is

∂
∂x

[uf
(1)] +

1
r
∂
∂r

[rvf
(1)] = 0, (4.26)

∂p(1)

∂r
+

3
2
C(0)∂p

(0)

∂r
= 0, (4.27)

Re0

(∂uf (0)

∂t
+uf

(0)∂uf
(0)

∂x
+ vf

(0)∂uf
(0)

∂r

)
= −

∂p(1)

∂x
− 3

2
C(1)∂p

(0)

∂x

+
3
2

1
r
∂
∂r

(
r
∂uf

(0)

∂r

)
+

1
r
∂
∂r

(
r
∂uf

(0)

∂r

)}
+MC(1)(up

(0) −uf (0)), (4.28)
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C(1)
(
∂up

(0)

∂x
+

1
r
∂
∂r

(
r
∂(rvp(0))

∂r

))
= 0, (4.29)

C(1)∂p
(0)

∂r
= 0, (4.30)

C(1)∂p
(0)

∂r
=MC(1)(u(0)

f −u
(0)
p ), (4.31)

Under the boundary conditions:

vp
(0) = 0 at r = h,uf

(1) = 0 at r = h,
∂uf

(1)

∂r
= 0 at r = 0,

vf
(1) = 0 at r = 0,

∂up
(0)

∂r
= 0 at r = 0, (4.32)

The Second-order system of equations is

∂
∂x

[uf
(2)] +

1
r
∂
∂r

[rvf
(2)] = 0, (4.33)

∂p(2)

∂r
+

3
2
C(1)∂p

(1)

∂r
− 5

2
C(1)2∂p

(0)

∂r
= 0, (4.34)
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Re0

[(∂uf (1)

∂t
+uf

(1)∂uf
(0)

∂x
+uf

(0)∂uf
(1)

∂x
+ vf

(1)∂uf
(0)

∂r
+ vf

(0)∂uf
(1)

∂r

)
−C(1)

(∂uf (0)

∂t
+uf

(0)∂uf
(0)

∂x
+ vf

(0)∂uf
(0)

∂r

)]
=

−
∂p(2)

∂x
− 3

2
C(1)∂p

(1)

∂x
+

5
2
C(1)2∂p

(0)

∂x
+

1
r
∂
∂x

(
r
∂uf

(2)

∂r

)
− 5

2
C(1)2 1

r
∂
∂r

(
r
∂uf

(0)

∂r

)
+

3
2
C(1) 1

r
∂
∂r

(
r
∂uf

(1)

∂r

)
+MC(1)(up

(1) −uf (1)), (4.35)

C(1)
(
∂up

(1)

∂x
+

1
r

∂(rvp(1))

∂r

)
= 0, (4.36)

C(1)∂p
(1)

∂r
+

5
2
C(1)2∂p

(0)

∂r
= 0, (4.37)

ρRe0C
(1)

(∂up(0)

∂t
+up

(0)∂up
(0)

∂x
+ vp

(0)∂up
(0)

∂r

)
= −C(1)∂p

(1)

∂x

− 5
2
C(1)2∂p

(0)

∂x
+MC(1)(uf

(1) −up(1)). (4.38)

under the boundary conditions

uf
(2) = 0 at r = h,

∂uf
(2)

∂r
= 0 at r = 0,vf

(2) = 0 at r = 0,

vp
(1) = 0 at r = 0,

∂up
(1)

∂r
at r = 0, (4.39)
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The analytical results can be expressed in terms of time-averaged vol-

ume flow rate which is defined as Q̄(x) =
∫ 1

0
Q(x, t)dt, with the volume flow rate

as

Q(x, t) =Qf (x, t) +Qp(x, t), (4.40)

whereQf (x, t) = 2
∫ h

0
(1−C)ruf dr andQp(x, t) = 2

∫ h
0
Crupdr stand respec-

tively for the instantaneous volume flow rates for the fluid and particle phases.

Due to involving lengthy expressions, it is a boring job. Therefore, we use the

transformations from the unsteady laboratory frame to steady wave frame to es-

cape the complexities for this purpose only. And rest of the analyses will be later,

from the next section onwards, carried out once again in the unsteady laboratory

frame.

In the non-dimensional form, the wave frame and laboratory frame pa-

rameters are given by

X = x − t, R = r, Ui(R,X) = ui(r,x, t)− 1,

Vi(R,X) = vi(x,r, t), q =Q(x, t)− h2. (4.41)

where (R,X), (Ui ,Vi) and q denote respectively the coordinate system,

the velocity field (i = f ,p) and the flow rate in the wave frame.

