
Chapter 6

Bireduct Model and its

Application

Due to advancement in modern technologies, various sources like network of sen-

sors, interconnected devices, etc generate millions of data every day. This has lead

to circumstances where proportion of data to the number of tools to access the same

is large. Such ever expansive data is rich both in dimension and size (number of

instances). But not all the instances and features may contribute to classification

accuracy and may even mitigate the performance. Therefore, there is an increasing

need of techniques for data reduction. Feature selection (FS) or instance selection

(IS) [34, 70, 151, 152] alone cannot handle the ever increasing size and dimensional-

ity of dataset. Both the aspects of data reduction must be taken into consideration

for enhancing classification accuracy. Few works have been done in the field of si-

multaneous instance and feature selection [9, 10, 48, 100, 101, 103, 138].

Most of the works based on rough, fuzzy rough and intuitionistic fuzzy rough theo-

ries focus on finding decision reducts. An extension of reduct, viz rough set bireduct

[133, 138] has emerged based on the idea of bi-clustering. It selects features and
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instances producing a reduced dataset that increases classification accuracy by re-

moving irrelevant information. It not only removes irrelevant and/or redundant

features, but also reduces the data by eliminating outliers. In order to deal with

real valued continuous datasets, concept of bireduct was further extended in fuzzy

rough framework. Further extensions of the concept was made in [101, 138], using

ε-Bireducts [103, 137] and search strategies [35].

This chapter proposes a novel method of generating bireduct in intuitionstic fuzzy

rough set framework. It simultaneously reduces dimensionality and data size by

employing a robust lower approximation formulation (for calculating dependency

degree) and similarity techniques. The maximum similarity of an instance with an

outlier of the ’same class’ is used for further elimination of outliers. All the ex-

isting works have been done in fuzzy rough framework using discernibility matrix

approach, which has been extended to intuitionistic fuzzy case by employing depen-

dency degree approach. The proposed work can hence be effectively used as a data

reduction pre-processing technique, to learn robust decision rules.

6.0.1 Bireduct formulation

The idea of bireduct was introduced in rough set framework [133], which was further

extended to fuzzy case by authors in [103]. The informal definition of bireduct

focuses upon selecting minimal subset of features which describes decision class and

corresponding subset of instances satisfying such descriptions.

According to [133], for an information system I = (U,C ∪D), a subtable (A, Y ) of

I such that A ⊆ C and Y ⊆ U is bireduct iff

1. A forms the reduct of the system discerning decision class of Y , where D(x) 6=

D(y).
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2. Y is maximal subset of U that discerns x, y ∈ Y .

This definition guarantees that no proper subset of A and superset of Y discerns

all pairs of x, y ∈ Y . It considers instances Z ∈ U \ Y as outliers that may have

resulted because of noise.

This concept of bireduct was extended to fuzzy case in [101], that paved a way to

compute bireducts in real-valued continuous domains.

Exploiting the above formulation of bireducts to intuitionistic fuzzy framework

would be advantageous for different applications providing two degrees of freedom at

the same time, unlike fuzzy case (which gives one degree of freedom). It would reduce

data size and dimensionality considerably, and hence the complexity by eliminating

both irrelevant and/or redundant features and problematic instances or outliers.

6.1 Intuitionistic Fuzzy Bireducts for Data Re-

duction

An insight into bireduct is given in Section 6.0.1. Bireducts reduces the complexity

of learning algorithms by removing features and instances. Instances perceived as

outlier or noisy are ignored in subsequent computation, thereby enhancing predic-

tion performances of the learning algorithms. The proposed model works on this

motivation to generate intuitionistic fuzzy bireducts.
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6.1.1 Intuitionistic Fuzzy Feature Selection

The previous formulation of intuitionistic fuzzy approximations can be extended as

follows:

R ↓A X(x) = (µR↓AX(x), νR↓AX(x)) (6.1)

=


(infy/∈X νRA(x, y), supy/∈X µRA(x, y)) x ∈ X

(0, 1) x /∈ X
(6.2)

R ↑A X(x) = (µR↑AX(x), νR↑AX(x)) (6.3)

=


(supy∈X µRA(x, y), infy∈X νRA(x, y)) x ∈ X

(0, 1) x /∈ X
(6.4)

The above defined approximations avoids misclassification of data [154]. Further,

these values are affected by the presence of noise. Employing k-mean structure [63]

to increase robustness. Arranging values corresponding to infimum/supremum in

increasing/ decreasing order of magnitude and computing mean of first k samples

gives the reformulated definition of lower and upper approximations as:

R ↓A X(x) =


( 1k
∑k

y/∈X νRA(x, y), 1k
∑k

y/∈X µRA(x, y)) x ∈ X

(0, 1) x /∈ X
(6.5)

R ↑A X(x) =


( 1k
∑k

y∈X µRA(x, y), 1k
∑k

y∈X νRA(x, y)) x ∈ X

(0, 1) x /∈ X
(6.6)

Having framed the approximations in this way, dependency degree can be conve-

niently computed for the feature subset.
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6.1.2 Intuitionistic Fuzzy Instance Selection

Once the definition of positive region is formulated, it can be used for elimination of

outliers. Let PosA(x) be the value of positive region for an instance x ∈ U . The pro-

posed work introduces the following methods for instance selection in intuitionistic

fuzzy case:

6.1.2.1 Method I

A simple approach is to eliminate all instances whose positive region value is below

certain threshold parameter τo, an extension of fuzzy case [70]. Ostensibly, when

positive region value is below certain threshold parameter τo, then it is uncertain as

to which decision class an instance truly belongs. Such instances can be removed

without any hassle, as shown in Algorithm 6.1.2.1 and flowchart 6.1.

Algorithm 6.1.2.1

Input: U : Set of all instances, τo: Threshold

for ∀x ∈ U do

if | PosA(x) |< τo then

U ← U − {x}

end if

end for

return U
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Figure 6.1: The flowchart of IFBRPSO-1

6.1.2.2 Method II

The above algorithm removes more instances than absolutely necessary. The value

of positive region for an instance is affected by removal of an instance, which is

not been considered in Section 6.1.2.1. Since the value of positive region basically

gives the distance of ’nearest different class sample’, so its value is increased on the

removal of an instance.

A better approach would be to select an instance x for removal with minimum value

of positive region, ρmin. This instance is effectively removed as it is in the proximity

of different class. Further, a nearest similar sample of an outlier or noisy sample x will

be an outlier or noisy instance if its distance to x is less than ρmin. So, the instance z

belonging to same decision class as x with ρx,z = mini(1−RA(x, i)), i ∈ U (has same

decision class as x) is eliminated if ρx,z < ρmin. This process eliminates at most two

instances at a time. After removal of these problematic instances, value of positive

region changes. The values of positive region of the instances are recalculated and

the whole process is then repeated until all the problematic instances are eliminated.

The Algorithm 6.1.2.2 and flowchart 6.2 depicts the entire procedure.

Algorithm 6.1.2.2
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Input: U : Set of all instances

ρ← 1, ρmin ← 1

for ∀y ∈ U do

if | PosA(y) |< ρmin then

x← y

ρmin ← PosA(y)

end if

end for

if ρmin < ρ then

U ← U − {x}

ρx,z = 1

for ∀y ∈ U do

if x and y belong to same decision class then

if | 1−RA(x, y) |< ρx,z then

z ← y

ρx,z ←| 1−RA(x, y) |

end if

end if

end for

if ρx,z < ρmin then

U ← U − {z}

end if

else

return U

end if
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Figure 6.2: The flowchart of IFBRPSO-2

6.1.3 Simultaneous Intuitionistic Fuzzy Instance and Fea-

ture Selection

In conventional dependency based intuitionistic fuzzy rough set based approach,

dataset is reduced by only selecting the subset of features that preserve dependency

of unreduced dataset. However, data can be reduced by removing either (or both)

of the instances or features for the intuitionistic fuzzy bireduct formulation. The

rationale behind this, is that dataset may contain noisy samples and/or outliers. So,

it is profitable to eliminate such problematic instances. Simultaneous intuitionistic

fuzzy instance and feature selection is based on this very concept.

