
Appendix A

Data Validation Techniques

This section gives insight into various validation techniques that are used in the

study. Validation techniques help in generalising the model’s performance without

any bias. All the validation techniques work by splitting the data into train and test

sets. This helps in estimating the model’s performance on new data i.e unseen data.

Three kinds of validation techniques namely leave one out, percentage split and k

fold cross validation are discussed herewith:

1. Percentage split: It is most common validation technique in which p% of data

is used for training and remaining q%(= 1 − p) of the data is used for test-

ing. Commonly, 80-20 and 70-30 splits are employed. The advantage of the

approach is that it helps in evaluating the performance on previously unseen

data. However, that may lead to sampling bias in case of uneven distribution

of samples in the set.

2. k-Fold cross validation: In this technique, the entire dataset is split into k

parts or folds. (k - 1) parts are used for training and remaining one part is

used for testing the model. The entire process is iterated a number of times
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and averages are henceforth employed. This way all the samples get to be part

of train and test sets.

3. Leave one out: It is a variant of k-Fold cross validation in which k is equal to

number of samples in the dataset implying all the samples except one is used

for training and remaining single sample is used for testing.

These are some of commonly employed validation techniques used for evaluating

model’s performance. In case of feature selection, training data is employed to find

the compact set of most meaningful features and the testing set is thereby evaluated

using only those features.



Appendix B

Performance Evaluation Metrics

The prediction performances of the machine learning algorithms are evaluated using

threshold-dependent and threshold-independent parameters. These parameters are

determined using true positive (TP ), true negative (TN), false positive (FP ) and

false negative (FN). TP is number of correctly classified positive instances; TN

is number of correctly classified negative instances. FN is number of incorrectly

classified positive instances while FP is number of incorrectly classified negative

instances.

Sensitivity: It gives the percentage of correctly classified positive instances and is

calculated by given formula:

Sensitivity =
TP

(TP + FN)
× 100 (B.1)

Specificity: It gives the percentage of correctly classified negative instances and is

calculated as follows:

Specificity =
TN

(TN + FP )
× 100 (B.2)

Accuracy: It is the percentage of correctly classified instances (both positive and

negative), and is given as follows:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
× 100 (B.3)
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MCC (Mathew’s correlation coefficient): Ideal value of MCC is taken as 1. It

is generally used for binary data and is calculated by using the formula as below:

MCC =
(TP × TN − FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(B.4)

AUC: Area under curve (AUC) of a receiver operating characteristics curve (ROC)

[95]. Best value of AUC is considered as 1, while 0 is taken as the worst case. Its

value lies between 0 and 1. Its value is not affected by the imbalanced nature of the

datasets.

g-means: It is defined as the geometric mean of sensitivity and specificity [83] and

is defined as follows:

g −means =
√
Sensitivity × Specificity (B.5)

All these performance parameters are evaluated using open source Java based ma-

chine learning platform WEKA [56].



Appendix C

Statistical Testing

The significance of the approaches is illustrated using statistical test. Two tests

namely t test and Freidman test and Bonferoni Dunn test are employed in the thesis

to demonstrate statistical significance.

1. t test: Two tailed student’s t test is employed for calculating difference be-

tween average accuracy of two models statistically. The value of t statistic

for 2(N − 1) degree of freedom (where N = 10 for 10 fold cross validation) is

calculated using the following formula:

t =
x̄1 − x̄2
s21+s

2
2

N
where x̄1 and x̄2 are the average classification accuracies obtained by two

models and s21, s
2
2 are the corresponding standard deviations. The level of

significance is set to 0.05 for the experiments conducted during the research.

The probability p-val associated with t test is found out using t table. The

small p-val values (less than 0.05) illustrates the significant differences amongst

the algorithms. Various signs like +, -, o are used to show corresponding
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statistical win, loss and tie respectively of the respective approach at 5% level

of significance.

2. Freidman test [50, 51] and Bonferoni Dunn test [39]: Freidman test is

used for multiple hypothesis testing employing F statistics, which is defined

as:

F =
(M − 1)χ2

M(N − 1)− χ2

and

χ2 =
12M

N(N + 1)

N∑
j=1

(Rj −
(N + 1)

2
)2

where M is the number of dataset, N is the number of employed algorithms

and Rj is the average rank of algorithm j calculated from all the datasets. If

the F statistics that follows Freidman distribution is greater than critical value

of F (Fcrit) at N−1 and (N−1)(M−1) degrees of freedom, the null hypothesis

that all algorithm are equivalent in terms of classification accuracy is rejected.

In such case, Bonferroni Dunn is used to find which algorithm is significantly

different from proposed approach. Two approaches are significantly different

at α% level of significance if distance between their Rj is greater than critical

distance Cdα given as:

Cdα = qα

√
N(N + 1)

6M

where qα is tabulated value at α% level of significance.[32]. All the statistical

tests are conducted at 5% level of significance during the research.
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