
Chapter 3

Transportation of micro-polar fluid

by dilating peristaltic waves:

Application to flows in normal

oesophagus

3.1 Introduction

Combination of periodically alternating contractions and relaxations of muscles

responsible for most of the physiological flows is peristalsis. This combination

The contents of this chapter have been published in Journal of King Saud University-
Science, 32 (7), (2020)2939-2949.
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forms a transverse and progressive wave. This mechanism has several engineer-

ing applications. Several innovators, across various fields, are developing peri-

staltic machines that can move in cylinder tubes to locate ruptures at the joints

of gas and water pipelines and those caused by cracks. Many such machines are

being designed to serve industries for sanitary fluid transport, blood pumps in

heart/lung machines, transport of corrosive fluids without contacting machinery

components. Studies are also focused on realization of machines that can pass

through the intestines and blood vessels. Peristalsis, observed in earthworms

and nematodes, induces shape variation and a shift in the center of gravity. This

causes extensional waves to propagate and thus progress without injury to the

vulnerable inner walls of blood vessels. This moving mechanism together with

catheters can reach a diseased site by itself (Nakazato et al., 2010).

Eringen (1966) formulated the effects of individual particles such as

micro-rotation in flow, which are concentrated suspension of non-deformable

neutrally buoyant rigid particles in a viscous medium. Micro polar fluids contain

micro constituents which can undergo rotation. Rotation of micro constituents

can affect the hydrodynamics of flow and make the fluid distinctly non-Newtonian.

Physically, micro polar fluids represent fluids consisting of rigid, spherical or

randomly oriented particles with ignored deformation suspended in a viscous

medium (Grzegorz Lukaszewicz, 1999). Liquid crystals, blood, some edible so-

lutions resemble micro-polar property. Engineering applications using polymer

solutions, colloidal solutions, drilling fluids in oil industries etc. may be better

understood by this investigation (Pandey and Tripathi, 2011a).

Devi and Devanathan (1975) studied peristaltic transport of micro-polar

fluids in a cylindrical tube with a sinusoidal wave of small amplitude. Philip and

Chandra (1995) explored peristaltic transport of a simple micro-polar fluid which
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accounts for micro-rotation and micro-stretching of the particles contained in a

small volume element using long wave length approximations. Srinivasacharya

et al. (2003) examined different micro-polar properties on pressure across one

wavelength and also on trapping; Hayat et al. (2007) investigated the effects of

different wave forms; Muthu et al. (2005, 2008a, b) studied wall properties in

channels and tubes respectively whereas Hayat and Ali (2008) prepared effects

of an endoscope. The same authors (Ali and Hayat, 2008) studied the effects of

asymmetricity of wave propagation of channel while Mekheimer and Elmaboud

(2008) studied the flow in an annulus. Asghar et al. (2018) used micro-polar

fluid to characterize the rheology of a thin layer of slime and its dominant micro-

rotation effects. Recently some interesting papers dealing with the flow of micro-

organisms such as bacteria cilia driven flows under different condition have been

published (Ali et al., 2016; Asghar et al., 2017, 2018, 2019a; Asghar and Ali,

2019; Asghar et al. 2019b; Ali et al., 2019a; Asghar et al., 2019c; Ali et al., 2019b;

Javid et al., 2019; Asghar et al., 2020a, b, c).

Unlike aforementioned authors, Pandey and Tripathi (2011a) investi-

gated flow of a micro-polar fluid in a finite tube with the consideration that peri-

staltic waves do not move beyond the stationary boundary of the tube to match

such a flow in oesophagus. Such a wave propagation was designed by Misra and

Pandey (2001).

Pandey et al. (2017) concluded in their investigation that the wave am-

plitude does not remain constant during the wave propagation in a peristaltic

motion when anything swallows in the oesophagus. The conclusion was derived

in order to model the experimental reports of Kahrilas et al. (1995) who had lo-

cated a higher pressure zone in the distal part of the oesophagus in normal as well

as pathological state. Pandey and Tiwari (2017) further investigated swallowing
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of fluids that match the properties of Casson fluid, due to peristaltic waves of

dilating amplitude.

In light of the observation of dilating peristaltic waves by Pandey et al.

