
Chapter 4

A Fitting Model for Feature

Selection

Feature subset selection is an essential machine learning approach aimed at the pro-

cess of dimensionality reduction of the input space. By removing irrelevant and/or

redundant variables, not only it enhances model performance, but also facilitates its

improved interpretability. However, the concepts discussed so far can only maintain

a maximal dependency function. It cannot preferably illustrate the differences in

object classification and does not fit a particular data set well. This problem was

handled by using a fitting model for feature selection with fuzzy rough sets. How-

ever, intuitionistic fuzzy set theory can deal with uncertainty in a much better way

when compared to fuzzy set theory as it considers positive, negative and hesitancy

degree of an object simultaneously to belong to a particular set.
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4.1 Fitting Model based on Intuitionistic Fuzzy

Rough Set

For an information system (U,C,D), the set of samples partitions the decisions into

k crisp equivalence classes U \ D = {D1, D2, . . . , Dk}. Then, intuitionistic fuzzy

decision of x ∈ U is defined as follows:

Di(x) = (
| µ[x]A

∩Di |
| µ[x]A

|
,
| ν[x]A ∩Di |
| ν[x]A |

), i = 1, 2, . . . k (4.1)

where Di(x) is an intuitionistic fuzzy set and it indicates the degree of membership

and non membership of x to decision class Di. Obviously, {D1(x),D2(x), . . . ,Dk(x)}

is a intuitionistic fuzzy partition of U .

Let Ra be intuitionistic fuzzy similarity class of samples induced by attribute a, then

for any set A ⊆ C, intuitionistic fuzzy relation is given by:

RA(x, y) = (∩a∈ARa(x, y),∪a∈ARa(x, y)), x, y ∈ U (4.2)

Different levels of granularity, acquired from every intuitionistic fuzzy similarity, lead

to more classification information. Optimal feature subset is obtained by choosing

granularity [22, 62] that leads to optimized accuracy. The RA(x, y) between sample

x and y denotes the similarity between sample based on their membership value and

dissimilarity between their non membership value. To remove the impact of noise,

low value of RA can be equated to zero, considering small value being resulted due

to noise.
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Parameterized intuitionistic fuzzy granule is constructed to achieve this, by intro-

ducing ε ∈ [0, 1) to avoid noise as follows:

µ[x]εA
(y) =


0, µRA(x, y) < ε

µRA(x, y), µRA(x, y) ≥ ε

, y ∈ U

ν[x]εA(y) =


0, νRA(x, y) < ε

νRA(x, y), νRA(x, y) ≥ ε

, y ∈ U

Clearly, it can be seen that ε impacts the size of intuitionistic fuzzy granule. There-

fore, intuitionistic fuzzy similarity is denoted by Rε
A. It is derived from above the

following [154]:

Proposition 4.1.1. If A ⊆ B, then Rε
B ⊆ Rε

A

The lower and upper approximation of decision D with respect to attribute A is

given by:

Rε ↓A Di(x) =


(miny∈U max(1− µRεA(x, y), µDi(y)),

maxy∈Umin(1− νRεA(x, y), νDi(y))), y ∈ Di

(0, 1), otherwise

(4.3)

Rε ↑A Di(x) =


(maxy∈U min(µRεA(x, y), µDi(y)),

miny∈Umax(νRεA(x, y), νDi(y)), y ∈ Di

(0, 1), otherwise

(4.4)

Similar to classical intuitionistic fuzzy rough sets, Rε ↓A Di(x) denotes the degree

of certainty with which sample x belong to category Di and Rε ↑A Di(x) indicates

the possibility of x belonging to category Di.

Intuitionistic fuzzy positive region is calculated using above defined lower approxi-

mation, given by:

PosεA(x) = (maxiµRε↓ADi(x),miniνRε↓ADi(x)) (4.5)
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Greater is the size of positive region, the more is the dependency of sample x on

feature subset A for its classification. Thereby, dependency degree of attribute A is

obtained using formula:

γA =

∑
x∈U | PosεA(x) |
| U |

(4.6)

The aim is to find feature subset with maximum dependency degree, as misclassifi-

cation error is smaller in such case. We have the following result in this context.

