
Chapter 3

Feature Selection Models and its

Application

The intuitionistic fuzzy set is an interesting mathematical framework to deal with

imprecise and/or imperfect information. An intuitionistic fuzzy set is inherently

considered as an extension of fuzzy set (as proposed by Zadeh [168]), which is deter-

mined by a pair of membership and non-membership functions. It has been effec-

tively applied for feature selection by eliminating redundant and irrelevant features.

Various intuitionistic fuzzy set models proposed during the study are discussed in

this chapter.
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3.1 Divergence based Intuitionistic Fuzzy Rough

Set Model

In this chapter, an intuitionistic fuzzy rough set model for feature selection is pro-

posed using intuitionistic fuzzy divergence measure [128]. Intuitionistic fuzzy di-

vergence measure expresses the extent to which two intuitionistic fuzzy sets differ

from each other based on their membership values and at the same time similar

to each other with respect to non-membership values. The properties of lower and

upper approximations are also explored. Moreover, the necessary results on lower

and upper approximations based on rough sets are extended for divergence measure

based intuitionistic fuzzy rough sets and analogous results are presented.

Let IF (U) be family of all intuitionistic fuzzy sets on U . An intuitionistic fuzzy

divergence measure [111] given by δ : IF (U)× IF (U) =⇒ R satisfies the following

properties for every A,B ∈ IF (U):

� δ(A,B) = δ(B,A)

� δ(A,A) = 0

� δ(A ∩B,B ∩ C) ≤ δ(A,B),∀C ∈ IF (U)

� δ(A ∪B,B ∪ C) ≤ δ(A,B),∀C ∈ IF (U)

which is more restrictive than similarity and dissimilarity measures [110].

If R is an intuitionistic fuzzy relation induced on the system, then the intuitionistic

fuzzy lower and upper approximations (as defined in chapter (2.13)) reduces to

following equations on simplification:

R ↓A X = (R ↓A µX , R ↑A νX) (3.1)

R ↑A X = (R ↑A µX , R ↓A νX) (3.2)
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Clearly, membership function of intuitionistic fuzzy lower approximation is lower

approximation of membership of X and non membership is upper approximation

of non-membership of X. Dual proposition holds for upper approximation of X.

Substituting the values of lower and upper approximations gives:

R ↓A X(x) = (infy∈Umax(1−R(x, y), µX(y)), supy∈Umin(R(x, y), νX(y))) (3.3)

R ↑A X(x) = (supy∈Umin(R(x, y), µX(y)), infy∈Umax(1−R(x, y), νX(y))) (3.4)

The value of divergence measure gives the dissimilarity between instance x and y,

whereas R(x, y) gives the extent of similarity between instances. Therefore, R(x, y)

could be replaced by (1− δ(x, y)). The intuitionistic fuzzy lower and upper approx-

imation with respect to divergence measure δ is defined as follows:

δ ↓A X(x) = (infy∈Umax(δ(x, y), µX(y)), supy∈Umin(1− δ(x, y), νX(y))) (3.5)

δ ↑A X(x) = (supy∈Umin(1− δ(x, y), µX(y)), infy∈Umax(δ(x, y), νX(y))) (3.6)

The above defined approximations are intuitionistic fuzzy sets on U and could be

asserted by the following proposition.

Proposition 3.1.1. The divergence based intuitionistic fuzzy lower and upper approx-

imations are intuitionistic fuzzy set in U .

Proof. Since,

µX(y), νX(y), δ(x, y) ∈ [0.1],∀x, y ∈ U

Hence,

max(δ(x, y), µX(y)),min(1− δ(x, y), νX(y)) ∈ [0, 1],∀x, y ∈ U

=⇒ µδ↓AX(x), νδ↓AX(x) ∈ [0, 1],∀x ∈ U

Similarly,

µδ↑AX(x), νδ↑AX(x) ∈ [0, 1],∀x ∈ U

Further, it can be shown by [69] that 0 ≤ µδ↓AX(x)+νδ↓AX(x) ≤ 1 and 0 ≤ µδ↑AX(x)+

νδ↑AX(x) ≤ 1 =⇒ δ ↓A X and δ ↑A X are intuitionistic fuzzy sets.
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The various properties of proposed approximations are proved in the following the-

orems:

Theorem 3.1.1. δ ↓ φ = φ = δ ↑ φ

Proof.