(2017) in oesophagus which validates experimental investigation, peristaltic swal-

lowing of micro-polar fluids (Pandey and Tripathi, 2011a) requires a revisit of

investigation. Particularly the impact of dilation of wave amplitude on the non-

dimensional parameters such as coupling number and micro-polar parameter

may be worth reporting.

3.2 Formulation of the problem

We consider the flow of micro-polar fluid in a tube of length of l̃ caused by con-

tinuous contraction waves that propagate along the walls of the tube (cf. Figure

3.1), which are given by

h̃ (x̃ ,ω̃ , t̃ ) = a− φ̃eω̃x̃cos2π
λ

(x̃ − ct̃) , (3.1)

where h̃, x̃, t̃, a, φ̃,λ, ω̃ and c respectively stand for radial displacement

of the wall, axial coordinate, time, radius of the tube, amplitude of the wave,

wavelength, dilation parameter and wave velocity (cf. Pandey et al. 2017).

The governing equations of the flow of micro-polar fluid in the absence

of body forces and body couple are given by

∂ũ
∂x̃

+
1
r̃

(
∂ (r̃ ṽ)
∂r̃

)
= 0 (3.2)
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ρ

(
∂ũ

∂t̃
+ ũ

∂ũ
∂x̃

+ ṽ
∂ũ
∂r̃

)
= −

∂p̃

∂x̃
+ k

1
r̃
∂ (r̃w̃)
∂r̃

+ (µ+ k)
(
∂2ũ

∂x̃2 +
1
r̃
∂
∂r̃

(
r̃
∂ũ
∂r̃

))
, (3.3)

ρ

(
∂ṽ

∂t̃
+ ũ

∂ṽ
∂x̃

+ ṽ
∂ṽ
∂r̃

)
= −

∂p̃

∂r̃
− k∂w̃

∂x̃
+ (µ+ k)

(
∂2ṽ

∂x̃2 +
∂
∂r̃

(
1
r̃
∂ (r̃ ṽ)
∂r̃

))
, (3.4)

ρσ̃

(
∂w̃

∂t̃
+ ũ

∂w̃
∂x̃

+ ṽ
∂w̃
∂r̃

)
= −2kw̃+ k

(
∂ṽ
∂x̃
− ∂ũ
∂r̃

)
+γ

(∂2w̃

∂x̃2

+
∂
∂r̃

(
1
r̃
∂ (r̃w̃)
∂r̃

))
+ (α + β +γ) ∇̃

(
∇̃.w̃

)
. (3.5)

where ũ, ṽ, w̃, r̃, ρ, σ̃ are respectively the axial velocity, the radial ve-

locity, the micro-polar vector, the radial coordinate, the fluid density and the

micro-gyration parameter. The parameters µ, k, α, β, γ are material constants

satisfying the following conditions:

2µ+ k ≥ 0, k ≥ 0, 3α + β +γ ≥ 0, γ ≥
∣∣∣β∣∣∣ . (3.6)

The following dimensionless parameters are introduced for the subse-

quent analysis:
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Figure 3.1: Schematic diagram of oesophagus, (based on equation (3.16)), rep-
resents the propagation of a progressive wave, where δ = a

λ , Re, Q
denote respectively the wave number, the Reynolds number and the
volume flow rate.

x =
x̃
λ
, r =

r̃
a
, t =

ct̃
λ
, u =

ũ
c
, v =

ṽ
cδ
, δ =

a
λ
, w =

aw̃
c
, h =

h̃
a
,

ω = ω̃λ, l =
l̃
λ
, φ =

φ̃

a
, σ =

σ̃

a2 , p =
p̃a2

µcλ
, Re =

ρcaδ

µ
, Q =

Q̃

πa2c
. (3.7)

Introduction of the dimensionless parameters gets equations (3.2)-(3.5)

transformed to

∂u
∂x

+
1
r

(
∂ (rv)
∂r

)
= 0, (3.8)

Reδ

(
∂u
∂t

+u
∂u
∂x

+ v
∂u
∂r

)
= −

∂p

∂x
+

N
1−N

1
r
∂ (rw)
∂r

+
1

1−N

(
δ2∂

2u

∂x2 +
1
r
∂
∂r

(
r
∂u
∂r

))
,

(3.9)
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Reδ3
(
∂v
∂t

+u
∂v
∂x

+ v
∂v
∂r

)
= −

∂p

∂r
+

δ2

1−N

(
−N ∂w

∂x
+
∂
∂r

(
1
r
∂ (rv)
∂r

)
+ δ2∂

2v

∂x2

)
, (3.10)