Theorem 4.1.1. Given (U,C,D) and 0 < ε < 1, if A1 ⊆ A2 ⊆ C, then PosεA1
(D) ⊆

PosεA2
(D)

Proof. From Proposition 4.1.1, Rε
A2
⊆ Rε

A1
, whenever A1 ⊆ A2 =⇒ 1−µRεA2

(x, y) ≥

1 − µRεA1
(x, y) and 1 − νRεA2

(x, y) ≤ 1 − νRεA1
(x, y),∀y ∈ U =⇒ µRε↓A1

Di(x) ≤

µRε↓A2
Di(x) and νRε↓A1

Di(x) ≥ νRε↓A2
Di(x), then from definition of lower approxima-

tion =⇒ Rε ↓A1 D(x) ≤ Rε ↓A2 D(x) =⇒ PosεA1
(D) ⊆ PosεA2

(D).

Theorem 4.1.2. Given (U,C,D) and 0 < ε < 1, if A1 ⊆ A2 ⊆ · · · ⊆ Am ⊆ C, then

γεA1
(D) ⊆ γεA2

(D) ⊆ · · · ⊆ γεAm(D) ⊆ C.

Proof. Obvious from above.

The above theorem shows that with increase in size of subset, dependency also in-

creases. This guarantees that adding attribute to existing feature set will increase

dependency of the new subset obtained. If dependency does not increase on adding

an attribute B to feature subset, then that attribute is redundant and can be re-

moved as superfluous attribute, otherwise B is indispensable and cannot be removed.

A feature subset Red is a reduct set if it has same dependency as a whole set of

attributes and removing an attribute decreases its dependency.
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4.2 Feature Selection based on Fitting Model

In this section, a greedy forward algorithm for feature selection is proposed. The

algorithm begins with empty set and iteratively adds attribute to the set with max-

imum dependency until dependency increases further. It has been abbreviated as

FMIFRFS.

Algorithm 4.2 Heuristic algorithm based on FMIFRFS

Input intuitionistic fuzzy information system

Find the intuitionistic fuzzy decision classes U \D = {D1,D2, . . . ,Dk}

Initialize C = {a1, a2, . . . , am}, Red = {}

repeat

Set T ← Red

for every a ∈ C −Red do

Compute intuitionistic fuzzy similarity Rε
Red∪{a}

Compute lower approximation Rε ↓Red∪{a} D(x), for each x ∈ U

Calculate degree of dependency γRed∪{a}

end for

Find attribute a ∈ C −Red with greatest γRed∪{a}(D) and set Red← T ∪ {a}

until γRed = 1 or γT (D) = γRed(D)

return Red

The proposed algorithm is illustrated using example dataset given in 4.1.

Firstly, dataset is normalized into interval [0, 1], then the normalized values are

converted into intuitionistic fuzzy values. Finally, intuitioinistic fuzzy similarity rij

between x and y is obtained using formula in equation (4.7).