The two approaches (feature selection and instance selection) described in previous

sections are combined to generate intuitionistic fuzzy bireducts. A toy example is

illustrated in Table 6.1 for better understanding of the process. Using the intuition-

istic fuzzy similarity measure in equations (6.7), (6.8) and (6.9), the intuitionistic
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Table 6.1: Example Dataset

``````````````̀Features
Instances

a1 a2 a3 a4 D

x1 0 1 1 10 1
x2 4 2 0 15 1
x3 0 0 4 20 2
x4 0 3 2 15 2
x5 3 0 1.5 25 1
x6 1 1 2.5 20 1

Ra1 =



(1, 0) (0, 1) (1, 0) (1, 0) (0.250, 0.600) (0.750, 0.142)
(0, 1) (1, 0) (0, 1) (0, 1) (0.7500.142) (0.250, 0.600)
(1, 0) (0, 1) (1, 0) (1, 0) (0.250, 0.600) (0.750, 0.142)
(1, 0) (0, 1) (1, 0) (1, 0) (0.250, 0.600) (0.750, 0.142)

(0.250, .600) (0.750, 0.142) (0.250, 0.600) (0.250, 0.600) (1, 0) (0.500, 0.333)
(0.750, 0.142) (0.250, 0.600) (0.750, 0.142) (0.750, 0.142) (0.500, 0.333) (1, 0)


(6.11)

fuzzy relation for a feature a1 is given by Ra1 in equation (6.11).

µRA(x, y) = Ta∈AµRa(x, y) (6.7)

νRA(x, y) =
1− µRA(x, y)

1 + µRA(x, y)
(6.8)

R may be defined for a feature a by:

µRa(x, y) = 1− a(x)− a(y)

amax − amin
(6.9)

µRa(x, y) = max(min(
a(y)− (a(x)− stda)

stda
,
(a(x) + stda)− a(x)

stda
), 0) (6.10)

where a(x) is the value of feature a for the instance x, amax, amin is the maximum

and minimum value that feature a has and standard deviation for feature a is given

by stda.

Using this, lower approximation R ↓a1 D is computed for the two decision classes

U \D = {D1, D2}, where D1 = {x1, x2, x5, x6} and D2 = {x3, x4} as shown in table
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Table 6.2: Lower Approximation of feature a1

U \D x1 x2 x3 x4 x5 x6
D1 (0, 1) (1, 0) (0, 1) (0, 1) (0.600, 0.250) (0.142, 0.750)
D2 (0, 1) (0, 1) (0.071, 0.875) (0.071, 0.875) (0, 1) (0, 1)

6.2.

The value of positive region is therefore computed using equation (6.12).

PosA(D)(x) = (µPosA(D)(x), νPosA(D)(x)) (6.12)

= ( sup
X∈U\D

µR↓AX(x), inf
X∈U\D

νR↓AX(x)) (6.13)

Posa1(x1) = (0, 1)

Posa1(x2) = (1, 0)

Posa1(x3) = (0.071, 0.875)

Posa1(x4) = (0.071, 0.875)

Posa1(x5) = (0.600, 0.250)

Posa1(x6) = (0.142, 0.750)

Hence, dependency degree of feature a is γa1(D) = 2.0679
6

= 0.344. Similarly, the

value of dependency for remaining attribute is γa2(D) = 0, γa3(D) = 0, and γa4(D) =

0. Since, a1 has largest dependency degree it is selected. Consider the dataset

corresponding to a1 and eliminate the outliers. For example

1. Using process described in Section 6.1.2.1, for τo = 0.1, instance {x1, x3, x4} is

eliminated. Similarly, the dependency is recalculated by adding other features

to this potentially reduced dataset and the re-performing instance selection.

The entire process is iterated until some termination condition is met. So, the

bireduct produced by this process consists of features {a1, a2} or {a1, a3} or

{a1, d} and instances {x2, x5, x6}.

2. Using process described in Section 6.1.2.2, the instance corresponding to min-

imum | Posa1 | i.e. x1 is eliminated. Further, the nearest similar instance to
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x1 is also eliminated. So, the distance of all the instances having same class

as x1 i.e. x2, x5, and x6 is calculated as:

ρx1,x2 = 1.0

ρx1,x5 = 0.675

ρx1,x6 = 0.196

Hence the nearest instance, the one corresponding to miniρx1,xi = x6 is elimi-

nated. Iterating the process yield bireducts consisting of {a1, a2} features and

{x2, x4, x5} instances or {a1, a4} features and {x2, x3, x4} instances or {a1, a2}

features and {x3, x4} instanes or {a1, a4} features and {x2, x5} instances.

The similarity measure given in equation (6.9) and (6.10) are respectively employed

for instance and feature selection for experientation. As can be observed, many

combinations of features and instances can be made. To constraint bireducts for

containing atleast a proportion of the original instances thereby obtaining optimal

bireduct, a concept of ε−Bireduct has been introduced [137]. A parameter ε ∈ (0, 1]

is used to stop instance elimination beyond certain limit, i.e. the number of instances

| Y | in bireduct (Y,A) must be more than (1− ε) | U |. Large values of ε leads to

more number of elimination and vice versa.

6.1.4 Heuristic Search Strategy for IF Bireducts

In the previous section, the foundation for simultaneous feature and instance se-

lection i.e. intuitionistic fuzzy bireduct was laid. However, there is a need for an

effective and efficient search strategy that would reduce the data without performing

exhaustive search [96].

Particle swarm optimization (PSO) is an evolutionary search strategy [82, 160] based

on the unpredictable movement of flock of birds. PSO for generating bireducts is
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initialised with m swarms. Each swarm Si = {si1, si2, . . . , sin} is a n dimensional

random vector consisting of 0s and 1s, where n is the number of features in the

dataset and the value of 0 or 1 represents the presence or absence of correspond-

ing feature. Each swarm is characterized by pBesti = {pi1, pi2, . . . , pin}, best previ-

ous position (vector configuration giving best fitness value). Globally best position

gBesti = {g1, g2, . . . , gn} is given by the position which is best among all the swarms.

Swarm’s positions are updated by a velocity vector veli, which is computed using

the following formula:

veli = w × veli + c1 × r1 ×
n∑
j=1

(
pij − sij

)
+ c2 × r2 ×

n∑
j=1

(
gj − sij

)
(6.14)

where r1 and r2 are two random numbers lying between [0, 1], c1 and c2 are accelera-

tion constants, w is an inertia weight for balancing between local and global search.

The value of velocity governs the number of bits that should be changed in Si in

order to lead swarms head towards optimal solution. Let sg be the number of dif-

ferent bits between swarm’s current position and gBest. The position of swarm is

updated via one of the two cases:

1. If veli ≤ sg, swarms’s velocity is less than or equal to difference between si

and gBest. veli number of bits of si is randomly flipped.

2. If veli > sg, swarm’s velocity overshoots the difference between si and gBest.

Randomly change (veli − sg) bits in swarm’s position that are different from

gBest apart from changing the different bits in si to be same as that in global

best position gBest. This way heads the swarm towards optimal solution.

Maximum velocity of swarms is constrained to vmax, which is set to n/3 to prevent

swarm from flying too away from optimal solution. So, if veli < 1, then veli = 1, if

veli > vmax, then veli = vmax.
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The fitness function is utilized to evaluate quality of the bireduct. Since, the quality