σReδ (1−N )
N

(
∂w
∂t

+u
∂w
∂x

+ v
∂w
∂r

)
= −2w+

(
δ2∂v
∂x
− ∂u
∂r

)
+

2−N
m2

(
∂
∂r

(
1
r
∂ (rw)
∂r

)
+ δ2∂

2w

∂x2

)
. (3.11)

Employing the long wavelength and low Reynolds number approxima-

tions, the dimensionless equations (3.8)- (3.11) reduce to

∂u
∂x

+
1
r

(
∂ (rv)
∂r

)
= 0, (3.12)

∂p

∂x
=

1
1−N

{
N
r
∂ (rw)
∂r

+
1
r
∂
∂r

(
r
∂u
∂r

)}
, (3.13)

∂p

∂r
= 0, (3.14)

2w+
∂u
∂r
− 2−N

m2
∂
∂r

(
1
r
∂ (rw)
∂r

)
= 0. (3.15)

where N =
(
k
µ+k

)
is the coupling number, which is a measure of particle

coupling with its surroundings (0 ≤N ≤ 1) , m =

√
a2k (2µ+ k)
γ (µ+ k)

is the micro-polar

parameter and α, β do not appear in the governing equation as the micro-rotation
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vector w is solenoidal, i.e. ∇ · −→w = 0. In the limiting case, k→ 0 implying N → 0

the governing equations for the micro-polar fluid reduce to the governing equa-

tions for Newtonian fluid.

Similarly the wall equation (3.1), under non-dimensionalisation reduce

to

h (x,ω,t) = 1−φeωxcos2π (x − t) . (3.16)

The following are the boundary conditions imposed on the governing

equations:

u (x,r, t) |r=h= 0, v (x,r, t) |r=h=
∂h
∂t
,

v (x,r, t) |r=0= 0,
∂u (x,r, t)

∂r

∣∣∣
r=0

= 0, (3.17)

w (x,r, t) |r=0= 0, w (x,r, t) |r=H= 0. (3.18)

3.3 Solution of the problem

Integration of equation (3.13), once with respect to r, yields

∂u
∂r

= (1−N )
r
2
∂p

∂x
−Nw+

C1

r
, (3.19)
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Further, integrating equation (3.15) twice with respect to r and also us-

ing equation (3.19), we obtain non-homogeneous Bessel equation in the cylindri-

cal coordinates as

∂2w

∂r2 +
1
r
∂w
∂r
−
(
m2 +

1
r2

)
w =

m2

2−N

{
(1−N )

r
2
∂p

∂x
+
C1

r

}
.

The general solution of above equation is as follow: (micro-polar vector)

w = C2I1 (mr) +C3K1 (mr)− 1
2−N

{
(1−N )

r
2
∂p

∂x
+
C1

r

}
, (3.20)

where C1, C2, C3 are arbitrary functions independent of r and I1 (mr),

K1 (mr) are respectively the modified Bessel functions of the 1 st and the 2 nd kind

of the 1 st order.

Then applying the fourth boundary condition of equation (3.17), and

the boundary conditions (3.18), equations (3.19) and (3.20) become

∂u
∂r

=
1−N
2−N

∂p

∂x

{
r − Nh

2
I1 (mr)
I1 (mh)

}
, (3.21)

w =
1−N

2(2−N )
∂p

∂x

{
hI1 (mr)
I1 (mh)

− r
}
, (3.22)

And further integrating equation (3.21) and applying the no-slip condi-

tion of equation (3.17), the axial velocity is found as
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u =
1−N

2(2−N )
∂p

∂x

{
r2 −φ2e2ωxcos4π (x − t) + 2φeωxcos2π (x − t) − 1

+
Nh
m

(
I0 (mh)− I0 (mr)

I1 (mh)

)}
, (3.23)

where I0 (mr) , I0 (mh) are the modified Bessel functions of the 1 st kind

and the 0 th order.