µφ(x) = 0, δ(x, x) = 0, ∀x ∈ U

=⇒ max(δ(x, x), µφ(x)) = 0

=⇒ infy∈Umax(δ(x, y), µφ(y)) = 0

νφ(x) = 1,∀x ∈ U

=⇒ min(1− δ(x, x), νφ(x)) = 1

=⇒ supy∈Umin(1− δ(x, y), νφ(y)) = 1

Similarly,

min(1− δ(x, x), µφ(y)) = 0

=⇒ supy∈Umin(1− δ(x, y), µφ(y)) = 0

and

max(δ(x, y), νφ(y)) = 1

=⇒ infy∈Umax(δ(x, y), νφ(y)) = 1

Hence, δ ↓ φ = φ = δ ↑ φ

Theorem 3.1.2. δ ↓ U = U = δ ↑ U

Proof.

µU(x) = 1,∀x ∈ U =⇒ max(δ(x, y), µU(y)) = 1

=⇒ infy∈Umax(δ(x, y), µU(y)) = 1

νU(x) = 0,∀x ∈ U =⇒ min(1− δ(x, y), νU(y)) = 0

=⇒ supy∈Umin(1− δ(x, y), νU(y)) = 0
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Since,

δ(x, x) = 0,∀x ∈ U =⇒ min(1− δ(x, x), µU(y)) = 1

=⇒ supy∈Umin(1− δ(x, y), µU(y)) = 1

and

max(δ(x, x), νU(y)) = 0

=⇒ infy∈Umax(δ(x, y), νU(y)) = 0

Hence, δ ↓ U = U = δ ↑ U

Theorem 3.1.3. δ ↓ X ⊆ X ⊆ δ ↑ X

Proof.

δ(x, x) = 0, ∀x ∈ U =⇒ max(δ(x, x), µX(x)) = µX(x),∀x ∈ U

=⇒ infy∈Umax(δ(x, y), µX(y)) ≤ µX(x), ∀x ∈ U

Also,

min(1− δ(x, x), νX(x)) = νX(x),∀x ∈ U

=⇒ supy∈Umin(1− δ(x, y), νX(y)) ≥ νX(x),∀x ∈ U

=⇒ δ ↓ X(x) ⊆ X(x), ∀x ∈ U

Similarly,

min(1− δ(x, x), µX(x)) = µX(x),∀x ∈ U

=⇒ supy∈Umin(1− δ(x, y), µX(y)) ≥ µX(x),∀x ∈ U

and

max(δ(x, x), νX(x)) = νX(x),∀x ∈ U

=⇒ infy∈Umax(δ(x, y), νX(y)) ≤ νX(x),∀x ∈ U

Hence, δ ↑ X(x) ⊇ X(x) =⇒ δ ↓ X ⊆ X ⊆ δ ↑ X

Theorem 3.1.4. X ⊆ Y =⇒ δ ↓ X ⊆ δ ↓ Y and δ ↑ X ⊆ δ ↑ Y
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Proof. As

X ⊆ Y =⇒ µX(x) ≤ µY (x)

and

νX(x) ≥ νY (x),∀x ∈ U

So,

max(δ(x, y), µX(y)) ≤ max(δ(x, y), µY (y))

min(1− δ(x, y), νX(y)) ≥ min(1− δ(x, y), νY (y))

=⇒ δ ↓ X(x) ⊆ δ ↓ Y (x)

Similarly,

min(1− δ(x, y), µX(y)) ≤ min(1− δ(x, y), µY (y))

max(δ(x, y), νX(y)) ≥ max(δ(x, y), νY (y))

=⇒ δ ↑ X(x) ⊆ δ ↑ Y (x)

Theorem 3.1.5. δ ↓ (α, β) = (α, β) = δ ↑ (α, β),∀(α, β) ∈ [0, 1]

Proof. Using theorem 3.1.4

δ ↓ (α, β) ⊆ (α, β)

Also,

(α, β)(y) = (α, β),∀y ∈ U

=⇒ max(δ(x, y), µ(α,β)(y)) ≥ α

min(1− δ(x, y), ν(α,β)(y)) ≤ β,

=⇒ δ ↓ (α, β)(x) = (infy∈Umax(δ(x, y), µ(α,β)(y)), supy∈Umin(1− δ(x, y), µ(α,β)(y)))

≥ (α, β)(x)

=⇒ δ ↓ (α, β) ⊇ (α, β)

=⇒ δ ↓ (α, β) = (α, β)
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Similarly,

(α, β) ⊆ δ ↑ (α, β)

=⇒ min(1− δ(x, y), µ(α,β)(y)) ≤ α,

max(δ(x, y), ν(α,β)(y)) ≥ β

=⇒ δ ↑ (α, β)(x) = (supy∈Umin(1− δ(x, y), µ(α,β)(y)), infy∈Umax(δ(x, y), µ(α,β)(y)))

≤ (α, β)(x)

=⇒ δ ↑ (α, β) ⊆ (α, β)

=⇒ δ ↑ (α, β) = (α, β)

Theorem 3.1.6. (δ ↓ Xc)c = δ ↑ X, ∀X ∈ IF (U), Xc is the complement of X

Proof.