rij(x, y) = (1− 1

num

√√√√num∑
i=1

(µ(x)− µ(y))2,
1

num

√√√√num∑
i=1

(ν(x)− ν(y))2) (4.7)
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Table 4.1: Example dataset

``````````````̀Instances
Features

a1 a2 a3 a4 a5 D

x1 0.08 0.08 0.1 0.24 0.9 4
x2 0.06 0.06 0.05 0.25 0.33 2
x3 0.1 0.1 0.15 0.65 0.3 3
x4 0.08 0.08 0.08 0.98 0.24 2
x5 0.09 0.15 0.4 0.1 0.66 3
x6 0.15 0.02 0.34 0.4 0.01 1
x7 0.24 0.75 0.32 0.18 0.86 4
x8 0.276 0.225 0.81 0.27 0.33 2

Table 4.2: Similarity relation obtained from example dataset for attribute a1

x1 x2 x3 x4 x5 x6 x5 x6
x1 (1, 0) (0.85, 0.15) (0.88, 0.19) (1, 0) (0.93, 0.09) (0.81, 0.41) (0.63, 0.30) (0.42, 0.37)
x2 (0.85, 0.15) (1, 0) (0.74, 0.34) (0.85, 0.15) (0.79, 0.24) (0.67, 0.56) (0.77, 0.14) (0.56, 0.22)
x3 (0.88, 0.19) (0.74, 0.34) (1, 0) (0.88, 0.19) (0.94, 0.10) (0.93, 0.21) (0.51, 0.49) (0.30, 0.56)
x4 (1, 0) (0.85, 0.15) (0.88, 0.19) (1, 0) (0.93, 0.09) (0.81, 0.41) (0.63, 0.30) (0.42, 0.37)
x5 (0.93, 0.09) (0.79, 0.24) (0.94, 0.10) (0.93, 0.09) (1, 0) (0.87, 0.32) (0.56, 0.39) (0.35, 0.46)
x6 (0.81, 0.41) (0.67, 0.56) (0.93, 0.21) (0.81, 0.41) (0.87, 0.32) (1, 0) (0.44, 0.71) (0.23, 0.78)
x7 (0.63, 0.30) (0.77, 0.14) (0.51, 0.49) (0.63, 0.30) (0.56, 0.39) (0.44, 0.71) (1, 0) (0.78, 0.07)
x6 (0.42, 0.37) (0.56, 0.22) (0.30, 0.56) (0.42, 0.37) (0.35, 0.46) (0.23, 0.78) (0.78, 0.07) (1, 0)

Table 4.3: Granularity [x]εa1 obtained from example dataset for attribute a1

x1 x2 x3 x4 x5 x6 x5 x6
x1 (1, 0) (0.85, 0) (0.88, 0) (1, 0) (0.93, 0) (0.81, 0) (0, 0) (0, 0)
x2 (0.85, 0) (1, 0) (0.74, 0) (0.85, 0) (0.79, 0) (0, 0) (0.77, 0) (0, 0)
x3 (0.88, 0) (0.74, 0) (1, 0) (0.88, 0) (0.94, 0) (0.93, 0) (0, 0) (0, 0)
x4 (1, 0) (0.85, 0) (0.88, 0) (1, 0) (0.93, 0) (0.81, 0) (0, 0) (0, 0)
x5 (0.93, 0) (0.79, 0) (0.94, 0) (0.93, 0) (1, 0) (0.87, 0) (0, 0) (0, 0)
x6 (0.81, 0) (0, 0) (0.93, 0) (0.81, 0) (0.87, 0) (1, 0) (0, 0.71) (0, 0.78)
x7 (0, 0) (0.77, 0) (0, O) (0, 0) (0, 0) (0, 0.71) (1, 0) (0.78, 0)
x6 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0.78) (0.78, 0) (1, 0)

where µ(x) and ν(x) are membership and non membership degree, respectively of

an instance x to the attribute set A and num is the number of attributes in set A.

Hence, the similarity relation for attribute a1 is given in table 4.2.

Thereby, the granularity is obtained as in table 4.3 using ε = 0.7.

The decision attribute partitions decision class into four sets as:
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Table 4.4: Intuitionistic fuzzy decision matrix

D1 D2 D3 D4

x1 (0.14, na) (0.33, na) (0.33, na) (0.18, na)
x2 (0.37, na) (0.36, na) (0.30, na) (0.32, na)
x3 (0.17, na) (0.30, na) (0.36, na) (0.16, na)
x4 (0.14, na) (0.33, na) (0.33, na) (0.18, na)
x5 (0.15, na) (0.31, na) (0.35, na) (0.17, na)
x6 (0.22, 0) (0.18, 52) (0.40, 0) (0.18, 0.47)
x7 (0, 1) (0.60, 0) (0, 0) (0.39, 0)
x6 (0, 1) (0.55, 0) (0, 0) (0.44, 0)

Table 4.5: Lower approximation obtained from example dataset for attribute a1

Rε ↓a1 D1 Rε ↓a1 D2 Rε ↓a1 D3 Rε ↓a1 D4

x1 (0, 1) (0, 1) (0, 1) (0.16, 1)
x2 (0, 1) (0.30, 1) (0, 1) (0, 1)
x3 (0, 1) (0, 1) (0.30, 1) (0, 1)
x4 (0, 1) (0.18, 1) (0, 1) (0, 1)
x5 (0, 1) (0, 1) (0.30, 1) (0, 1)
x6 (0.15, 1) (0, 1) (0, 1) (0, 1)
x7 (0, 1) (0, 1) (0, 1) (0.32, 1)