of bireduct is influenced by the presence of subset of features that satisfy maximal

number of instances. Hence taking into account the dual objective, the fitness func-

tion is defined as:

Fiti = α× ΥA(D) + β × (n+ | U |)− (r + o)

n+ | U |
(6.15)

where n is the total number of features in the dataset, r is the number of bits set

in si and o is the number of instances covered by r after removing outliers. The

two parameters α and β govern the importance to classification performance and

subset length respectively, such that α = 1 − β, α ∈ [0, 1]. After the selection of

globally best position of swarm, outliers are eliminated using the process described

in Section 6.1.2. The entire methodology is iterated generation times. The whole

methodology is described in Algorithm 6.1.4 and depicted in flowchart 6.3.

Algorithm 6.1.4

Input: generation: number of iterations; m: number of swarms; c1, c2: constants;

w: inertia weight; vmax: maximum swarm’s velocity;

si = n bit vector generated randomly; i = 1, 2, . . . ,m

pBestF iti, gBestF it = 0; i = 1, 2, . . . ,m

itr = 0;

while itr < generation do

for ∀ swarm si do

Fiti = Fitness of swarm i;

if Fiti > pBestF iti then

pBestF iti = Fiti; pBest
i = si; j = 1, 2, . . . , n

end if

if Fiti > gBestF it then
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gBestF it = Fiti; gBest = si; j = 1, 2, . . . , n

end if

end for

for ∀ swarm si do

veli = w × veli + c1 × r1 ×
∑n

j=1

(
pij − sij

)
+ c2 × r2 ×

∑n
j=1

(
gj − sij

)
;

if veli > velmax then

veli = velmax;

end if

if veli < 1 then

veli = 1;

end if

sg =
∑n

j=1 |
(
gBestj − sij

)
|;

if sg ≤ veli then

Randomly change veli bits of si;

else

Randomly change sg − veli bits that are different from gBest apart from

changing the bits that are different to gBest;

end if

Remove outliers O from dataset containing gBest features;

U ← U −O;

end for

itr ← itr + 1;

end while

return ε-bireduct

Let the bireduct obtained in first generation of ith swarm be {a, b} features and

{2, 4, 5} instances for the previous toy example, then the fitness value Fiti = 0.9×
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Figure 6.3: The flowchart of entire metoodology to calculate ε−bireduct i.e for
obtaining a reduced representation of the dataset

0.833 + 0.1× (4+6)−(2+3)
4+6

= 0.800, α = 0.9 and β = 0.1 is used.

The worst case time complexity of the algorithm is:

O (generation∗ | swarms | ∗ | U | ∗ | U | ∗ n).

In each iteration of the algorithm which is done generation times, fitness of all the

swarms is evaluated. The fitness of the bireduct is based on dependency degree

which has O (| U | ∗ | U | ∗ n) time complexity.

6.2 Experimentation

This section details the experimental evaluation to show the effectiveness of the pro-

posed approach for data reduction.

The experimental setup for the proposed approach (IFBR) is as follows: α =

0.9, β = 0.1 is chosen. The value of generation is set to 100 and 20 swarms

are considered. Further, the constants c1 and c2 defined in equation (6.14) are set

to 2 and value of inertia weight is modified using following equation:



Chapter 6. Bireduct Model 110

Table 6.3: Benchmark Datasets

Dataset Instance Feature Class
Classification accuracy
KNN SVM

Diabetes 768 8 2 72.50±5.70 64.86±6.35
Glass 214 9 6 69.52±9.03 62.85±7.02
Appendicitis 106 7 2 83.00±9.48 85.00±7.07
Heart 267 13 2 82.69±8.92 74.23±10.42
Fertility-diagnosis 100 9 2 88.00±11.35 88.00±12.29
Wine 178 13 3 95.29±6.67 95.29±5.40
German 1000 24 2 70.80±6.35 76.60±3.53
Hepatitis 155 19 2 81.33±7.56 84.00±7.16
Flags-religion 194 28 8 48.42±10.46 44.21±9.98
Leaf 340 14 30 66.47±5.03 48.23±9.32
Lymphography 148 18 4 85.00±10.35 80.71±12.16
Seeds 210 7 3 91.90±5.04 92.38±4.60
Dbworld-bodies 64 4702 2 53.33±20.48 85.00±5.27
Dbworld-bodies-stemmed 64 3721 2 53.25±3.26 81.93±1.57
Micro-mass-mixed-spectra 360 1300 10 8t.11±7.94 79.16±8.71

w = (wmax − wmin)× itr

generation
+ wmin (6.16)

where itr is the current iteration number, wmin = 0.4 and wmax = 1.4. These are

the default parameter settings as employed by Wang et. al. [160] for particle swarm

optimization.

6.2.1 Results

Fifteen benchmark datasets taken from UCI repository [108] are used to conduct ex-

periments and are summarised in table 6.3. Five sets of experiments are performed

illustrating the proposed approach and its variants. Further, a comparative study

is done to demonstrate the effectiveness of the proposed model. All the respective

accuracies are evaluated using 10×10-fold cross validation technique. Two classifiers

namely kNN (k = 3) [131] and SVM [117] are employed to evaluate performances.

Highest performances are bold-faced and rank of algorithm superscripted.
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6.2.1.1 Using Parameter Variation

A series of experiments are performed by varying of k (used to compute lower ap-

proximations) as 1, 2 and 3. Also, the results are evaluated for ε = 0.1, 0.2, 0.3 to

ensure data coverage of 90%, 80% and 70% respectively for generating intuitionistic

fuzzy bireducts. The size of feature subset and instances is shown in table 6.4, while

the classification accuracies (along with standard deviation) for different values of

ε in tables 6.5, 6.6, and 6.7. There is not much difference in number of features

and instances generated for k = 1, 2, 3 for fixed ε. Only the difference of one or two

is observed in size of feature subsets for different value of ε. In terms of classifica-

tion accuracy, k = 2, 3 has produced higher accuracy on some datasets. Again, not

much difference between accuracies is observed for ε = 0.1 except for few dataset

like dbworld-bodies, etc. While there is a increase in number of datasets producing

higher accuracy for k = 2 than k = 3 for 80% coverage of datasets i.e. ε = 0.2 while

decreasing the number of selected instances. The feature subset size is not much

affected in the shift from ε = 0.2 to ε = 0.3. The classification accuracy for ε = 0.3

follows nearly the same trend as for ε = 0.1 i.e. a slight higher value for k = 2 and

3. For better understanding the difference, a visualization of accuracy for varying

values of ε and k for kNN classifier is shown in Figure 6.4. There is a little increase

in accuracy on increasing coverage for most of the datasets, which is to be expected

as reduced data (smaller subtable) gives higher performance. However, on aver-

age ε = 0.2, k = 2 chooses less number of features maintaining high classification

accuracy and is henceforth used for subsequent experimental evaluation.
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Table 6.4: IFBR results for various parameter combination

Dataset k
ε = 0.1 ε = 0.2 ε = 0.3
1 2 3 1 2 3 1 2 3

Diabetes
Instance 697.8 697.8 697.9 650.8 650.0 646.5 650.4 650.9 645.7