Xc = (νX(x), µX(x)),∀x ∈ U

δ ↓ Xc = (infy∈Umax(δ(x, y), νX(y)), supy∈Umin(1− δ(x, y), µX(y)))

(δ ↓ Xc)c = (supy∈Umin(1− δ(x, y), µX(y)),

infy∈Umax(δ(x, y), νX(y))) = δ ↑ X(x)

Theorem 3.1.7. (δ ↑ Xc)c = δ ↓ X, ∀X ∈ IF (U), Xc is the complement of X

Proof.

Xc = (νX(x), µX(x)), ∀x ∈ U

δ ↑ Xc = (supy∈Umin(1− δ(x, y), νX(y)), infy∈Umax(δ(x, y), µX(y)))

(δ ↑ Xc)c = (infy∈Umax(δ(x, y), µX(y)), supy∈Umin(1− δ(x, y), νX(y))) = δ ↓ X(x)

Theorem 3.1.8. δ ↓ (X ∩ Y ) = (δ ↓ X) ∩ (δ ↓ Y )
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Proof.

δ ↓ (X ∩ Y )(x) = (infy∈Umax(δ(x, y), µX∩Y (y)), supy∈Umin(1− δ(x, y), νX∩Y (y)))

= (infy∈Umax(δ(x, y),min(µX(y), µY (y)), supy∈Umin(1− δ(x, y),max(νX(y), νY (y)))))

= (infy∈Umin(max(δ(x, y), µX(y)),max(δ(x, y), µY (y))),

supy∈Umax(min(1− δ(x, y), νX(y)),min(1− δ(x, y), νY (y))))

= (min(infy∈U(max(δ(x, y), µX(y)), infy∈U(max(δ(x, y), µY (y))))),

max(supy∈U(min(1− δ(x, y), νX(y))), supy∈U(min(1− δ(x, y), νY (y)))))

= δ ↓ X(x) ∩ δ ↓ Y (x)

Theorem 3.1.9. δ ↑ (X ∩ Y ) ⊆ (δ ↑ X) ∩ (δ ↑ Y )

Proof.

δ ↑ (X ∩ Y )(x) = (supy∈Umin(1− δ(x, y), µX∩Y (y)), infy∈Umax(δ(x, y), νX∩Y (y)))

= (supy∈Umin(1− δ(x, y),min(µX(y), µY (y))), infy∈Umax(δ(x, y),max(νX(y), νY (y))))

= (supy∈Umin(min(1− δ(x, y), µX(y)),min(1− δ(x, y), µY (y))),

infy∈Umax(max(δ(x, y), νX(y)),max(δ(x, y), νY (y))))

≤ (min(supy∈U(min(1− δ(x, y), µX(y))), supy∈U(min(1− δ(x, y), µY (y)))),

max(infy∈U(max(δ(x, y), νX(y)), infy∈U(max(δ(x, y), νY (y))))))

= δ ↑ X(x) ∩ δ ↑ Y (x)

Theorem 3.1.10. δ ↓ (X ∪ Y ) ⊇ (δ ↓ X) ∪ (δ ↓ Y )
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Proof.

δ ↓ (X ∪ Y )(x) = (infy∈Umax(δ(x, y), µX∪Y (y)), supy∈Umin(1− δ(x, y), νX∪Y (y)))

= (infy∈Umax(δ(x, y),max(µX(y), µY (y)), supy∈Umin(1− δ(x, y),min(νX(y), νY (y)))))

= (infy∈Umax(max(δ(x, y), µX(y)),max(δ(x, y), µY (y))),

supy∈Umin(min(1− δ(x, y), νX(y)),min(1− δ(x, y), νY (y))))

≥ (max(infy∈U(max(δ(x, y), µX(y)), infy∈U(max(δ(x, y), µY (y))))),

min(supy∈U(min(1− δ(x, y), νX(y))), supy∈U(min(1− δ(x, y), νY (y)))))

= δ ↓ X(x) ∪ δ ↓ Y (x)

Theorem 3.1.11. δ ↑ (X ∪ Y ) = (δ ↑ X) ∪ (δ ↑ Y )

Proof.