x6 (0, 1) (0.55, 1) (0, 1) (0, 1)

U \ D = {D1, D2, D3, D4} = {{x6}, {x2, x4, x8}, {x3, x5}, {x1, x7}}. Intuitionistic

fuzzy decision matrix is obtained as given in table 4.4.

Some of non-membership values of decision matrix are ‘na’ as the corresponding non

membership value is 0 in [x]εa1 . Thereby, lower approximation is obtained as in table

4.5.

Now, degree of dependency of decision attribute over a1 is calculated by proposed

concept as γa1 = 0.1441. Similarly, degrees of dependencies of decision attribute
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over other conditional attributes are:

γa2 = 0.1928

γa3 = 0.1676

γa4 = 0.1751

γa5 = 0.2621

Therefore a4 is selected as the potential reduct set. Combining with other attributes,

this process iterates and after termination of algorithm, the reduct set is {a1, a4, a5}.

4.3 Experimentation

In the current study, the performance of the proposed model is evaluated and com-

pared with existing fitting model based on fuzzy-rough feature selection [154] (FM-

FRFS). Firstly, the dataset is fuzzified using simple algorithm. Then, fuzzified data

is converted to intitionistic fuzzy dataset. These algorithms employed forward search

to obtain optimal feature subset. The intuitionistic fuzzy similarity rij between in-

stances x and y is computed by:

rij = (1− | µ(x)− µ(y) |, | ν(x)− ν(y) |) (4.8)

where µ(x) and ν(x) are membership and non membership degree, respectively of

an instance x to a set. Twelve benchmark datasets from the UCI Repository [108]

is used to represent the performance of the proposed approach. The details of these

datasets are mentioned in table 4.6. Further, the choice of ε depends on the amount

of noise present in the dataset. The value of ε is varied from 0.1 to 0.9 in a small

interval, and the value of ε giving highest classification accuracy is selected.

Three different machine learning algorithms namely PART [49], JRip [26] and J48

[120] are used for the purpose of evaluating classification accuracy using full dataset.

While kNN (k = 3) [131] and SVM [117] were employed to test performance on



Chapter 4. Fitting Model for Feature Selection 65

dataset using 10-fold cross validation.

In table 4.6, the size of the reduct set produced by FMFRFS as well as FMIFRFS

using full training set and 10-fold cross validation technique respectively are also

recorded. Overall classification accuracies along with standard deviation are eval-

uated by using PART, JRip, J48 for both original datasets and reduced datasets

as produced by FMFRFS and FMIFRFS on full training sets, as recorded in table

4.7. Moreover, average classification accuracies along with standard deviation are

again evaluated by using kNN (k=3), SVM for both original datasets and reduced

datasets as produced by FMFRFS and FMIFRFS on 10-fold cross validation, as

depicted in table 4.8. From the experimental results, it can be observed that the

current technique usually provides smaller subset of features than existing method.

For some of the datasets, FMIFRFS produces larger subsets when compared with

FMFRFS but these reduct sets are more accurate as the performance of different

learning algorithms for these sets are better when compared with FMFRFS based