Feature 6.7 6.7 6.6 6.9 6.2 6.5 7.2 6.5 6.3

Glass
Instance 193.9 193.9 193.6 174.5 174.7 174.5 155.5 155.8 155.7
Feature 8.6 8.2 7.9 7.5 7.2 6.6 6.9 6.0 6.2

Appendicitis
Instance 95.6 95.6 95.6 85.5 85.7 85.6 76.6 76.6 76.4
Feature 3.2 3.6 3.5 2.4 2.2 2.1 2.7 1.3 1.5

Heart
Instance 241.9 242.0 241.8 218.0 217.6 217.9 193.8 193.9 193.7
Feature 6.5 6.2 5.9 6.2 5.9 5.6 6.0 4.9 4.6

Fertility-diagnosis
Instance 89.6 89.9 89.8 80.7 80.6 80.5 71.5 71.6 71.4
Feature 5.2 4.3 5.1 4.6 4.1 5.4 3.7 4.6 5.4

Wine
Instance 160.8 160.5 160.7 144.8 144.6 144.8 128.8 128.1 128.8
Feature 4.1 4.0 4.1 4.1 4.0 4.0 4.0 3.6 3.7

German
Instance 909.0 909.0 908.9 888.5 890.4 885.1 886.2 890.2 884.3
Feature 13.7 12.7 12.1 15.1 14.1 14.1 14.9 14.2 13.8

Hepatitis
Instance 139.5 139.9 139.9 125.7 125.9 127.4 111.7 115.6 112.9
Feature 6.4 6.2 6.0 5.7 5.0 4.7 4.7 5.1 5.3

Flags-religion
Instance 176.0 175.9 175.9 158.0 158.0 157.9 141.0 140.8 140.9
Feature 12.1 12.5 12.0 11.2 11.0 11.0 10.6 10.6 10.5

Leaf
Instance 308.6 308.8 308.9 277.7 277.8 277.6 247.8 248.0 248.0
Feature 8.3 8.4 8.6 7.7 7.3 7.6 7.1 6.6 7.1

Lymphography
Instance 133.7 133.9 133.8 120.8 120.9 120.6 106.8 106.6 106.7
Feature 7.4 7.1 6.7 7.2 6.6 6.3 6.7 6.0 5.9

Seeds
Instance 190.6 190.5 190.5 171.6 171.6 171.8 152.4 152.7 152.4
Feature 4.5 4.0 4.0 4.0 3.5 3.0 3.1 3.0 3.0

Dbworld-bodies
Instance 64.0 64.0 64.0 64.0 63.1 64.0 64.0 64.0 64.0
Feature 2282.8 2273.9 2280.2 2270.3 2282.8 2270.4 2273.2 2276.6 2274.9

Dbworld-bodies-stemmed
Instance 64.0 64.0 64.0 64.0 63.0 64.0 64.0 64.0 64.0
Feature 1777.0 1794.9 1799.0 1797.1 1789.1 1790.9 1785.3 1795.0 1788.5

Micro-mass-mixed-spectra
Instance 360.0 360.0 360.0 360.0 360.0 360.0 360.0 360.0 360.0
Feature 600.2 605.8 600.2 605.8 600.2 608.2 600.2 605.8 608.2

Diabetes Glass Appendicitis

Heart Fertility diagnosis Wine
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Table 6.5: IFBR classification accuracy for 90% coverage (ε = 0.1)

Dataset Classifier k = 1 k = 2 k = 3

Diabetes
KNN 74.67±1.01 75.66±1.06 71.19±1.32
SVM 62.84±1.58 67.26±1.97 64.51±2.95

Glass
KNN 72.40±2.10 71.28±2.67 68.75±4.10
SVM 59.23±4.47 63.30±3.67 66.84±4.10

Appendicitis
KNN 93.52±2.56 92.07±3.63 89.64±3.55
SVM 88.96±2.37 92.17±3.51 91.43±2.72

Heart
KNN 73.28±3.10 76.14±1.16 76.85±3.28
SVM 58.18±2.13 56.56±5.91 55.68±3.17

Fertility-diagnosis
KNN 83.50±1.92 84.78±3.22 84.51±5.68
SVM 86.28±2.65 91.48±5.01 84.51±5.68

Wine
KNN 88.81±3.59 89.78±2.81 92.59±1.30
SVM 92.65±1.10 89.97±1.13 89.29±3.13

German
KNN 70.57±0.70 70.50±1.09 71.59±0.46
SVM 75.49±1.35 75.29±2.18 75.59±1.34

Hepatitis
KNN 80.65±5.62 78.69±1.38 82.70±1.94
SVM 80.76±5.58 85.09±4.87 84.54±3.16

Flags-religion
KNN 52.95±9.54 47.27±2.58 40.85±2.85
SVM 52.68±4.74 48.36±5.55 43.14±2.00

Leaf
KNN 65.19±2.23 65.19±1.66 68.23±1.38
SVM 35.98±1.49 39.33±1.44 38.01±1.78

Lymphography
KNN 73.43±5.99 78.91±5.67 71.93±1.01
SVM 78.34±4.60 79.20±5.14 71.48±6.02

Seeds
KNN 86.20±1.20 91.66±1.91 93.52±1.35
SVM 90.83±1.38 93.91±1.53 93.16±0.94

Dbworld-bodies
KNN 67.58±8.82 50.22±6.48 57.71±11.25
SVM 92.47±4.36 88.70±3.30 96.10±2.41

Dbworld-bodies-stemmed
KNN 47.47±2.49 72.09±6.18 61.32±10.95
SVM 78.69±5.69 86.56±5.52 93.20±4.43

Micro-mass-mixed-spectra
KNN 87.07±1.13 80.63±1.02 87.07±1.13
SVM 72.49±3.62 71.61±3.46 72.49±3.62

German Hepatitis Flags religion
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Table 6.6: IFBR classification accuracy for 80% coverage (ε = 0.2)

Dataset Classifier k = 1 k = 2 k = 3

Diabetes
KNN 72.29±1.14 74.86±1.73 71.52±2.81
SVM 69.57±1.46 65.57±1.79 61.55±3.46

Glass
KNN 69.05±1.23 69.73±2.28 62.80±4.02
SVM 61.15±3.91 64.01±2.99 61.65±2.68

Appendicitis
KNN 83.11±4.95 89.75±4.19 84.81±2.12
SVM 83.11±4.95 91.52±1.50 81.62±7.23

Heart
KNN 71.48±3.90 77.31±1.17 77.15±3.87
SVM 44.85±1.79 72.07±1.74 49.16±7.03

Fertility-diagnosis
KNN 89.91±3.53 93.51±2.85 87.51±4.51
SVM 91.11±3.07 93.51±2.85 87.51±4.51

Wine
KNN 86.94±3.89 94.85±2.19 98.55±1.47
SVM 86.83±3.94 94.33±1.45 92.06±1.48

German
KNN 70.04±0.65 71.96±1.08 70.43±1.01
SVM 75.01±1.34 75.12±1.97 71.76±3.11

Hepatitis
KNN 83.61±2.26 86.44±3.76 79.80±2.50
SVM 82.53±2.94 88.53±5.35 78.57±1.04

Flags-religion
KNN 42.06±1.96 45.68±4.32 42.80±2.44
SVM 46.56±4.93 47.09±0.66 52.46±4.07

Leaf
KNN 59.32±2.63 68.18±5.66 58.48±1.63
SVM 34.30±1.57 35.15±3.36 34.74±2.03

Lymphography
KNN 83.66±2.22 84.69±3.68 76.33±1.48
SVM 76.33±2.39 83.32±1.44 73.60±2.41

Seeds
KNN 83.43±2.46 94.35±1.56 95.28±2.25
SVM 89.61±1.77 93.82±1.37 93.69±0.97

Dbworld-bodies
KNN 52.95±2.48 67.58±8.82 55.71±5.40
SVM 87.00±7.60 92.43±4.36 90.53±5.74

Dbworld-bodies-stemmed
KNN 48.51±2,78 69.76±5.93 61.32±10.95
SVM 91.00±3.32 91.12±4.59 93.20±4.43

Micro-mass-mixed-spectra
KNN 80.65±1.02 87.07±1.13 79.71±2.54
SVM 71.61±3.46 72.49±3.62 78.37±2.28

Leaf Lymphography Seeds
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Table 6.7: IFBR classification accuracy for 70% coverage (ε = 0.3)

Dataset Classifier k = 1 k = 2 k = 3

Diabetes
KNN 73.77±1.92 74.62±0.08 75.18±1.13
SVM 65.64±1.13 63.85±1.05 65.62±1.03

Glass
KNN 66.60±4.02 73.53±4.90 71.09±3.82
SVM 63.10±1.49 65.48±3.80 63.97±5.19

Appendicitis
KNN 82.30±2.84 92.44±2.14 84.37±2.40
SVM 82.30±2.84 84.76±2.20 83.56±2.26

Heart
KNN 79.26±5.6 83.81±4.02 75.38±1.89
SVM 45.59±1.02 55.83±5.49 53.92±4.06

Fertility-diagnosis
KNN 94.62±2.71 92.69±1.76 93.52±4.70
SVM 93.19±2.42 92.69±1.76 93.52±4.70

Wine
KNN 92.89±2.08 95.24±3.63 89.96±1.94
SVM 89.62±1.28 91.29±1.85 93.10±3.08

German
KNN 67.12±1.52 71.25±2.67 71.47±0.91
SVM 74.45±0.63 72.71±1.70 75.30±0.86

Hepatitis
KNN 77.62±2.05 75.27±6.44 79.60±2.78
SVM 78.02±2.57 76.00±6.73 80.88±2.44

Flags-religion
KNN 40.35±2.26 46.70±2.36 41.66±1.58
SVM 45.57±2.75 44.76±6.75 55.23±3.23

Leaf
KNN 57.28±4.77 59.31±2.21 57.65±1.63
SVM 24.44±3.25 30.04±1.89 30.17±2.89

Lymphography
KNN 75.19±1.98 72.13±1.97 79.57±4.97
SVM 79.58±0.97 69.63±4.54 84.36±5.10

Seeds
KNN 71.53±5.20 91.74±1.99 89.58±1.66
SVM 74.94±5.81 91.20±1.71 86.96±1.53

Dbworld-bodies
KNN 69.26±12.61 59.32±4.64 56.61±3.70
SVM 90.67±4.08 87.77±3.52 88.27±3.70

Dbworld-bodies-stemmed
KNN 45.81±3.36 45.90±7.10 50.87±4.05
SVM 89.44±4.30 79.06±5.08 89.11±4.38

Micro-mass-mixed-spectra
KNN 87.07±1.13 80.65±1.02 79.71±2.54
SVM 72.49±3.62 71.61±3.46 78.73±2.28

Dbworld-bodies
Dbworld-bodies-

stemmed
Micro-mass-

mixed-spectra
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Figure 6.4: Graphical visualization showing the variation of classification accu-
racy with dataset coverage (ε) and noise parameter k

6.2.1.2 Using Variants of Instance Selection

This section compares the performance and the size of bireducts as generated by two

instance selection approaches described in Section 6.1.2, abbreviated as IFBRPSO-

1 and IFBRPSO-2. Further comparison is made with ε-bireduct generated by

IFBRPSO-2, abbreviated as IFBR. The entire comparison is summarised in table