In view of equation (4.41), Q̃(x) = q+
∫ 1

0
h2dt, and hence

q =Q(x, t)− h2 = Q̄(x)− 1 +φeωx − 3
8
φ2e2ωx (4.42)
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For the volume flow rateQ and time-averaged volume rate Q̃, the regular

perturbation expansions are as

Q =Q(0) + δQ(1) + δ2Q(2) + o(δ3),

Q̃ = Q̃(0) + δQ̃(1) + δ2Q̃(2) + o(δ3),

4.3.1 Solution for the zeroth order system

Equation (4.24) is integrated with respect to r in view of equation (4.23), under

the first boundary condition of equation (4.25) to get

∂uf
(0)

∂r
=

1
2
r
∂p(0)

∂x
,

which, on performing integration once more with respect to r under the

second boundary condition of equation (4.25), gives

uf
(0) =

1
4
∂p(0)

∂x
(r2 − h2), (4.43)

Continuity equation (4.22) together with equation (4.43) under the third

boundary condition of equation (4.25) yields

vf (0) =
r

16
{4h∂h

∂x

∂p(0)

∂x
−
∂2p(0)

∂x2 (r2 − 2h2)}. (4.44)

Now the fourth boundary condition of (4.25) used in equation (4.44)

gives
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∂h
∂t

=
h3

16
∂2p(0)

∂x2 +
h2

4
∂h
∂x

∂p(0)

∂x
,

The zeroth order pressure gradient is derived as

∂p(0)

∂x
=
G(t) + 16

∫ x
0
h(s, t)∂h(s,t)

∂t ds

h4 , (4.45)

where G(t) is an arbitrary function of t.

Therefore, the zeroth order pressure is given by

p(0)(x, t) = p(0)(0, t) +
∫ x

0

G(t) + 16
∫ x1

0
h(s, t)∂h(s,t)

∂t ds

h4(x1, t)
dx1. (4.46)

The arbitrary function G(t) for x = l in equation (4.46) is obtained as

G(t) =
{p0(l, t)− p0(0, t)} − 16

∫ l
0

∫ x1
0 h(s,t)∂h(s,t)

∂t ds

h4(x1,t)
dx1∫ l

0
1

h4(x1,t)
dx1

(4.47)

Also, the zeroth order flow rate, in view of equation (4.40), may be

Q(0) =Qf
(0) = 2

∫ h

0
ruf

(0)dr + 0 = −1
8
∂p(0)

∂x
h4.

which, in view of equation (4.42), is

Q(0) = Q̄(0) − 1 +φeωx − 3
8
φ2e2ωx + h2.
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Therefore

∂p(0)

∂x
= −8

{
Q̄(0) − 1 +φeωx − 3

8φ
2e2ωx + h2

h4

}
= P0 (Say) (4.48)

Hence, the zeroth order axial and radial velocities of the fluid, in terms

of the zeroth order time-averaged volume flow rate, in view of equations (4.43),

(4.44) and (4.48), are

uf
0 =

1
4
P0(r2 − h2). (4.49)

vf
(0) =

r
16
{4hP0

∂h
∂x
− ∂P0

∂x
(r2 − 2h2)}. (4.50)

4.3.2 Solution of the first-order system

Equations (4.31) and (4.49) yield the zeroth order axial velocity of the solid par-

ticles as

up
(0) =

1
4

(
r2 − h2 − 4

M

)
P0. (4.51)

Continuity equation (4.29) is integrated together with equation (4.51)

with respect to r under the first boundary condition of equation (4.32) to get the

zeroth order radial velocity of the particles as

vp
(0) =

r
16
{4P0h

∂h
∂x
− P0

∂x
(r2 − 2h2 − 8

M
)}. (4.52)
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Equations (4.26) - (4.28) of the first-order system are solved in the sim-

ilar way to obtain the axial and radial velocities of the fluid of the first-order

system as

uf
(1) =N1(r6 − h6) +N2(r4 − h4) +

(
N3 +

P1 +C(1)P0

4

)
(r2 − h2). (4.53)

vf
(1) = −1

8
∂N1

∂∂x
(r7 − 4h6r)− 1

6
∂N2

∂x
(r5 − 3rh4)− 1

4

(∂N3

∂x
+

1
4

∂P(1)

∂x

+
C(1)

4
∂P0

∂x

)
(r3 − 2rh2) +

1
4

(12N1 + 8N2h
3 + 2N3h

+ P1h+ P0hC
(1))