reduct sets. From the experiments, it can be observed that the average accuracies of

different classifiers for the reduced datasets produced by FMIFRFS is always more

than those of reduced datasets produced by FMFRFS and the values of standard

deviation are vice-versa. Wang et. al. [154] has revealed that FMFRFS is better

performing approach than other existing feature selection techniques. Therefore, the

proposed approach outperforms all the existing approach till date.

Variation of classification accuracy and reduct size with noise parameter ε is depicted

in figure 4.1, which is obtained by using 10-fold cross validation by conducting series

of experiments.
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Table 4.6: Dataset characteristics and reduct size

Dataset Instances Attributes
Reduct size
FMFRFS Proposed algorithm
Full training set 10 fold cross validation Full training set 10 fold cross validation

Wine 178 13 2 11.9 6 12.9
Heart 267 13 2 6.6 7 11.4
Ionosphere 351 34 2 11.3 9 8.7
Balloon Scale+Stretch 20 4 2 3.3 2 2
Balloon Scale-Stretch 20 4 2 2.9 2 2
Dbworld-bodies-stemmed 64 3721 4 3.7 6 5.2
Dbworld-bodies 64 4702 4 3.7 6 17
Cardiotocography-3class 2126 35 2 2 6 12
Lung Cancer 32 56 9 9.5 5 5.3
Soyabean small 47 21 4 4 2 2
Trains 10 26 6 3 3 3
Zoo 10 16 2 8.2 8 6.8

Table 4.7: Comparison of classification accuracies for original datasets and re-
duced datasets by proposed model, and FMFRFS using full training

Dataset
Original FMFRFS Proposed model
JRip PART J48 JRip PART J48 JRip PART J48

Wine 92.82±5.79 92.16±6.36 93.90±6.00 78.52±10.10 75.32±9.91 79.08±9.63 94.66±4.82 93.82±5.17 95.86±4.73
Heart 77.63±7.55 79.27±7.45 79.73±6.40 64.32±8.05 66.19±8.48 64.66±7.87 80.38±7.82 81.73±7.21 82.03±7.21
Ionosphere 90.83±4.66 89.55±4.82 89.74±4.38 74.93±4.91 74.93±4.91 74.93±4.91 90.89±4.89 91.34±4.85 91.97±4.26
Balloon Scale + Stretch 100.0±0.00 100.0±0.00 100.0±0.00 56.00±21.65 60.00±20.10 60.00±20.1 100.0±0.00 100.0±0.00 100.0±0.00
Balloon Scale - Stretch 100.0±0.00 100.0±0.00 100.0±0.00 55.00±21.00 60.00±20.10 60.00±20.1 100.0±0.00 100.0±0.00 100.0±0.00
Dbworld-bodies-stemmed 80.00±15.7 79.88±15.3 80.93±15.7 54.52±5.29 54.52±5.29 54.52±5.29 89.86±11.2‘ 90.98±10.83 89.86±11.2
Dbworld-bodies 77.81±14.3 80.57±14.1 76.71±15.1 53.60±6.20 53.14±6.66 53.60±6.20 87.40±10.7 88.98±10.58 87.40±10.7
Cardiotocography-3class 98.50±0.91 98.63±0.83 98.67±0.85 78.89±2.09 78.48±1.39 79.54±1.99 98.40±0.90 98.40±0.90 98.40±0.90
Lung Cancer 47.08±27.7 50.58±23.7 44.75±23.9 44.58±23.85 45.50±20.43 37.42±21.2 66.23±23.4 61.17±23.75 67.08±24.9
Soyabean small 100.0±0.00 97.65±7.12 97.65±7.12 83.60±15.09 81.85±12.82 84.05±14.3 100.0±0.00 100.0±0.00 100.0±0.00
Trains 90.0±30.15 51.0±50.24 90.0±30.15 60.49±49.24 57.00±49.76 60.0±49.24 90.0±30.15 82.00±38.61 90.0±30.15
Zoo 93.41±7.28 89.81±8.37 92.61±7.33 71.32±5.83 60.43±3.06 71.32±5.83 97.05±4.76 92.59±7.39 97.05±4.76

Table 4.8: Comparison of classification accuracies for original datasets and re-
duced datasets by proposed model, and FMFRFS using 10 fold cross validation

Dataset
Original FMFRFS Proposed model
KNN SVM KNN SVM KNN SVM

Wine 95.29±5.40 95.88±4.84 94.11±5.54 94.11±6.20 97.05±4.99 96.47±7.44
Heart 79.61±8.31 72.69±13.74 73.07±8.10 56.53±7.48 82.30±8.91 71.15±7.53