6.8, 6.9 and 6.10. It can be clearly seen that IFBRPSO-1 removes considerable num-

ber of instances for few datasets, which might lead to information loss. IFBRPSO-2

also removes too many instances, but a fair reduction is observed for few datasets.

To ensure minimum coverage, however, ε-bireduct is employed. In terms of feature

subset size, all the three approaches gave identical results for most of the dataset.

IFBR produced comparable or higher classification accuracy than IFBRPSO-1 and

IFBRPSO-2 for most of the dataset-classifier combination as can be seen from cor-

responding box plot in figure 6.5. The overall reduction can be seen from table

6.10.

KNN SVM

Figure 6.5: Graphical visualization showing the classification accuracy with
variants of IS
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Table 6.8: IFBR results for variants of IS

Dataset
IFBRPSO-1 IFBRPSO-2 IFBR (ε-bireduct)
Instance Feature Instance Feature Instance Feature

Diabetes 85.7 1.8 652.7 6.5 650.0 6.2
Glass 77.7 4.3 63.9 3.9 174.7 7.2
Appendicitis 39.8 2.6 57.5 2.0 85.7 2.2
Heart 76.7 2.7 149.9 4.0 217.6 5.9
Fertility-diagnosis 81.9 4.9 52.9 4.9 80.6 4.1
Wine 30.0 1.7 28.1 2.5 144.6 4.0
German 648.0 10.1 888.9 13.4 890.4 14.1
Hepatitis 92.6 4.5 122.7 7.5 125.9 5.0
Flags-religion 115.5 10.7 82.8 10.6 158.0 11.0
Leaf 205.2 6.4 207.7 7.2 277.8 7.3
Lymphography 71.5 4.5 112.3 8.8 120.9 6.6
Seeds 47.5 1.3 38.8 1.4 171.6 3.5
Dbworld-bodies 64.0 2276.9 64.0 2271.0 63.1 2282.8
Dbworld-bodies-stemmed 64.0 1796.3 64.0 1791.9 63.0 1789.1
Micro-mass-mixed-spectra 360.0 606.6 360.0 600.2 360.0 600.2

Table 6.9: IFBR classification accuracy employing variants of IS

Dataset Classifier IFBRPSO-1 IFBRPSO-2 IFBR (ε-bireduct)

Diabetes
KNN 49.31±3.73 76.67±1.51 74.86±1.73
SVM 51.53±3.70 64.75±2.67 65.57±1.79

Glass
KNN 48.49±3.29 43.66±3.95 69.73±2.28
SVM 43.29±1.89 42.23±3.87 64.01±2.99

Appendicitis
KNN 76.15±2.71 92.24±4.20 89.75±4.19
SVM 76.83±3.16 92.24±4.20 91.52±1.50

Heart
KNN 62.04±9.50 77.38±1.39 77.31±1.17
SVM 42.55±4.07 57.26±2.74 72.07±1.74

Fertility-diagnosis
KNN 93.97±4.12 85.57±2.72 93.51±2.85
SVM 93.97±4.12 85.57±2.72 93.51±2.85

Wine
KNN 51.40±5.03 42.76±3.23 94.85±2.19
SVM 58.84±5.55 39.56±6.71 94.33±1.45

German
KNN 74.98±1.66 74.22±2.86 71.96±1.08
SVM 74.34±1.57 75.50±2.31 75.12±1.97

Hepatitis
KNN 86.27±3.12 85.91±1.38 86.44±3.76
SVM 86.19±2.64 85.19±1.99 88.53±5.35

Flags-religion
KNN 45.43±5.11 37.79±5.49 45.68±4.32
SVM 39.91±1.83 41.08±4.15 47.09±0.66

Leaf
KNN 54.94±4.82 57.40±5.03 68.18±5.66
SVM 31.37±3.85 32.35±4.63 35.15±3.36

Lymphography
KNN 59.40±6.29 74.03±6.34 84.69±3.68
SVM 52.92±7.81 73.77±2.50 83.32±1.44

Seeds
KNN 57.98±4.39 47.48±3.80 94.35±1.56
SVM 62.54±2.58 52.82±5.81 93.82±1.37

Dbworld-bodies
KNN 64.41±8.00 58.61±4.45 67.58±8.82
SVM 92.75±5.51 86.42±7.67 92.43±4.36

Dbworld-bodies-stemmed
KNN 48.44±7.06 62.65±7.79 69.76±5.93
SVM 84.85±6.73 84.90±1.43 91.12±4.59

Micro-mass-mixed-spectra
KNN 76.65±2.81 87.07±1.13 87.07±1.13
SVM 73.89±4.32 72.49±3.62 72.49±3.62



Chapter 6. Bireduct Model 118

Table 6.10: IFBR overall reduction rate employing variants of IS

Dataset IFBRPSO-1 IFBRPSO-2 IFBR (ε-bireduct)
Diabetes 97.48926 30.94808 34.40755
Glass 82.65265 87.06075 34.69159
Appendicitis 86.05391 84.50135 74.5903
Heart 94.03371 82.72544 63.01238
Fertility-diagnosis 55.41 71.19889 63.28222
Wine 97.79602 96.96413 75.00432
German 72.73 50.36975 47.689
Hepatitis 85.85059 68.75212 78.62479
Flags-religion 77.24871 83.84242 68.00442
Leaf 72.41008 68.58319 57.39622
Lymphography 87.9223 62.9039 70.0473
Seeds 95.79932 96.30476 59.14286
Dbworld-bodies 51.57593 51.7014 52.1331
Dbworld-bodies-stemmed 51.72534 51.84359 52.6701
Micro-mass-mixed-spectra 53.33846 53.83077 53.83077

6.2.1.3 Comparisons with Other FS Algorithms

A comparison of proposed approach with other state of the art methods is dealt

in this section. An IF rough feature selection (IFFS) approach [140] and a fuzzy

rough feature selection (FRPSO) [104] both employing particle swarm optimization

are used for comparisons. The experimental results are shown in table 6.11, 6.12,

6.13. The proposed intuitionistic fuzzy ε-bireduct (IFBR) while reducing number of

instances decreases the size of feature subset for all the datasets except for Glass,

German, Dbworld-bodies and Dbworld-bodies-stemmed, in which case the difference

in feature subset size between various approaches is insignificant. IFBR produces

a significant increase in classification accuracy for the all datasets than IFFS, and

FRPSO except for Leaf and Micro-mass-mixed-spectra. IFFS and FRPSO gave

poor performance for thirteen datasets. Since, intuitionistic fuzzy rough sets and

particle swarm search heuristic is employed in this approach, superiority of IFBR

over IFFS and FRPSO clearly emphasis the effectiveness of the proposed work. The

bar plot (figure 6.6) clearly shows the superiority of the approach. The performance
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Table 6.11: Comparison with other state of art feature selection algorithms

Dataset
FRPSO IFFS IFBR
Feature Feature Instance Feature

Diabetes 8.0 8.0 650.0 6.2
Glass 9.0 6.0 174.7 7.2
Appendicitis 7.0 4.0 85.7 2.2
Heart 12.9 7.4 217.6 5.9
Fertility-diagnosis 9.0 6.0 80.6 4.1
Wine 9.7 6.0 144.6 4.0
German 16.8 12.1 890.4 14.1
Hepatitis 13.4 8.2 125.9 5.0
Flags-religion 18.9 14.5 158.0 11.0
Leaf 14.0 9.0 277.8 7.3
Lymphography 11.7 7.4 120.9 6.6
Seeds 7.0 4.0 171.6 3.5
Dbworld-bodies 2274.9 2281.6 63.1 2282.8
Dbworld-bodies-stemmed 1783.7 1786.4 63.0 1789.1
Micro-mass-mixed-spectra 605.8 609.7 360.0 600.2

is even higher than unreduced case except for flags-religion, heart and wine for

3NN and heart, leaf, mixed-mass-micro-spectra and wine for svm. The value of

F (2, 28) = 3.34 at α = 5% level for significance, therefore the null hypothesis is

rejected using Freidman test, i.e. four algorithms are statistically different. For

Bonferroni Dunn test, q0.05 = 2.241 so Cd0.05 = 0.818. Hence, IFBR is statistically

better than FRPSO and IFFS for both the classifiers at 5% level of significance.

KNN SVM
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Table 6.12: Classification accuracy comparison with other state of art feature
selection algorithms

Dataset Classifier FRPSO IFFS IFBR

Diabetes
KNN 72.50±5.702.5 72.50±5.702.5 74.86±1.731

SVM 64.86±6.352.5 64.86±6.352.5 65.57±1.791

Glass
KNN 69.52±9.032 67.24±5.173 69.73±2.281

SVM 62.85±7.022 56.64±1.403 64.01±2.991

Appendicitis
KNN 83.00±9.482 82.21±4.683 89.75±4.191

SVM 85.00±7.072 81.91±4.593 91.52±1.501

Heart
KNN 77.01±2.042 73.62±3.403 77.31±1.171

SVM 68.95±3.252 54.78±4.333 72.07±1.741

Fertility-diagnosis
KNN 80.27±2.963 81.12±2.332 93.51±2.851

SVM 86.06±5.242 83.19±2.193 93.51±2.851

Wine
KNN 91.36±3.513 93.54±1.272 94.85±2.191