The radial velocity is derived from equation (3.15), by substituting u

from equation (3.23) and integrating it once with respect to r. The regularity

condition, given in equation (3.17), determines the constant term and gives the

radial velocity as

v =
1−N

2(2−N )

[
φeωx

2
{2πsin2π (x − t) −ωcos2π (x − t)−ω }

∂p

∂x

{
rh− N

m{ r
2
∂
∂x

(
hI0 (mh)
I1 (mh)

)
− I1

(mr)
m

∂
∂x

(
h

I1 (mh)

)}}
−
∂2p

∂x2

{r3

4
− r

2

(
1

+φ2e
2ωx

cos4π (x − t)− 2φeωxcos2π (x − t)
)

+
Nh

mI1 (mh)(
r
2
I0 (mh)− I1 (mh)

m

)}]
, (3.24)

In order to get pressure gradient, we apply the radial velocity of the wall,

given in equation (3.17), on equation (3.24). This gives
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h
∂h
∂t

=
1−N

2(2−N )

[
φeωx

2
{2πsin2π (x − t) −ωcos2π (x − t)−ω }

∂p

∂x

{
1

−φ3e
3ωx

cos6π (x − t)− 3φeωxcos2π (x − t) + 3φ2e
2ωx

cos4π (x − t) − Nh
m{

h
2
× ∂
∂x

(
hI0 (mh)
I1 (mh)

)
− I1 (mh)

m
× ∂
∂x

(
h

I1 (mh)

)}}
+
∂2p

∂x2{1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωxcos4π (x − t)

4
−φeωxcos2π (x − t)

− e3ωxcos6π (x − t) +
Nh2

2m2

(
2− mhI0 (mh)

I1 (mh)

)}]
, (3.25)

Integrating this, with respect to x, yields the pressure gradient as

∂p

∂x
=

8(2−N )
1−N

G (t) + πφ
4

∫ x
0
eωx

[
(2φeωx − 4)sin2π (x − t)

+φeωxsin4π (x − t)
]
ds

1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωxcos4π (x − t)− 4φeωxcos2π (x − t)

−4e3ωxcos6π (x − t) + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)


, (3.26)

Integrating it once again from 0 to x, the pressure is obtained as
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p (x, t)− p (0, t) =
8(2−N )

1−N∫ x

0

G (t) + πφ
4

∫ s
0
eωx [(2φeωx − 4)sin2π (x − t) +φeωxsin4π (x − t) ]ds1

1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωxcos4π (x − t)− 4φeωxcos2π (x − t)

−4e3ωxcos6π (x − t) + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)
ds,

(3.27)

Substituting x = l in equation (3.27), the pressure between the inlet and

the outlet of the tube, is obtained as

p (l, t)− p (0, t) =
8(2−N )

1−N

∫ l

0

G (t) + πφ
4

∫ x
0
eωx

[
(2φeωx − 4)sin2π (x − t)

+φeωxsin4π (x − t)
]
ds

1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωxcos4π (x − t)− 4φeωxcos2π (x − t)

−4e3ωxcos6π (x − t) + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)
dx, (3.28)

whereG (t) is a function of t which is evaluated by a simple manipulation

as
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G (t) =

1−N
8(2−N )∆pl (t)−

∫ l
0

πφ
4

∫ x
0 e

ωx[(2φeωx−4)sin2π(x−t) +φeωxsin4π(x−t) ]ds

1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωx

cos4π (x − t)− 4φeωxcos2π (x − t)− 4e3ωxcos6π (x − t)

+ 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)
dx

∫ l
0

1

1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωx

cos4π (x − t)− 4φeωxcos2π (x − t)− 4e3ωxcos6π (x − t)

+ 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)
dx

,

(3.29)

where ∆pl (t) = p (l, t) − p (0, t) is the pressure difference between the

inlet and outlet of the tube.

The volume flow rate is defined as Q (x, t) =
∫ h

0
2rudr, yields, on per-

forming the integration, the following:

Q (x, t) =
N − 1

4(2−N )
∂p

∂x

{
1 +φ4e

4ωx
cos8π (x − t)+ 6φ2e

2ωx
cos4π (x − t)

− 4φeωxcos2π (x − t)− 4e3ωxcos6π (x − t)

+
4Nh2

m2

(
1− mhI0 (mh)

2I1 (mh)

)}
, (3.30)

The time-averaged volume flow rate is obtained by averaging the volume

flow rate for one time period. This gives
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Q̃ (x, t) =
N − 1

4(2−N )

∫ 1

0

∂p

∂x

{
1 +φ4e

4ωx
cos8π (x − t)+ 6φ2e

2ωx
cos4π (x − t)