Ionosphere 84.57±3.35 88.00±8.05 89.71±8.21 87.42±8.43 88.85±5.62 84.28±6.49
Balloon Scale + Stretch 100.0±0.00 100.0±0.00 70.00±48.30 70.00±48.30 100.00±0.00 100.00±0.00
Balloon Scale-Stretch 100.0±0.00 100.0±0.00 70.00±42.16 70.00±42.16 100.00±0.00 100.00±0.00
Dbworld-bodies-stemmed 58.33±18.00 86.67±13.14 60.00±11.66 53.33±10.54 70.00±15.31 78.33±11.24
Dbworld-bodies 53.33±23.30 86.67±13.14 53.33±20.48 53.33±20.48 70.00±23.03 80.00±23.30
Cardiotocography-3class 98.86±0.71 92.07±10.37 75.33±3.35 41.32±8.97 98.34±1.13 98.39±0.77
Lung Cancer 43.33±22.49 46.67±32.20 53.33±32.30 53.33±32.30 63.33±10.54 53.33±32.20
Soyabean small 100.0±0.00 100.0±0.00 85.00±17.48 92.50±12.07 100.00±0.00 100.00±0.00
Trains 50.00±52.70 70.00±48.30 70.00±48.30 50.00±52.70 70.00±48.30 90.00±31.62
Zoo 93.00±6.74 95.00±9.71 85.00±13.54 84.00±14.29 94.00±8.43 92.00±9.18
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Wine Heart Ionosphere

Balloon
Scale+Stretch

Balloon Scale-
Stretch

Dbworld-bodies-
stemmed

Dbworld-bodies
Cardiotocography-

3class
Lung Cancer

Soyabean small Trains Zoo

Figure 4.1: Variation of classification accuracy and reduct size with epsilon by
proposed method
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4.4 Summary

The traditional fuzzy-rough dependency cannot reveal better the learning ability of

a subset of features as it only tries to keep the fuzzy positive region maximal and

it cannot suitably fit data. Wang et. al. [154] handled this problem by introducing

a fitting model for feature selection with fuzzy rough sets. However, fuzzy set the-

ory has certain limitations and it cannot handle the uncertainty in the case where

it is not found only in judgment but also in the identification. It is anticipated

that the human decision-making process and activities require human expertise and

knowledge which are inevitability imprecise and that could be simulated by using

intuitionistic fuzzy set concept as it considers membership, non-membership and

hesitancy functions simultaneously. This chapter introduces a fitting intuitionistic

fuzzy rough set model to cope with above mentioned problems. This model fitted

data well and avoided misclassification properly. Firstly, Intuitionistic fuzzy deci-

sion of an object was established using neighborhood concept. Then, intuitionistic

fuzzy approximations are introduced using intuitionistic fuzzy decision along with

parameterized intuitionistic fuzzy granule. Furthermore, an intuitionistic fuzzy de-

pendency function is presented. Moreover, a heuristic greedy forward algorithm is

applied to compute the reduct set. Finally, our proposed technique is applied on the

benchmark datasets and a comparative study is presented. From the experimental

results, we observe that presented algorithm provides more accurate reduct set than

existing algorithm especially for those information systems in which various cate-

gories have a great degree of overlap. However, the model can only be applied for

complete datasets. Noise, human error, improper communication, etc usually leads

to missing values in the dataset gathered. Feature seletion for incomplete datasets

is discussed in the next chapter.
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