SVM 92.50±1.692 91.02±1.823 94.33±1.451

German
KNN 70.81±1.252 68.21±1.343 71.96±1.081

SVM 74.10±1.013 74.12±1.682 75.12±1.971

Hepatitis
KNN 74.02±7.463 80.83±2.442 86.44±3.761

SVM 76.87±4.493 81.73±2.922 88.53±5.351

Flags-religion
KNN 40.41±2.403 41.45±2.392 45.68±4.321

SVM 41.77±2.963 44.65±1.692 47.09±0.661

Leaf
KNN 64.47±1.673 67.87±2.802 68.18±5.661

SVM 42.94±3.031 41.98±1.972 35.15±3.363

Lymphography
KNN 69.41±8.753 74.28±3.922 84.69±3.681

SVM 76.36±4.213 79.22±3.302 83.32±1.441

Seeds
KNN 89.74±3.902 89.34±3.183 94.35±1.561

SVM 88.12±2.542 88.04±4.553 93.82±1.371

Dbworld-bodies
KNN 52.06±2.402 50.63±6.923 67.58±8.821

SVM 69.55±4.983 77.64±6.072 92.43±4.361

Dbworld-bodies-stemmed
KNN 52.89±4.012 51.43±7.303 69.76±5.931

SVM 81.10±6.483 85.72±1.732 91.12±4.591

Micro-mass-mixed-spectra
KNN 80.65±1.023 82.38±1.792 87.07±1.131

SVM 71.61±3.463 76.50±4.541 72.49±3.622

Average Rank
KNN 2.5 2.5 1
SVM 2.43 2.36 1.20

F statistics
KNN 42.0
SVM 11.7
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Table 6.13: Overall redcution rate comparison with other state of art feature
selection algorithms

Dataset FRPSO IFFS IFBR
Diabetes 0 0 34.40755
Glass 0 33.33333 34.69159
Appendicitis 0 42.85714 74.5903
Heart 0.769231 43.07692 63.01238
Fertility-diagnosis 0 33.33333 63.28222
Wine 25.38462 53.84615 75.00432
German 30 49.58333 47.689
Hepatitis 29.47368 56.84211 78.62479
Flags-religion 32.5 48.21429 68.00442
Leaf 0 35.71429 57.39622
Lymphography 35 58.88889 70.0473
Seeds 0 42.85714 59.14286
Dbworld-bodies 51.61846 51.47597 52.1331
Dbworld-bodies-stemmed 52.06396 51.9914 52.6701
Micro-mass-mixed-spectra 53.4 53.1 53.83077

Figure 6.6: Graphical visualization showing comparison of the classification
accuracy with state of the art feature selection approach

6.2.1.4 Comparison with Instance Selection and Feature Selection +

Instance Selection Approaches

The above presented comparative approaches are based on feature selection alone

and it lacks proper comparative analysis of IFBR. Since there does not exist any

previous intuitionistic fuzzy bireduct approach, so a combination of feature selection

and instance selection is employed for comparison purpose. Two sets of algorithms

namely FSIS and ISFS are used. In FSIS, irrelevant features are removed using IFFS

[140] using paticle swarm search heuristic and then outliers are eliminated from this

reduced dataset using instance selection [70]. While in ISFS, problematic instances
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Table 6.14: Comparison with Instance Selection-Feature Selection combination

Dataset
FSIS ISFS FRIS IFBR
Instance Feature Instance Feature Instance Feature Instance Feature

Diabetes 760.2 8 759.8 8 768 8 650 6.2
Glass 207 6 208.2 6 212.4 9 174.7 7.2
Appendicitis 101.6 3.4 106 3.7 104.1 7 85.7 2.2
Heart 255.1 7.4 265.4 7.4 267 13 217.6 5.9
Fertility-diagnosis 98.4 6.3 98.6 5 99 9 80.6 4.1
Wine 177.8 5.9 176.4 6 165.7 13 144.6 4
German 999 12.5 996.2 12.3 996.3 24 890.4 14.1
Hepatitis 151.1 8 155 8 148.7 19 125.9 5
Flags-religion 183 14.8 191 14.2 185.8 28 158 11
Leaf 292.5 9 315.5 9 340 14 277.8 7.3
Lymphography 146.8 7.4 148 7.8 147.4 18 120.9 6.6
Seeds 198.9 4 193 4 191.8 7 171.6 3.5
Dbworld-bodies 64.0 2270.3 64.0 2270.4 64.0 4702 63.1 2282.8
Dbworld-bodies-stemmed 64.0 1790.9 64.0 1791.1 64.0 3721 63.0 1789.1
Micro-mass-mixed-spectra 360 600.2 360 605.8 360 1300 360 600.2

are first eliminated using [70] followed by feature selection with paticle swarm search

heuristic in IFFS [140]. Finally, these two reduced datasets are evaluated for perfor-

mance. A comparison with instance selection (FRIS) [70] alone is also undertaken.

Table 6.14 shows the number of features and instances selected and overall reduc-

tion thus achieved in table 6.16 while model performance is illustrated in table 6.15.

IFBR produces the best reduction in data size except for Micro-mass-mixed-spectra

for which the reduction size are comparable. IFBR outperforms FSIS, ISFS, and

FRIS for all the datasets except Heart, Wine, Leaf, and Micro-mass-mixed-spectra

in which case, the difference is insignificant. FSIS, ISFS performs very poorly for

Dbworld-bodies-stemmed and FRIS for Dbworld-bodies dataset respectively. Figure

6.7 gives a better visualization for comparing performance. In summary, IFBR gen-

erates more consistent bireducts that performs better than other instance selection

and feature selection combinations. For statistical testing, M = 15, N = 4, so the

value of F (3, 42) = 2.847 is used. The null hypothesis is rejected implying the sig-

nificant difference between algorithms. Here, q0.05 = 2.394 such that Cd0.05 = 1.12.

The null hypothesis is again rejected by Bonferroni Dunn test for both classifiers

demonstrating the superiority of the proposed approach.
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Table 6.15: Classification accuracy comparison with Instance Selection-Feature
Selection combination

Dataset Classifier FSIS ISFS FRIS IFBR

Diabetes
KNN 73.50±2.103 74.28±3.082 69.55±2.124 74.86±1.731

SVM 61.44±1.393 61.95±2.032 60.95±4.134 65.57±1.791

Glass
KNN 62.30±3.534 65.39±4.472 62.69±2.853 69.73±2.281

SVM 59.80±4.342 54.40±6.604 57.17±5.363 64.01±2.991

Appendicitis
KNN 77.90±6.774 81.61±4.413 86.85±2.082 89.75±4.191

SVM 78.51±3.504 83.06±4.883 88.16±2.912 91.52±1.501

Heart
KNN 76.01±1.184 76.83±2.103 83.72±2.741 77.31±1.172

SVM 55.80±2.124 58.92±0.803 59.32±8.752 72.07±1.741

Fertility-diagnosis
KNN 87.18±2.072 80.75±4.163 80.20±8.144 93.51±2.851

SVM 92.41±3.122 85.23±4.074 86.35±6.563 93.51±2.851

Wine
KNN 94.31±2.343 95.73±0.961 94.03±0.754 94.85±2.192

SVM 93.06±2.534 93.74±1.983 94.24±1.272 94.33±1.451

German
KNN 67.85±1.283 70.14±1.252 67.30±1.834 71.96±1.081

SVM 75.10±0.592 74.92±1.093 73.86±1.324 75.12±1.971

Hepatitis
KNN 79.01±3.153 78.79±2.474 81.67±3.342 86.44±3.761

SVM 78.51±3.184 86.65±3.602 85.03±2.313 88.53±5.351

Flags-religion
KNN 38.65±1.423 36.51±3.784 44.92±5.972 45.68±4.321

SVM 44.99±3.342 42.55±2.814 44.55±3.963 47.09±0.661

Leaf
KNN 67.09±1.292 65.91±1.773 60.76”±1.224 68.18±5.661

SVM 38.24±4.732 35.33±3.623 39.76±5.001 35.15±3.364

Lymphography
KNN 79.52±4.252 67.62±4.404 78.77±3.013 84.69±3.681

SVM 78.93±0.933 77.72±3.674 79.73±3.212 83.32±1.441

Seeds
KNN 91.64±3.222 85.82±1.414 87.40±1.813 94.35±1.561

SVM 92.67±2.742 87.86±2.703 85.63±1.124 93.82±1.371

Dbworld-bodies
KNN 52.59±2.483 55.77±5.402 39.90±9.644 67.58±8.821

SVM 87.00±7.603 90.53±5.742 80.40±4.614 92.43±4.361

Dbworld-bodies-stemmed
KNN 48.13±6.134 52.18±0.153 53.25±3.262 69.76±5.931

SVM 83.87±7.483 85.05±0.122 81.93±1.574 91.12±4.591

Micro-mass-mixed-spectra
KNN 87.07±1.131.5 80.65±1.023 73.25±1.104 87.07±1.131.5

SVM 72.49±3.622.5 71.61±3.464 73.88±1.911 72.49±3.622.5

Average Rank
KNN 2.90 2.86 3.06 1.16
SVM 2.83 3.06 2.79 1.30