∂h
∂x
r. (4.54)

where P1,N1,N2 and N3 are

P1 =
∂P (1)

∂x
= −6N1h

4 − 16
3
N2h

2 − 4N3 −
P0

h2C
(1)

(
h2 +

8
M

)
− 8Q̄(1)

h4 . (4.55)

N1 =
Rr0

1152
P0
∂P0

∂x
. (4.56)

N2 =
Rr0

1152

(
16
∂P0

∂x
− 3P0

∂P0

∂x
h2

)
. (4.57)
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N3 = Re0

(
− h

2

16
∂P0

∂t
− P0

8
∂h
∂t
h+

P0

64
∂P0

∂x
h4 +

p0
2h3

32
∂h
∂x

)
. (4.58)

and

Q̄(1) =Q(1) = −3
4
N1h

8 − 2
3
N2h

6 −
(N3

2
+

1
8
∂P (1)

∂x
P0

8
C(1)

)
h4 − P0

M
C(1)h2.

4.3.3 Solution for the second-order system

In this section too, first of all we will formulate the particulate phase velocity

of the first order which requires some of the second order equations. Using the

equations ((4.51) - (4.53)) in equation (4.38), the axial velocity of the solid parti-

cles of the second-order system is given by

up
(1) =N1(r6 − h6) +N2(r4 − h4)−

ρRe0P0

32M
∂P0

∂x
(r4 + h4) +

{
N3 +

P1 +C(1)P0

4
−

ρRe0

8M
(2
∂P0

∂t
− 4P0

M
∂P0

∂x
− P0

2h
∂h
∂x

)
}
(r2 − h2) +

ρRe0P0

16M
∂P0

∂x
r2h2

−
ρRe0P0

8

{
P0(r2 +

4
M

)h
∂h
∂x

+
1
4
∂h
∂x

(r2(h2 +
8
M

) +
32
M

)
}
− P1

M
− 5

2M
C(1)P0. (4.59)

Further, equation (4.36), in view of (4.59), under the fifth boundary con-

dition (4.39), is solved to get the second order radial velocity of the solid particles

as
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The second order axial velocity of the fluid is derived from equation

(4.35) by using equations (4.49), (4.53) and (4.59) under the second boundary

condition of equation (4.39), as

uf
(2) = α1

(
r10 − h10

)
+α2

(
r8 − h8

)
+α3

(
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)
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)
+

1
8

(
2P2 − 3C(1)P1 − 6C(1)2P0 − 12C(1)N3

)(
r2 − h2

)
. (4.61)
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And then using (4.61) in equation (4.33) under the boundary condition

(4.39), the second-order radial velocity is given by

vf
(2) = − 1
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where

P2 =
∂p(2)

∂x
=

3
2
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α1 = Re0

(
N1
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− 3P0
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)
,
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α5 = Re0

{
− h

2

16
∂P0

∂t
− P0h

8
∂h
∂t

+
N1h

8

16
∂P0

∂x
+
N2h

6

16
∂P0

∂x

+
h4

4

(
N3 +

P1 +C(1)P0

2

)
+
N1P0h

7

2
∂h
∂x

+
3N 2P0h

5

8
∂h
∂x

+
P0h

8

16

∂N1

∂x
+
P0h

6

16
∂N2

∂x
+
P0h

4

16

(
∂N3

∂x
+

1
2
∂P1

∂x
+
C(1)

2
∂P0

∂x

)
+
C(1)h

2

16
∂P0

∂t

+
C(1)P0h

8
∂h
∂t

+
P0h

4

64
∂P0

∂x
− P0

2h3

32
∂h
∂x
−
C(1)ρh2

32

(
2
∂P0

∂t
− 4P0

M
∂P0

∂x

− P0
2h
∂h
∂x

)
−
C(1)ρP 0h

4

128
∂P0

∂x
+

2C(1)P 1 + 5C(1)3P0

4
+
ρP 0

2h

8
∂h
∂x

+ 2C(1)∂P0

∂x

}
.

and

Q̃(2) =Q(2) =
h4

8

[3
2
C(1)P1 + 3C(1)2P0 + 6C(1)N 3 − 4α5 +

2ρRe0

M

(∂P0

∂t

− 2P0

M
∂P0

∂x
+

2
M
∂P0

∂x

)]
− C

(1)

M

(
P1 +

5
2
P0C

(1) + ρRe0P0
∂P0

∂x

)
h2

+
{
C(1)N 2 −

2
3
α4 +

C(1)