δ ↑ (X ∪ Y )(x) = (supy∈Umin(1− δ(x, y), µX∪Y (y)), infy∈Umax(δ(x, y), νX∪Y (y)))

= (supy∈Umin(1− δ(x, y),max(µX(y), µY (y))), infy∈Umax(δ(x, y),min(νX(y), νY (y))))

= (supy∈Umax(min(1− δ(x, y), µX(y)),min(1− δ(x, y), µY (y))),

infy∈Umin(max(δ(x, y), νX(y)),max(δ(x, y), νY (y))))

= (max(supy∈U(min(1− δ(x, y), µX(y))), supy∈U(min(1− δ(x, y), µY (y)))),

min(infy∈U(max(δ(x, y), νX(y)), infy∈U(max(δ(x, y), νY (y))))))

= δ ↑ X(x) ∪ δ ↑ Y (x)

Theorem 3.1.12. δ ↑ (X ∩ (α, β)) = (δ ↑ X) ∩ (α, β)
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Proof.

δ ↑ (X ∩ (α, β))(x) = (supy∈Umin(1− δ(x, y), µX∩(α,β)(y)), infy∈Umax(δ(x, y), νX∩(α,β)(y)))

= (supy∈Umin(1− δ(x, y),min(µX(y), α)), infy∈Umax(δ(x, y),max(νX(y), β)))

= (supy∈Umin(min(1− δ(x, y), µX(y)), α), infy∈Umax(max(δ(x, y), νX(y)), β))

= (min(supy∈U(min(1− δ(x, y), µX(y))), α),max(infy∈U(max(δ(x, y), νX(y))), β)

= δ ↑ X(x) ∩ (α, β)(x)

Theorem 3.1.13. δ ↓ (X ∪ (α, β)) = (δ ↓ X) ∪ (α, β)

Proof.

δ ↓ (X ∪ (α, β))(x) = (infy∈Umax(δ(x, y), µX∪(α,β)(y)), supy∈Umin(1− δ(x, y), νX∪(α,β)(y)))

= (infy∈Umax(δ(x, y),max(µX(y), α)), supy∈Umin(1− δ(x, y),min(νX(y), β)))

= (infy∈Umax(max(δ(x, y), µX(y)), α), supy∈Umin(min(1− δ(x, y), νX(y)), β))

= (max(infy∈U(max(δ(x, y), µX(y)), α)),min(supy∈U(min(1− δ(x, y), νX(y))), β))

= δ ↓ X(x) ∪ (α, β)(x)

Theorem 3.1.14. If δ1 and δ2 are two intuitionistic fuzzy divergencne measures such

that δ1(X, Y ) ≤ δ2(X, Y ),∀X, Y ∈ IF (U), then δ1 ↓ X ⊆ δ2 ↓ Y and δ1 ↑ X ⊇ δ2 ↑

Y

Proof. Given that δ1(X, Y ) ≤ δ2(X, Y ),∀X, Y ∈ IF (U)

So,

δ1(x, y) ≤ δ2(x, y), ∀x, y ∈ U

=⇒ max(δ1(x, y), µX(y)) ≤ max(δ2(x, y), µX(y)),∀y ∈ U
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Also,

1− δ1(x, y) ≥ 1− δ2(x, y)

=⇒ min(1− δ1(x, y), νX(y)) ≥ min(1− δ2(x, y), νX(y))

By property of infemum and supremum,

infy∈Umax(δ1(x, y), µX(y)) ≤ infy∈Umax(δ2(x, y), µX(y)),∀y ∈ U

and

supy∈Umin(1− δ1(x, y), νX(y)) ≥ supy∈Umin(1− δ2(x, y), νX(y))

=⇒ δ1 ↓ X(x) ⊆ δ2 ↓ X(x)

Similarly,

min(1− δ1(x, y), µX(y)) ≥ min(1− δ2(x, y), µX(y)),∀y ∈ U

and

max(δ1(x, y), νX(y)) ≤ max(δ2(x, y), νX(y)), ∀y ∈ U

By property of infemum and supremum,

supy∈Umin(1− δ1(x, y), µX(y)) ≥ supy∈Umin(1− δ2(x, y), µX(y))

and

infy∈Umax(δ1(x, y), νX(y)) ≤ infy∈Umax(δ2(x, y), νX(y))

=⇒ δ1 ↑ X(x) ⊇ δ2 ↑ X(x)

3.1.1 Feature selection using IF rough set model based on

divergence measure

After establishing the various properties satisfied by lower and upper approximation.