F statistics
KNN 11.91
SVM 8.19

KNN SVM

Figure 6.7: Graphical visualization showing comparison of the classification
accuracy with other IS-FS combination



Chapter 6. Bireduct Model 124

Table 6.16: Overall reduction rate comparison with Instance Selection-Feature
Selection combination

Dataset FSIS ISFS FRIS IFBR
Diabetes 1.015625 1.067708 0 34.40755
Glass 35.51402 35.14019 0.747664 34.69159
Appendicitis 53.44474 47.14286 1.792453 74.5903
Heart 45.61394 43.41804 0 63.01238
Fertility-diagnosis 31.12 45.22222 1 63.28222
Wine 54.66638 54.26102 6.910112 75.00432
German 47.96875 48.94475 0.37 47.689
Hepatitis 58.95416 57.89474 4.064516 78.62479
Flags-religion 50.13991 50.06996 4.226804 68.00442
Leaf 44.69538 40.34664 0 57.39622
Lymphography 59.22222 56.66667 0.405405 70.0473
Seeds 45.87755 47.48299 8.666667 59.14286
Dbworld-bodies 51.71629 51.71416 0 52.1331
Dbworld-bodies-stemmed 51.87046 51.86509 0 52.6701
Micro-mass-mixed-spectra 53.83077 53.4 0 53.83077

6.2.1.5 Comparison with existing Bireduct approach

The above presented comparative approaches are based on feature selection, instance

selection or combination of both. However, a proper comparative analysis can be

done on comparison with existing bireduct approach. A fuzzy rough bireduct ap-

proach [103] (HSBR) based on harmony search is employed for comparison purpose.

Table 6.17 shows the number of features and instances selected and the overall re-

duction rate in table 6.19 while model performance is illustrated in table 6.18. IFBR

produces the best reduction in data size except for Dbworld-bodies and Micro-mass-

mixed-spectra for which the reduction size are comparable while a considerable de-

crease in feature subset and hence increase in overall reduction rate except for Glass.

IFBR outperforms HSBR for nearly all the datasets as can be illustrated from Figure

6.8. To show statistical significance, the q0.05 = 1.96 is used thereby Cd0.05 = 0.50.

The null hypothesis is rejected demonstrating the superiority of proposed approach.
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Table 6.17: Comparison with Bireduct approach

Dataset
HSBR IFBR
Instance Feature Instance Feature

Diabetes 698.0 7.0 650.0 6.2
Glass 194.0 2.0 174.7 7.2
Appendicitis 96.0 6.0 85.7 2.2
Heart 242.7 8.5 217.6 5.9
Fertility-diagnosis 91.2 7.0 80.6 4.1
Wine 175.0 7.0 144.6 4.0
German 910.0 16.0 890.4 14.1
Hepatitis 145.2 12.7 125.9 5.0
Flags-religion 193.0 18.0 158.0 11.0
Leaf 309.0 10.1 277.8 7.3
Lymphography 138.0 11 120.9 6.6
Seeds 191.0 6.0 171.6 3.5
Dbworld-bodies 63.0 2365.0 63.1 2282.8
Dbworld-bodies-stemmed 63.0 1837.0 63.0 1789.1
Micro-mass-mixed-spectra 359.0 631.0 360.0 600.2

KNN SVM

Figure 6.8: Graphical visualization showing comparison of the classification
accuracy with Bireduct approach

6.3 Application to Cancer Treatment

Oxygen and nutrients are the most essential elements of mammalian cells for their

survival. Consequently, these cells are located within 100 to 200 mm of blood vessels,
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Table 6.18: Classification accuracy comparison with Bireduct approach

Dataset Classifier HSBR IFBR

Diabetes
KNN 73.03±3.632 74.86±1.731

SVM 64.71±2.112 65.57±1.791

Glass
KNN 34.70±6.382 69.73±2.281

SVM 34.09±3.442 64.01±2.991

Appendicitis
KNN 86.73±8.372 89.75±4.191

SVM 80.18±2.772 91.52±1.501

Heart
KNN 74.50±10.862 77.31±1.171

SVM 76.77±9.601 72.07±1.742

Fertility-diagnosis
KNN 87.00±4.832 93.51±2.851

SVM 88.00±4.222 93.51±2.851

Wine
KNN 96.08±3.771 94.85±2.192

SVM 85.36±9.972 94.33±1.451

German
KNN 69.40±4.882 71.96±1.081

SVM 73.40±3.342 75.12±1.971

Hepatitis
KNN 87.71±5.651 86.44±3.762

SVM 81.21±7.812 88.53±5.351

Flags-religion
KNN 37.71±11.022 45.68±4.321

SVM 42.79±7.392 47.09±0.661

Leaf
KNN 52.06±5.382 68.18±5.661

SVM 33.24±8.092 35.15±3.361

Lymphography
KNN 69.62±13.342 84.69±3.681

SVM 76.38±10.462 83.32±1.441

Seeds
KNN 90.48±2.242 94.35±1.561

SVM 89.52±7.712 93.82±1.371

Dbworld-bodies
KNN 62.14±11.532 67.58±8.821

SVM 91.19±12.192 92.43±4.361

Dbworld-bodies-stemmed
KNN 67.38±14.982 69.76±5.931

SVM = 89.76±11.882 91.12±4.591

Micro-mass-mixed-spectra
KNN 87.50±2.701 87.07±1.132

SVM 64.17±6.472 72.49±3.621

Average Rank
KNN 1.80 1.13
SVM 2.06 1.06
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Table 6.19: Overall reduction rate comparison with Bireduct approach

Dataset HSBR IFBR
Diabetes 20.47526 34.40755
Glass 79.85462 34.69159
Appendicitis 22.37197 74.5903
Heart 40.56612 63.01238
Fertility-diagnosis 29.06667 63.28222
Wine 47.06137 75.00432
German 39.33333 47.689
Hepatitis 37.38404 78.62479
Flags-religion 36.04566 68.00442
Leaf 34.43487 57.39622
Lymphography 43.01802 70.0473
Seeds 22.04082 59.14286
Dbworld-bodies 50.48816 52.1331
Dbworld-bodies-stemmed 51.40293 52.6701
Micro-mass-mixed-spectra 51.59637 53.83077

which is the diffusion boundary for oxygen [20]. Therefore, multi-cellular organisms

need new blood vessels to grow beyond this size for maintaining homeostasis and sup-

port growth [169]. Angiogenesis is known as a process of new blood vessel formations

from pre-existing vessels which incorporates numerous biological behaviours, such

as migration, apoptosis, endothelial cell proliferation, cell-cell and cell-matrix adhe-

sion [13]. Angiogenesis is an extremely organized physiological process in growth as

well as development. This process plays a key role in the formation of malignant

tumours. Tumours employ angiogenesis to produce the vascular network, which is

used to supply the cancer cells with oxygen and nutrients. Thus, anti-angiogenic
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peptides are always capable candidates in the treatment of cancer [147]. Angio-

genesis is a crucial physical process and is responsible for many diseases, such as

cancer, myocardial ischemia, arthritis, myocardial infarction, and psoriasis. In the

recent years, recognition of the anti-angiogenic peptides among other therapeutic

peptides has drawn great attentions of the researchers in the cancer treatment area

[46, 54, 169]. Cancer is a leading public health problem as it is one of the most fatal

diseases world-wide. WHO has reported that cancer is the major cause of mortality

in economically developed countries while the second major cause of mortality in

developing countries. Cancer is still the third major cause of death after stroke and

heart disease despite the fact that there are several advanced treatment schemes such

as radiation, surgery, chemotherapy, and various diagnostic tests available in the lit-

erature [47, 149]. Nowadays, inhibiting angiogenesis is a pioneering area of research

in cancer therapy [27, 170]. However, computational detection of anti-angiogenic

peptides is rarely discussed in the literature.