− 4φeωxcos2π (x − t)− 4e3ωxcos6π (x − t)

+
4Nh2

m2

(
1− mhI0 (mh)

2I1 (mh)

)}
dt, (3.31)

The time-averaged volume flow rate may be given in terms of the flow

rate in the wave frame, and also in the laboratory frame, as

Q̃ = q+ 1−φeωx +
3
8
φ2e2ωx,

=Q −φeωx−φ2e2ωxcos4π (x − t) +2φeωxcos2π (x − t) +
3
8
φ2e2ωx. (3.32)

This helps us express the pressure gradient in terms of the time-averaged

volume flow rate. With some manipulations equation (3.30) and (3.32) give

∂p

∂x
=

4(2−N )
N − 1

Q̃+φeωx+φ2e2ωxcos4π (x − t) −2φeωxcos2π (x − t)

−3
8φ

2e2ωx

1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωxcos4π (x − t)− 4φeωxcos2π (x − t)

−4e3ωxcos6π (x − t) + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)


, (3.33)
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which yields, on integration, pressure difference in terms of the time-

averaged volume flow rate as

p (x)− p (0) =
4(2−N )
N − 1

∫ x

0

Q̃+φeωx+φ2e2ωxcos4π (x − t) −2φeωxcos2π (x − t)

−3
8φ

2e2ωx

1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωxcos4π (x − t)− 4φeωxcos2π (x − t)

−4e3ωxcos6π (x − t) + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)
ds, (3.34)

for x = l, which gives

p (l)− p (0) =
4(2−N )
N − 1

∫ l

0

Q̃+φeωx+φ2e2ωxcos4π (x − t) −2φeωxcos2π (x − t)

−3
8φ

2e2ωx

1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωxcos4π (x − t)− 4φeωxcos2π (x − t)

−4e3ωxcos6π (x − t) + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)
dx, (3.35)

Finally, the local wall shear stress is defined as

τw =
∂u
∂r

∣∣∣
r=h
,

Which, by virtue of equation (3.21), takes the form
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τw =
(1−N )H

2
∂p

∂x
,

and further reduces, in view equation (3.26), to

τw = 4(2−N )
G (t) + πφ

4

∫ x
0
eωx [(2φeωx − 4)sin2π (x − t) +φeωxsin4π (x − t) ]ds

1−φ3e
3ωxcos6π (x − t) − 3φeωxcos2π (x − t) + 3φ2e

2ωxcos4π (x − t)

+4Nh
m2

(
1− mhI0(mh)

2I1(mh)

)


, (3.36)

3.4 Reflux limit

Reflux is an important phenomenon of peristaltic movement and refers to the

presence of fluid particles that move, on the average, in a direction opposite to

the net flow in the close vicinity of the wall (Shapiro et al. 1969).

For the axi-symmetric case, the dimensional form of the stream function

in the wave frame is defined as

dψ̃ = 2πR̃
(
ŨdR̃− Ṽ dX̃

)
, (3.37)

where ψ̃, X̃, R̃, Ũ and Ṽ are stream function, the axial and the radial co-

ordinates, the velocities components the axial and radial directions respectively.
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Using the following transformations between the wave and the labora-

tory frames, defined as

X̃ = x̃ − ct̃, R̃ = r̃ , Ũ = ũ − c, Ṽ = ṽ, q̃ = Q̃ − ch̃2, Ψ̃ = ψ̃ − r̃2, (3.38)

where the left side of the parameters is in the wave frame while the right

side of the parameters are in the laboratory frame, we obtain stream function as

ψ = −r2−

(
Q̃+φeωx+φ2e2ωxcos4π (x − t) −2φeωxcos2π (x − t)

−3
8φ

2e2ωx
){
r4 − 2r2H2 +

2Nh(mI0(mh)r2−2rI1(mr))
m2I1(mh)

}
1 +φ4e

4ωx
cos8π (x − t)+ 6φ2e

2ωxcos4π (x − t)− 4φeωxcos2π (x − t)

−4e3ωxcos6π (x − t)

+4Nh2

m2 ×
(
1− mhI0(mh)

2I1(mh)

)



, (3.39)

Stream function at the wall, ψw is solved from equation (3.39) by substi-

tuting r =H . A simplification yields

ψ|r=H= ψw = Q̃ − 1 +φeωx − 3
8
φ2e2ωx, (3.40)