The equivalence relation produced by decision class is U \D = {D1, D2, . . . Dk} with



Chapter 3. Feature Selection Models 36

each decision class representing an intutiionisic fuzzy set given by:

Di(x) =


(1, 0), ifx ∈ Di

(0, 1), ifx /∈ Di

Real valued conditional attribute Ai are converted to intuitionistic fuzzy set as:

µAi(x) =
x− a
b− a

, where a = minx∈UAi(x) and b = maxx∈UAi(x)

νAi(x) =
1− µAi(x)

1 + λµAi(x)

where non membership values are generated using Sugeno’s intuitionistic fuzzy gen-

erator [18, 112]. The divergence DivB is n × n matrix for B ⊆ C where entries

are given by DivB = [δB(xi, xj)]n×n, with δB(xi, xj) = maxA∈BδA(xi, xj), i, j =

1, 2, . . . , n. Lower and upper approximations are calculated using the divergence

matrix, which is employed to find positive region as:

PosA(x) = (supiµδ↓DiX(x), infiνδ↓ADi(x))

The degree of dependency is thereby given by γA(Div) =
∑
x∈U |PosA(x)|
|U | . The value

of significance of A ⊆ C with respect to B ⊆ C such that A ⊆ C − B is calculated

using following formula:

SigBA = γA∪B(Div)− γA(Div)

The algorithm for feature selection is given as follows:

Algorithm 3.1.1 Divergence based feature selection

Input intuitionistic fuzzy information system

Find the decision class U \D = {D1, D2, . . . , Dk}

Initialize C = {a1, a2, . . . , am} and Red = φ

repeat

For every ai ∈ C−Red, compute divergence matrix with respect to Red∪{ai}

For i = 1, 2, . . . ,m, compute lower approximation δ ↓ (Red ∪ {ai})(x) =

(infx∈Umax(δ(x, y), µRed∪{ai}), supx∈Umin(1 − δ(x, y), νRed∪{ai})), for each x ∈

U

Compute positive region PosRed∪{ai}(x) = (supjµδ↓Red∪{ai}(Dj)(x),
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Table 3.1: Example dataset

``````````````̀Instances
Features

a1 a2 a3 a4 D

x1 (0, 1) (0.33, 0.33) (0.25, 0.42) (0, 1) 1
x2 (1, 0) (0.66, 0.11) (0, 1) (0.33, 0.33) 1
x3 (0, 1) (0, 1) (0, 1) (0.66, 0.11) 2
x4 (0, 1) (1, 0) (0.50, 0.20) (0.33, 0.33) 2
x5 (0.75, 0.7) (0, 1) (0.37, 0.29) (1, 0) 1
x6 (0.25, 0.47) (0.33, 0.33) (0.62, 0.13) (0.66, 0.11) 1

Table 3.2: Divergence matrix obtained from example dataset for attribute a1

x1 x2 x3 x4 x5 x6
x1 0 1 0 0 0.83 0.41
x2 1 0 1 1 0.16 0.58
x3 0 1 0 0 0.83 0.41
x4 0 1 0 0 0.83 0.41
x5 0.83 0.16 0.83 0.83 0 0.42
x6 0.41 0.58 0.41 0.41 0.42 0

infjνδ↓Red∪{ai}(Dj)(x)), ∀x ∈ U

Compute degree of dependency γRed∪{ai}(Div) =
∑
x∈U |PosRed∪{ai}(x)|

|U | ,∀ai ∈ C −

Red

Compute significance Sig
Red∪{ai}
ai

Find attribute at with greatest Sig
Red∪{ai}
ai

until Sig
Red∪{ai}
ai > ε′, Red = Red ∪ {at} and C = C −Red

return Red

The approach can be illustrated by a toy example given in table 3.1. The attribute

’D’ is a decision attribute. Intuitionistic fuzzy divergence between xi and xj for A ⊆

C is obtained by using formula: δ(xi, xj) = supai∈A
(|µai (xi)−µai (xj)|+|νai (xi)−νai (xj)|

2
.

Thereby, the divergence matrix for attribute a1 is given in table 3.2. The decision

class is partitioned as U \ D = {D1, D2} = {{x1, x2, x5, x6}, {x3, x4}}. Hence, the

lower approimation is obained as in table 3.3. Degree of dependency of decision
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Table 3.3: Lower approximation obtained from example dataset

x1 x2 x3 x4 x5 x6
U \D1 (0, 1) (1, 0) (0, 1) (0, 1) (0.83, 0.16) (0.41, 0.58)
U \D2 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

attribute over conditional attribute a1 are calculated as γa1 = 2.2470
6

= 0.3745. Sim-

ilarly, degree of dependencies of other attributes are computed as:

γa2 =
1.4442

6
= 0.2407

γa3 =
1.4460

6
= 0.2410

γa4 =
0.7224

6
= 0.1204

Hence, the significance is:

Siga1 = 0.3745

Siga2 = 0.2407

Siga3 = 0.2410

Siga4 = 0.1204

Since, attribute a1 has highest significance value. So, {a1} is selected as potential

reduct set. Similarly, the degree of dependencies is calculated by adding other

attributes to this potential reduct set. The proposed algorithm iterates, and after

termination of this algorithm, we obtain the reduct set as {a1, a2}.

3.1.2 Experimentation

The performance of proposed feature selection approach is evaluated on few bench-

mark datasets from UCI repository [108] as recorded in table 3.4 and 3.5, along with

comparative analysis with Tan et. al. [140] and Neumann et. al. [114] approaches

which clearly illustrates that the overall performance is usually enhanced for all the
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Table 3.4: Benchmark datasets characteristics and reduct size

Dataset Instances Attributes
Reduct size
Tan et. al. approach Neumann et. al. approach Proposed algorithm

Balloon Scale+Stretch 20 4 2 2 2
Acute-inflammations-nephritis 120 7 2 3 3
Hill-valley-without-noise 1212 100 9 100 3
Appendicitis 106 7 5 7 3
Trains 10 26 2 23 2
Wpbc 194 33 10 na2 9

Table 3.5: Comparison of classification accuracies for original datasets and re-
duced datasets by proposed model, Tan et. al. and Neumann et. al. approach

using 10-fold cross validation

Dataset
Original Tan et. al. approach Neumann et. al. approach Proposed model
SVM PART Random forest SVM PART Random forest SVM PART Random forest SVM PART Random forest

Balloon Scale+Stretch 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00
Acute-inflammations-nephritis 100.0± 0.00 100.0± 0.00 100.0± 0.00 97.58± 4.32 100.0± 0.00 100.0± 0.00 95.00± 6.04 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00
Hill-valley-without-noise 52.45± 3.23 50.49± 0.16 61.14± 4.06 49.73± 3.50 50.49± 0.16 54.55± 4.22 52.45± 3.23 50.49± 0.16 61.14± 4.06 49.56± 3.45 50.49± 0.16 53.72± 4.26
Appendicitis 86.95± 7.32 84.57± 9.35 86.98± 8.15 85.05± 9.01 82.16± 8.48 86.34± 9.35 86.95± 7.32 84.57± 9.35 86.98± 8.15 85.81± 8.49 84.55± 8.27 84.63± 8.81
Trains 0.00± 0.00 90.00± 30.15 50.00± 50.25 80.00± 40.20 90.00± 30.15 65.00± 47.94 90.00± 30.15 80.00± 40.20 69.00± 46.48 100.0± 0.00 90.00± 30.15 90.00± 30.15
Wpbc 44.87± 2.59 27.30± 9.36 40.96± 5.56 44.87± 2.59 30.54± 9.73 41.37± 5.42 na3 na4 na4 44.87± 2.59 29.50± 9.16 42.45± 6.30

reduced datasets. In order to avoid overfitting and unbiasedness, experiments are

conducted based on 10-fold cross validation. Three classifiers namely SVM1 [117],

PART [49] and random forest [16] are used for experimentation. Different values

of threshold parameter ε′ were used for various datasets. Reduct produced by our

approach is either smaller or similar than that produced by Tan et. al. [140] and

Neumann et. al. [114] for all the datasets. Further, there was no reduction in

case of appendicitis, and hill-valley without-noise using Neumann et. al. approach.

However, the overall accuracies along with standard deviations of different learning