8

(
1−

ρRe0P0

12M

)∂P0

∂x

}
h6 − 3

4
α3h

8 +
(9
8
C(1)N 1

− 4
5
α2

)
h10 −

ρRe0P0
2C(1)

16M
∂h
∂x
h5 − 5

4
α1h

12 − P2

8
h4. (4.64)

The solutions given in equations (4.17) - (4.21) together constitute the

required results for the fluid and particulate velocities, and the pressure gradi-

ent in terms of time-averaged volume flow rate. Therefore, the axial and radial

velocities of the fluid in the fixed frame, and the pressure gradient are as follows:
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(4.69)

4.3.4 Stream function

The flow patterns of fluid are also given by counters of the constant stream func-

tion Ψf , in the moving frame defined as

dΨf = 2RUf dR− 2RVf dX.

The stream function ψf (x,r, t) in the fixed frame may be achieved by the

solution of the exact differential equation dψf = 2
(
uf − 1

)
rdr − 2vf rdx using the

equation (4.41). Therefore the stream function may be achieved by evaluating
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For wave number, δ → 0, equations (4.65) - (4.70) reduce to the corre-

sponding equations derived by Shapiro et al. (1969).

4.4 Discussions and Results

This improved version which includes the second order perturbation terms is

expected to bring about changes at least in quantitative terms. For application

of the analytical formulations presented here, the length and the diameter of the

oesophagus based in the literature are considered as 25−30 cm (Lamb and Griffin,

2005) and 1.8− 2.1 cm (Joohee et al., 2012) respectively. The uniform radii of the
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suspended particles are assumed as 0.04 cm. We also consider two boluses in

oesophagus at a time while swallowing.

These considerations of oesophagus related dimensions, we evaluated

the parameters as δ = 0.08 and M = 1139. The analytical results are presented

in the fixed frame up to the second order of the time-averaged volume flow rate

Q̃ = Q̃0 +δQ̃1 +δ2Q̃(2). Then we wrote codes by putting Q̃(0) = Q̃−δQ̃1 −δ2Q̃(2) in

the solutions (4.65) - (4.70) for numerical evaluations. We draw diagrams for the

pressure gradient, the axial and radial velocities and the streamlines of the flow.

They are shown in Figures 4.2 - 4.8 or various assumed parameters.

The axial velocities of the fluid and the solid particles are displayed in

Figures 4.2 for the values r = 0.3 and ((4.2a), (4.2b)) t = 0.0 ((4.2c), (4.2d)) t = 0.4.

The diagrams are based on equations (4.59) and (4.65). Other parameters are as-

sumed as δ = 0.08, k = 0.02, C = 0.12, φ = 0.7, Re0 = 5, Q̄ = 1.5, Q̄(1) = 15, Q̄(2) =

15, M = 1139. At t = 0.0 (Figure (4.2a), (4.2b)) and t = 0.4 (Figure (4.2c), (4.2d))

we observe that the fluid axial velocity exceeds particulate axial velocity almost

everywhere. But analyzing equations (4.59) and (4.65), we reveal that the fluid

does not move at the wall, while the suspended particulate matter moves axi-

ally. This indicates that the suspended particles near the tube wall overtake the

fluid. In Figures ((4.2c), (4.2d)), it is observed that the axial velocity is negative in

the regions in the vicinity of maximum occlusions paving way to instantaneous

backward flow. Retrograde motion is observed in a small region with maximum

occlusion. This makes the net flow positive. It is further observed that the veloc-

ity at the second occlusion point exceeds that at the first occlusion point which is

due to dilation of the wave amplitude. Figures ((4.2a), (4.2c)) correspond to the

present analysis while Figures ((4.2b), (4.2d)) correspond to Pandey and Singh
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Figure 4.2: (((4.2a), (4.2b)) - ((4.2c), (4.2d))) Axial velocity profile of the fluid
and solid particles versus the tube length at the fixed radial distance
r = 0.3 and ((4.2a), (4.2b)) t = 0.0 ((4.2c), (4.2d) t = 0.4. Other param-
eters are taken as δ = 0.08, ω = 0.02, C = 0.12, φ = 0.7, Re0 = 5, Q̄ =
1.0, Q̄(1) = 15, Q̄(2) = 15, M = 1139. ((4.2a), (4.2c)) correspond to the
present analysis while ((4.2b), (4.2d)) correspond to the Pandey and
Singh, 2018).

(2018) who presented solutions limited to the first order of δ. The quantitative

differences are very clear.