Reflux flow rate, Qψ (x) associated with a particle at the position x is

given by
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Qψ (x) = ψ + r2 (ψ, x) , (3.41)

which, on averaging over one cycle, gives

Q̃ψ = ψ +
∫ 1

0
r2 (ψ, x)dx, (3.42)

Moreover, in order to evaluate the reflux limit, Q̃ψ is expanded in a

power series, in terms of a small parameter ε about the wall, where ε
(
= ψ −ψw

)
is subjected to the reflux condition

Q̃ψ

Q̃
> 1 as ε→ 0, (3.43)

The coefficient of the first two terms in the expansion of r is obtained

only for small values of m. Substituting the expansion r2 (ψ,x) = h2 + a1ε + a2ε
2 +

a3ε
3 + . . . into equation (3.39), and using equation (3.40), we get

a1 = −1, (3.44)
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a2 = −

(
1− 1

4
mNh
I1(mh)

)(
Q̃+φ2e2ωxcos4π (x − t) −2φeωxcos2π (x − t)

+φeωx − 3
8φ

2e2ωx
)

1 +φ4e
4ωx

cos8π (x − t)+ 6φ2e
2ωxcos4π (x − t)− 4φeωxcos2π (x − t)

−4e3ωxcos6π (x − t)

+4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)



, (3.45)

Then integrating equation (3.41) with respect to x and using equations

(3.42)-(3.45), we obtain the reflux limit (i. e. The occurrence of the reflux) as

Q̃ < 1−φeωx +
3
8
φ2e2ωx

−

∫ 1
0

(
1− 1

4
mNh
I1(mh)

)
1+φ2e2ωxcos4π(x−t)−2φeωxcos2π(x−t)+ 4N

m2

(
1−mhI0(mh)

2I1(mh)

) dx
∫ 1

0

(
1− 1

4
mNh
I1(mH)

)
1 +φ4e

4ωx
cos8π (x − t)+ 6φ2e

2ωxcos4π (x − t)− 4φeωxcos2π (x − t)

−4e3ωxcos6π (x − t) + 4Nh2

m2

(
1− mhI0(mh)

2I1(mh)

)
dx

,

(3.46)

where h has been given by equation (3.16).



Chapter 3. Transportation of micro-polar fluid by... 56

3.5 Results and Discussion

In order to explore the effects of various parameters such as coupling number,

micro-polar parameter, wave amplitude dilation parameter and the wall shear

stress on swallowing of micro-polar fluid, we plot graphs for local pressure dis-

tribution along the axis. In order to examine the contribution exclusively of peri-

stalsis, pressure of zero magnitude is prescribed at the two ends of oesophagus,

which makes ∆pl (t) = 0. At a particular time, only one bolus moves in the oe-

sophagus, which is easily experienced when a non-Newtonian fluid swallows.

Therefore, for analysis, we consider a single bolus swallowing in the tube which

has the capacity to accommodate three boluses at a time; so far our discussion is

concerned.

The fundamental motive is to study the local pressure distribution along

the axis when a bolus travels down the oesophagus towards the cardiac sphincter.

Since the mathematical model involves expressions that cannot be integrated by

classical methods, the only way out is to go for numerical evaluation. Moreover,

the values of all the non-dimensional parameters are merely suitable assumptions

to facilitate qualitative investigation.

3.5.1 Effect of dilating wave amplitude on pressure

The bolus is supposed to be already there in the tube at t = 0.00. Dashed line

symmetric about the axis of the tube are drawn to indicate the position of the

bolus in the direction left to right. Fall of pressure from the left towards right

paves way for the bolus to move in the tube. Different inclinations of the pressure

curve indicate different pressure gradients of the corresponding part of the bolus.
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Its gradual rise from the head of the bolus to the end of the tube is the revelation

that the motion is under control; the bolus is never let move freely.