algorithms for reduced datasets as produced by the proposed approach are better

except for hill-valley-without-noise, wpbc, and appendicitis, where the performances

of different classifiers are similar. Hence, the proposed approach outperforms the

existing approaches.

3.1.3 Application to tuberculosis treatment

Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), is a world-

wide health malady that claims almost 1.8 million lives annually. In ‘WHO Global

1SVM and SMO are used interchangeably in the study
4Neumann et. al. approach is not applicable on non-binary class dataset
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Tuberculosis Report-2017’, it was declared that Tuberculosis (TB) is one of the top

ten leading causes of death world-wide [52]. In 2016, six lakhs new cases with re-

sistance to rifampicin (RIF) having most effective first-line drug were reported, of

which 490,000 cases was related with multidrug-resistant tuberculosis. This report

declared TB as the leading cause of the deaths including HIV-associated TB deaths

also. In 2015, 10.4 million cases were registered, of which 12% involved human im-

mune deficiency virus (HIV) co-infection and 10% were among children. In 2015,

1.8 million deaths were reported due to tuberculosis including HIV-associated tu-

berculosis deaths also. It declared tuberculosis as the leading cause of death from an

infectious disease [53]. Latent Mycobacterium tuberculosis infection is known as the

reservoir of the TB epidemic. M. tuberculosis infection has newly been re-estimated

at 24% of the global burden [61].The global decline rate of TB incidence is currently

1.5% and will be required to increase to 4%–5% and then to 10% per year by 2020

and 2025 respectively to achieve the World Health Organization End TB Strategy

targets [6]. Mycobacterium consists distinguish characteristic [12, 136, 150], which

creates an obstacle for the prediction of universal antibacterial peptides (ABP).

Therefore, Usmani et. al. [145] presented an approach based on machine learning

techniques for discriminating anti-tubercular with ABP as well as non-ABP. How-

ever, there are various aspects that can affect in obtaining the actual performance

of the machine learning algorithms. The key factors among these are extraction

of appropriate sequence features, selection of relevant and non-redundant features,

and selection of suitable learning algorithms. In the current study, different se-

quence features of the peptides are extracted from Usmani et. al. dataset [145]

to develop prediction models. In this dataset, anti-tubercular peptides (AntiTbP)

were extracted from AntiTbPdb [146]. Final positive data consists of 246 unique

peptides, varying in length from 5 to 61, which is effective against Mycobacterium.

Final negative dataset consists of two separate datasets namely:
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1. AntiTb MD

2. AntiTb RD

From DBAASP, peptides containing natural amino acids without any modifications

were selected. These peptides represent active against Gram positive and Gram

negative bacteria. One of the negative datasets containing 246 antibacterial pep-

tides was selected from DBAASP. Moreover, 246 random peptides were created from

Swiss-Prot, which was used for generating non-ABP dataset by eliminating AntiTbP

and ABP. The ranges of peptide length are same in all three datasets. By extracting

various features from positive and negative datasets, primary datasets consisting of

492 instances and 953 features and secondary datasets consisting of 492 instances

and 953 features are created. Features are extracted by using iFeature web server

[24]. These features are namely: amino acid composition, dipeptide composition,

binary, moran correlation, composition/transition/distribution, pseudo amino acid

composition, conjoint triad, quasi-sequence order, amino acid index, grouped dipep-

tide composition, and grouped tripeptide composition. By extracting appropriate

features from the dataset, all the peptides are changed into numerical component

vectors with a similar dimension. But not all the extracted features could con-

tribute to classification accuracy. The high dimension feature vector may result in

over-fitting, information redundancy, and dimensionality problem [36]. Feature Se-

lection (FS), a powerful system to remove irrelevant and redundant features, is very

valuable in decreasing the dimensionality of data and improving the classification

accuracy. The schematic architecture of the proposed methodology is summarized

in figure 3.1.
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Figure 3.1: Flowchart of proposed methodology for prediction of anti tubercular
peptides

3.1.3.1 Result

In this section, eight machine learning algorithms namely (1) support vector ma-

chine (SVM) [117] with puk kernel, (2) realAdaBoost with random forest classifier

[15], also known as boosted random forest, (3) rotation forest [125], (4) PART [49],

(5) J48 [120], (6) vote-based classifier [2] (with suitable classifiers combination), (7)

random tree [79], and (8) random forest [16] are used. Among these eight classifiers,

vote-based classifier produces highest accuracy of 87.80% for primary and 92.90%

for secondary datasets. The proposed approach reduced the size of feature sets to

123 and 114 for extracted features of primary and secondary datasets respectively,

but the performances of machine learning algorithms are better (or sometimes sim-