Fluid and particulate matter velocities vs. radial distance are plotted

in Figures 4.3. It is observed that near the centre of the tube, the fluid velocity
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Figure 4.3: The radial profiles of the axial velocity respectively of the fluid and
solid particles versus the tube radius at the fixed axial position x =
0.6 and t = 0.4. Other parameters are taken as δ = 0.08, ω = 0.02,
C = 0.12, φ = 0.7, Re0 = 5, Q̄ = 1.5, Q̄(1) = 20, Q̄(2) = 20, M = 1139.

exceeds the particle velocity but as we reach the tube periphery the trend changes

with particle velocity exceeding the fluid velocity. Quantitative difference are

clear in the plots drawn based on the present analysis and that those based on

Pandey and Singh, 2018).

The wave amplitude dilation impacts on the axial velocity are displayed

in Figures 4.4 in which the parameters are ω = 0.0, 0.05, 0.1, x = 0.3, t = 0.9, δ =

0.08, C = 0.12, φ = 0.7, Re0 = 5, Q̄ = 1.5, Q̄(1) = 20, Q̄(2) = 20, M = 1139. We ob-

serve that the dilation of the wave amplitude increases the axial velocity at the

fixed axial positions for both the fluid and particulate motions. However, the dif-

ferences in magnitude are obvious between the present analysis plotted in Figures

((4.4a), (4.4c)) and those given by Pandey and Singh (2018) displayed in Figures

((4.4b), (4.4d)).

Figures ((4.5a), (4.5b)) display the effect of the particulate matter con-

centration (C = 0.0,0.16,0.32) on the axial velocities of the fluid along the radius
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at a specified axial location x = 0.3 and at t = 0.9 We take the parameters as

ω = 0.02,φ = 0.7, Re0 = 5, Q̄(1) = 20, Q̄(2) = 20. The diagrams show that the ax-

ial fluid velocity falls with increasing volume fraction, i.e., velocity will be less

for fluids with particulate suspension. The difference between this analysis, dis-

played in Figure (4.5a), and that in Pandey and Singh (2018), plotted in Figure

(4.5b), is quite significant.

The trend of the radial velocity of the fluid was examined by fixing

the axial position at x = 0.2 for t = 0.3 against different volume fractions (C =

0.0,0.16,0.32) and displayed in Figures ((4.6a) -(4.6b)). We observe that the ve-

locities corresponding to all volume fractions fall from zero i.e., the move away

from the tube wall, reach a minimum (of maximum magnitude) and then once

again increase to finally satisfy the boundary condition that it is zero in the mid-

dle of the tube i.e., r = 0. These curves reflect the wall motion in the transverse

direction. Higher the volume fraction of suspended particles, lesser is the mag-

nitude of the radial velocity of the fluid. Figures (4.6a) and (4.6b) respectively

display the results obtained in the present analysis and that of Pandey and Singh

(2018).

The pressure gradient of the fluid-particle mixture is plotted in Figures

((4.7a)-(4.7b)) against the time-averaged volume flow rate Q̄ for volume fractions

(C = 0.0, 0.16, 0.32) at the fixed axial position and the fixed time. We arbitrarily

choose x = 0.8 and t = 0.4. For qualitative interpretation of the analytical for-

mulation we set parameters as ω = 0.02, φ = 0.6, Re0 = 5, Q̄(1) = 15, Q̄(1) = 15. A

close observation is the pressure gradient generally drops when C increases. This