The effect of dilating wave amplitude ω on the flow dynamics is plotted

in Figure 3.2. we fix the various parameters l = 3, φ = 0.7, N = 0.10, m = 1.0,

and let ω vary. Fall and rise of pressure throughout the length of the tube from

t = 0.00 to t = 2.00 in the plots is observed to be dependent on the wave amplitude

ω, ω = 0.00 corresponding to the constant amplitude ( Figure 3.2). Variation

between the maximum and the minimum pressures becomes larger when wave-

amplitude dilates, e.g., when ω = 0.01, 0.02 (Figure 3.2 ). An observation of

Figures ((3.2a) - (3.2f)) reveals that pressure gradients, corresponding to ω = 0.01

and ω = 0.02, are greater in magnitude in the lower oesophageal part than that in

the upper oesophageal part and also, if we measure the magnitude, the pressure

rises more in the lower part of the oesophagus. It confirms the experimental

observations of high pressure zone in the lower oesophageal part even when the

fluid transport is of micro-polar nature (Kahrilas et al. 1995).

3.5.2 Effect of Coupling Number on pressure

Plots in Figure 3.3 depict the impact of the coupling effect parameter N , a mea-

sure of particle coupling with its surroundings, on pressure distribution along the

axis of the tube. We set the various parameters as l = 3, φ = 0.7, ω = 0.01, m = 1.0

and let N vary in the range 0− 0.75.

It is observed that pressure gradient as well as pressure along the length

of the oesophagus increases as the coupling effect parameterN increases through-

out the length of the tube.
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(3.2a) t = 0.00 (3.2b) t = 0.25

(3.2c) t = 0.50 (3.2d) t = 0.75

(3.2e) t = 1.00 (3.2f) t = 2.00

Figure 3.2: Pressure distribution along axial distance at different time instants
showing the effect of dilation parameter ω. Other parameters are
taken as l = 3, φ = 0.7, N = 0.10, m = 1.0.
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This may be physically interpreted as that internal rotation of the fluid

particles increases pressure; and finally the fluid reduces to Newtonian, i.e. as

N → 0, pressure is minimum. This lead to the conclusion that phyically the oe-

sophagus has to make additional efforts to swallow a micro-polar fluid. Similar

is the observation for all values of t ranging from 0→ 2, i.e., throughout swal-

lowing. Temporal effects are similar to those observed for other fluids such as

Newtonian, power-law, visco-elastic, visco-plastic and magneto hydrodynamic

fluids (Misra and Pandey, 2001; Pandey and Tripathi, 2010). Figures, together

with captions, provide the details (cf. Figure 3.3 ). Achalasia causes inadequate

lower oesophageal sphincter relaxation; as a consequence of which oesophageal

clearance is delayed. A possible treatment for patients with inadequate lower

oesophageal sphincter relaxation is through drugs or by operation (Spechler and

Castell, 2001). Thus, this problem will be more acute if the fluid is micro-polar.

3.5.3 Effect of micro-polar parameter on pressure

Our next analyse the role of the other micro-polar parameter m by setting other

parameters l = 3, φ = 0.7, ω = 0.01, N = 0.50 and vary m in the rane 1.0 −

5.0. It is noticed that the pressure along the entire length of the tube decreases

as m increases. Hence, this parameter has an opposite effect vis-à-vis coupling

number N (cf. Figure 3.3). Since no value of m can lead to Newtonian nature,

no comparison can be made with Newtonian fluids. In fact, the micro-polar fluid

has a complicated characteristic that is built up by the combined effects of several

parameters. This may be recorded that once N vanishes; m no longer exits (cf.

Figure 3.4).
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(3.3a) t = 0.00 (3.3b) t = 0.25

(3.3c) t = 0.50 (3.3d) t = 0.75

(3.3e) t = 1.00 (3.3f) t = 2.00

Figure 3.3: Pressure distribution along axial distance at different time instants
showing the effect of coupling number N . Other parameters are set
as l = 3, φ = 0.7, ω = 0.01, m = 1.0
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(3.4a) t = 0.00 (3.4b) t = 0.25

(3.4c) t = 0.50 (3.4d) t = 0.75

(3.4e) t = 1.00 (3.4f) t = 2.00

Figure 3.4: Pressure distribution along axial distance at different time instants
showing the effect of micro polar parameterm. Other parameters are
taken as l = 3, φ = 0.7, ω = 0.01, N = 0.50.
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3.5.4 Effect of dilating wave amplitude on wall shear stress

Figures 3.5 depict the temporal effects of dilating wave amplitudeω on wall shear

stress τw along the length of the tube for distinct values of t = 0.00 → 2.0. It

is observed that the local wall shear stress τw increases with the dilating wave

amplitude ω. We found that the bolus felt too much stress, more than double, at

t = 2.0 instead of t = 0.00. Therefore, in the lower part of the oesophagus, bolus

will experience higher pressure to transport the bolus in the human oesophagus.