To facilitate comparisons with the previous study for anti-angiogenic peptide predic-

tion, the benchmark dataset introduced by Ramaprasad et. al. [123] is utilized. This

dataset consisted of 135 positive (anti-angiogenic peptides) and 135 negative sam-

ples (non anti-angiogenic peptides). Ramaprasad et. al. selected 257 anti-angiogenic

peptides from different research articles and patents to construct positive instances.

CD-HIT technique is applied to eliminate highly similar sequences to ensure no two

sequences contain more than 70% sequence similarity. Moreover, 135 random pep-

tide regions from proteins available in Swiss-Prot database is extracted to construct

negative instances.
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6.3.0.1 Results

The selection of a comprehensive and appropriate feature vector from peptide sam-

ples that can actually reflect their intrinsic correlation with the properties to be

predicted is an essential task to establish a powerful predictor. A suitable feature

representation is the key to success of classifier learning as it facilitates the clas-

sifiers to easily identify underlying regularities. Six features namely Amino acid

composition (AAC), Dipeptide composition (DPC), Pseudo amino acid composition

(PAAC), Amphiphilic pseudo amino acid composition (AmPAAC), C/T/D com-

position (CTD) and Amino acid index (AAI) are extracted using iFeature [24] web

server. Applying the proposed IFBR model to the dataset reduces the size of dataset

thereby enhancing classification accuracy. Ensembles of classifiers [85] namely Re-

alAdaBoost [15] with Random Forest classifier, Random Forest [16], and Rotation

Forest [125] is formed via Vote [2] based classification technique in Weka [56], which

is deployed to measure prediction performance of reduced anti-angiogenic peptides

dataset using 10 × 10-fold cross validation. The flowchart of the entire methodol-

ogy is shown in figure 6.9. Accuracy, which is the number of correctly classified

peptides (including both anti-angiogenic and angiogenic peptides), sensitivity is the

number of correctly predicted anti-angiogenic peptides while specificity, the num-

ber of correctly predicted angiogenic peptides are measured for the reduced dataset

produced by IFBR. The value of the above defined performance parameter is noted

for ε = 0.1, 0.2, 0.3, as recorded in table 6.20 and 6.21. Highest accuray of 78.2% is

obtained by covering 70% of the dataset in the generated bireduct.
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Figure 6.9: The flowchart of proposed cancer treatment model

Table 6.20: IFBR results for various ε values on Anti-angiogenic dataset

Dataset
Original

Coverage (ε)
IFBR (ε-bireduct)

Instance Feature Instance Feature

Anti-angiogenic Dataset 270 460
0.1 242.0 233.0
0.2 215.0 254.0
0.3 188.0 240.0

Table 6.21: Performance evaluation metrics values on Anti-angiogenic dataset
with IFBR

Dataset Coverage (ε) Sensitivity Specificity Accuracy

Anti-angiogenic Dataset
0.1 81.0 67.2 74.4
0.2 81.0 72.7 76.7
0.3 84.8 70.8 78.2
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Table 6.22: Comparison of IFBR on Anti-angiogenic dataset with unreduced
dataset

Method Sensitivity Specificity Accuracy
Original 77.0 70.4 73.7
IFBR 84.8 70.8 78.2

6.3.0.2 Comparison with Unreduced Dataset

From table 6.20, it can be effectively seen that the size of dataset is considerably re-

duced in terms of both number of instances and feature vector size. The comparison

with unreduced dataset is reported in table 6.22, which clearly demonstrates the su-

periority of IFBR. IFBR not only reduces the size but also increases the performance

at the same time.

6.3.0.3 Comparison with Existing Approaches

A comparative analysis of IFBR with the HSBR, AntAngioCOOL proposed by Za-

hiri et. al. [169], AntiAngioPred by Ramaprasad et. al. [123] and TargetAntiAngio

by Laengsri et. al. [87] is performed (table 6.23 and visualized in figure 6.10). Zahiri

et. al. used the anti-angiogenic dataset for predicting the classification performance

employing their proposed methodology. The whole dataset was divided in the ratio

of 80:20, the model was trained on training dataset and evaluated on testing (or

independent) dataset. While Ramaprasad et. al. and Laengsri et. al. employed the

whole dataset to apply their model and thereby evaluate the performance parame-

ters. An accuracy of 68.9%, 75%, 74.8%, 77.5%, sensitivity of 74.8%, 82%, 75.7%,

84.7% and specificity of 63.0%, 71%, 73.8%, 69.4% was obtained by HSBR, Zahiri et.

al., Ramaprasad et. al. and Leangsri et. al. respectively. Though a slight decrease

in specificity is reported by IFBR on comparing with methodology of Zahiri et. al.

and Ramaprasad et. al., an increase in sensitivity and overall accuracy belittle its
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Table 6.23: Comparison of IFBR on Anti-angiogenic dataset with HSBR, An-
tAngioCOOL [169], AntiAngioPred [123] and TargetAntiAngio [87]

Method Sensitivity Specificity Accuracy
IFBR 84.8 70.8 78.2
HSBR 74.8 63.0 68.9
AntAngioCOOL 82.0 71.0 75.0
AntiAngioPred 75.7 73.8 74.8
TargetAntiAngio 84.7 69.4 77.5

Figure 6.10: Graphical visualization showing comparison of the classification
accuracy with Bireduct approach

effect. IFBR is thus clearly enhancing prediction performance and is outperforming

the existing works.

6.4 Summary

The proposed work has employed intuitionistic fuzzy rough set for generating intu-

itionistic fuzzy bireducts. Bireducts generation is an effective data reduction process

that reduces the data, both in terms of number of features and number of instances.

It clearly demonstrates the increment in prediction performances whilst reducing

the data and hence the complexity. To quantify the intuitionistic fuzzy bireducts

to cover a specific percentage of dataset, ε-bireducts is introduced. It has helped in

further enhancing the performance by allowing a balance between feature reduction

and instance elimination. Particle swarm heuristic search technique is employed for
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intuitionistic fuzzy bireduct generation to achieve optimal results. The proposed

model of intuitionistic fuzzy bireducts generation has been applied for enhancing

the prediction of anti-angiogenic peptides, which is leading therapeutic peptide for

cancer treatment. IFBR has increased the prediction accuracy of peptides to 78.2%,

thereby outperforming previous works. The effectiveness of IFBR is demonstrated on

various benchmark datasets and by comparative analysis with existing approaches.

All the works discussed so far are based on supervised datasets. Feature selection

based on unsupervised domain will be discussed in the next chapter.

***********
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