means that concentration of particulate matter in the fluid medium affect the

pumping characteristics. It is found that a positive pressure gradient obstructs
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Figure 4.4: Radial profiles the axial velocity respectively of (4.4a)-(4.4b) the fluid
and (4.4c)-(4.4d) solid particles versus the radial distance at the
fixed axial position x = 0.3 and time t = 0.9 showing the impact
of amplitude dilation parameter ω. Other parameters are taken as
δ = 0.08, C = 0.12, φ = 0.7, Re0, Q̄ = 1.5, Q̄(1) = 20, Q̄(2) = 20, M =
1139. Solid, dashed and dashed dotted line correspond respectively
to ω = 0.0, ω = 0.05 and ω = 0.10. Figures (4.4b)-(4.4d) correspond
to Pandey and Singh (2018).
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Figure 4.5: The impact of particulate matter concentration (i.e. the volume frac-
tion C) on the axial velocity of the fluid plotted verses radial distance
at the fixed axial position x = 0.3 for ω = 0.02, φ = 0.8, Re0 = 5, Q̄ =
1.5, Q̄(1) = 20, Q̄(2) = 20, t = 0.9, M = 1139, (4.5a)δ = 0.08, (4.5b)δ =
0.08.
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Figure 4.6: Radial velocity profile of the fluid along the radial distance for dif-
ferent volume fraction of particles at x = 0.2 for t = 0.3, ω = 0.02, φ =
0.6, Re0 = 5, δ = 0.08, Q̄ = 1.5, Q̄(1) = 20, Q̄(2) = 20, M = 1139. Solid
line, dashed line and dashed dotted line correspond respectively to
C = 0.0, C = 0.16 and C = 0.32.
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Figure 4.7: The effect of δ on the relation between the pressure gradient and
the time-averaged volume flow rate for different volume fraction of
particles with ω = 0.02, φ = 0.6, Re0 = 5, Q̄(1) = 15, Q̄(2) = 15, M =
1139, x = 0.8, t = 0.4, (4.7a) δ = 0.08, (4.7b) δ = 0.08.

the flow while a negative one enhances it. There are several diseases like achala-

sia, oesophageal stricture and oesophageal tumors creating difficulty in swallow-

ing. Pressure gradient profile suggests that patients suffering from these diseases

may be advised to consume food items with less particulate suspensions. Larger

pressure gradient for low volume fraction is advised for comfortable swallowing.

The two plots reveal the quantitative difference between the results obtained by

the present analysis Figure (4.7a) and by Pandey and Singh (2018) Figures ((4.7b).

The fluid motion is also shown by streamlines which are invisible curves

in the flow field of the fluid such that the tangent at each of the points of the

curve gives the direction of the local velocity at that point at an instant. Stream-

lines in the fixed frame with ω = 0.02, φ = 0.6, Re0 = 5, Re0 = 5, δ = 0.08, Q̄(1) =

20, Q̄(2) = 20, M = 1139, t = 1.0 at different time-averaged volume flow rates
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Figure 4.8: Streamlines in the fixed frame with ω = 0.02, C = 0.12, φ = 0.6, Re0 =
5, δ = 0.08, Q̄(1) = 20, Q̄(2) = 20, M = 1139, t = 1.0 at different time-
averaged volume flow rates (4.8a) Q̄ = 1.2, (4.8b) Q̄ = 3.2, (4.8c) Q̄ =
5.0 and (4.8d) Q̄ = 5.1.
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(Q̄ = 1.2, 3.2, 5.0, 5.1) are shown in Figure 4.8. When Q̄ is increased, the stream-

lines change shapes and above a certain Q̄, the central streamline splits to sur-

round a ring-shaped bolus of the fluid as a closed streamline as depicted in Fig-

ures (4.8b)-(4.8d). This trapped bolus is now pushed ahead along with the peri-

staltic wave. This leads us to infer that trapping takes place at high flow rates.

Trapping was first discovered by Shapiro et al. (1969).

4.5 Conclusions

Peristaltic transport of particle-fluid suspension through oesophagus has been in-

vestigated theoretically by regular perturbation technique up to the second order

of the wave number. The impact of volume fraction of particles on the pressure

gradient and the velocity is examined and streamline patterns are obtained. The

presence of particulate matter affects the pumping performance and velocity.

In the discussion section, the quantitative differences in the results ob-

tained by us and those of Pandey and Singh (2018) who presented the results up

to the first order of wave number, were compared and significant differences were

observed.

It is observed that the axial velocity of the fluid exceeds that of the solid

particles almost everywhere. However, at the wall the axial velocity of the fluid

is zero due to the imposition of no-slip condition; but the suspended particulate

material has non-zero positive axial velocity close to the wall. Thus, the axial ve-

locity of the suspended particles near the tube wall exceeds the fluid velocity. It

is also observed that the axial velocity is retrograde in the regions close to max-

imum occlusions paving way to instantaneous backward flow. Backward flow is
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created in a small region with maximum occlusion. Hence, the net flow is posi-

tive. Further, the magnitude of the velocity at the second occlusion point is more

than at the first occlusion point due to dilating wave amplitude.

A higher concentrations of suspended particulate matter diminishes the

pressure gradient and hence also the axial and radial velocities. The investiga-

tion endorses the advice of the doctors to the patients suffering from achalasia,

oesophageal stricture and oesophageal tumors to consume liquid or food items

with lesser solid contents.

Streamline patterns are changed by increasing flow rate while trapping

occurs at high flow rates.

***********
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