Due to the high stress, the size of bolus looks shrunk in the lower part of the

human oesophagus (Kahrilas et al., 1995).

3.6 Effect of dilating wave amplitude on reflux

Flow rate enhances when wave amplitude is increased. Shapiro et al. (1969) dis-

covered retrograde motion corresponding to a given wave amplitude. Less flow

rate across a cross section than that across a smaller area within the same cross

section is an indication of retrograde motion. In such a case, some fluid flows in

the opposite direction near the tubular wall. Consequently, the amount of flow

diminishes. This is because close to the inner the periphery, flow is in the reverse

direction diminishing the net flow as expected. The flow rate, beyond which there

is no reflux, was termed as reflux limit. For small and large amplitudes, Shapiro

et al. (1969) used different perturbation techniques to estimate the limits.

The analysis for large amplitude and high flow rates has been carried

out. Pandey and Tripathi (2011b) observed that micro-polar fluids are more

prone to reflux. The curves representing reflux limits for micro-polar fluids are
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(3.5a) t = 0.00 (3.5b) t = 0.25

(3.5c) t = 0.50 (3.5d) t = 0.75

(3.5e) t = 1.00 (3.5f) t = 2.00

Figure 3.5: Wall shear stress τw distribution along axial distance at different time
instants showing the effect of dilation parameter ω. Other parame-
ters are taken as l = 3, φ = 0.7, N = 0.10, m = 1.0.
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Figure 3.6: The diagram exhibits the relation between time averaged flow rate Q̃
and wave amplitude φ showing the effect of dilation parameter ω.
Other parameters are taken as N = 0.10, m = 1.0.

higher compared to that of Newtonian fluid, for low flow rates. In order to exam-

ine the role of dilating amplitude, we fix the coupling number and micro-polar

parameter as N = 0.10, m = 1.0, and then vary the dilating parameter by plotting

the time averaged flow rate against wave amplitude. The curves indicate that as

the amplitude increases more flow rates required for reflux to take place. We

further observed that the curve corresponding to reflux limit rises as wave am-

plitude is augmented with the dilating parameter of higher magnitude (Figure

3.6), clearly indicating that reflex actions weakens with dilating wave amplitude.

Only higher flow rates may cause reflux. Thus, dilating amplitude saves flow

from retrograde motion in the oesophagus.

3.7 Conclusion and Physical Interpretation

The objective of this analysis is to learn the effect of dilating wave amplitude

on the non-Newtonian nature of fluid, which is swallowed in the oesophagus.



Chapter 3. Transportation of micro-polar fluid by... 65

Here, the non-Newtonian nature is characterized by the micro-polar parameter

and coupling number. These characteristics give it the name micro-polar fluid.

It is found that the presence of coupling number and micro-polar parameter re-

quires more pressure to be exerted by the wall of the oesophagus on the fluid

swallowing inside it. Dilating wave amplitude increases it further. This confirms

the experimental observations (Kahrilas et al. 1995) of high pressure zone in the

lower part of the oesophagus.

The micro-polar and Newtonian fluids have qualitatively similar pres-

sure distributions; but differences in magnitudes are very much significant. The

acknowledgment is that coupling number N and dilation parameter ω increase

pressure along the entire length of the oesophagus, while the other micro-polar

parameter m decreases it.

It is observed that for exponentially increasing wave-amplitude, pres-

sure increases along the entire length of the oesophagus; and finally towards the

end of the oesophageal flow, it is at the peak. It is found that the pressure distribu-

tion is dependent on the position of the wave that propagates in the oesophagus.

The local rate of change in the pressure difference is much greater when the wave

originates at the inlet and terminates at the outlet of the oesophagus than when

the wave lies midway. This may be associated to the fact that the pumping action

does not take place along the entire length of the oesophagus uniformly. The rate

of change is higher in the proximity of the inlet and the outlet. This present in-

vestigation prohibits feeding of micro-polar fluids to the patients suffering from

achalasia.

It is also concluded that for the non-Newtonian micro-polar fluids, re-

flux is less probable with increasing amplitude and further augmented by the

dilation parameter.
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