ilar) for all the performance parameters when compared with the results for raw

datasets, as recorded in table 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12. These results

clearly illustrate that the approach reduces size of the dataset considerably without

affecting the real performance of learning algorithms. All the experiments are per-

formed using percentage split of 80:20 and 10 fold cross validation.

A comparative study of the proposed approach with model presented by Usmani et.

al. is shown in table 3.15. The approach gave 87.80% and 92.90% average accu-

racy, 0.922 and 0.914 AUC which is much higher than 75.87% and 78.54% overall
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accuracy, 0.830 and 0.860 AUC as given by Usmani et. al. for primary and sec-

ondary datasets respectively. Further, table 3.13 and table 3.14 demonstrates the

accuracy and AUC of various classifiers for reduced primary and secondary datasets

obtained by using approach of Tan et. al. [140] and Neumann et. al. [113]. Model

proposed by Tan et. al. is producing very poor performance as very few features

are selected that might lead to information loss. Furthermore, an ensemble feature

selection technique (presented by Neumann et. al.) is applied on both primary

and secondary datasets. This approach eliminates only 11 and 20 features, which

reduces the size of feature sets to 941 and 932 for primary and secondary datasets

respectively. On comparing the results, it is obvious that the proposed approach

is producing better results for both primary and secondary datasets. This clearly

shows that our approach gives better performance and outperforms previous works.

Receiver Operator Characteristics (ROC) is a convenient way to visualize the perfor-

mance of different machine learning algorithms. Figure 3.2 is a plot of ROC for raw

primary and secondary dataset, while ROC for reduced dataset is shown in figure 3.3.

Moreover, the proposed approach was applied on various datasets from AMP databases

consisting of anti-cancer peptides [167], antiviral peptides [141], anti-hypertensive

peptides [106], and bitter peptides [21]. From the experimental results (table 3.16,

3.17, 3.18, 3.19 and 3.20), it can be concluded that the proposed method based

results are always better than previously reported results. In case of anti-cancer,

antiviral, anti-hypertensive, and bitter peptides prediction, Yi et. al. [167], Thakur

et. al. [141], Manavalan et. al. [106], Charoenkwan et. al. [21] achieved the highest

accuracy and AUC of 81.48 and 0.894, 85.70 and na (not available), 88.30 and 0.951,

84.38 and 0.904 respectively, while the proposed approach gives the best results as:

85.80 and 0.892, 86.40 and 0.945, 89.70 and 0.956, 86.7 and 0.929 respectively (table

3.20). These experimental results are clearly indicating that the approach is gener-

alizable.
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Table 3.6: Dataset characteristics and reduct size

Dataset Number of Instances Number of Attributes Reduct size
Primary 492 953 123
Secondary 492 953 114

Table 3.7: Performance evaluation parameters of learning algorithms with raw
primary dataset using percentage split of 80:20

Learning Algorithm Sensitivity Specificity Accuracy MCC AUC g-means
SVM 93.8 50.0 71.4 0.484 0.719 68.5
RealAdaBoost 85.4 74.0 79.6 0.597 0.885 79.5
RotationForest 68.8 78.0 73.5 0.470 0.835 73.3
PART 60.4 84.0 72.4 0.458 0.684 71.2
J48 64.6 80.0 72.4 0.452 0.711 71.9
Vote 85.4 74.0 79.6 0.597 0.892 79.4
RandomTree 72.9 52.0 62.2 0.254 0.625 61.6
RandomForest 95.8 72.0 83.7 0.696 0.887 83.1

Table 3.8: Performance evaluation parameters of learning algorithms with raw
secondary dataset using percentage split of 80:20

Learning Algorithm Sensitivity Specificity Accuracy MCC AUC g-means
SVM 98.1 61.4 81.6 0.655 0.798 77.6
RealAdaBoost 96.3 79.5 88.8 0.778 0.966 87.5
RotationForest 87.0 79.5 83.7 0.669 0.924 83.1
PART 72.2 77.3 74.5 0.492 0.785 74.7
J48 68.5 70.5 69.4 0.338 0.694 69.5
Vote 94.4 77.3 86.7 0.736 0.969 85.4
RandomTree 68.5 86.4 76.5 0.550 0.774 76.9
RandomForest 90.7 84.1 87.8 0.752 0.944 87.3

In order to avoid overfitting and unbiasedness of our technique, experiments are con-

ducted based on 10-fold cross validation also for tuberculosis dataset. The results

are very promising and recorded in table 3.11 and 3.12. The best results obtained

had overall sensitivity of 90.29, specificity of 84.25, accuracy of 87.16%, Mathews

correlation coefficient (MCC) of 0.745, AUC of 0.928, which is much better when

compared to the results presented by Usmani et. al. [145].
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Table 3.9: Performance evaluation parameters of learning algorithms with re-
duced primary dataset using percentage split of 80:20

Learning Algorithm Sensitivity Specificity Accuracy MCC AUC g-means
SVM 91.5 71.2 80.8 0.635 0.813 80.7
RealAdaBoost 87.2 82.7 84.8 0.698 0.895 84.9
RotationForest 74.5 80.8 77.8 0.554 0.859 77.6
PART 72.3 75.0 73.7 0.473 0.743 73.6
J48 80.9 65.4 72.7 0.466 0.720 72.7
Vote 92.0 83.3 87.8 0.757 0.922 87.5
RandomTree 70.2 73.1 71.7 0.433 0.716 71.6
RandomForest 87.2 82.7 84.8 0.698 0.900 84.9

Table 3.10: Performance evaluation parameters of learning algorithms with re-
duced secondary dataset using percentage split of 80:20

Learning Algorithm Sensitivity Specificity Accuracy MCC AUC g-means
SVM 94.6 76.7 86.9 0.736 0.857 85.1
RealAdaBoost 89.3 88.4 88.9 0.775 0.930 88.8
RotationForest 80.4 86.0 82.8 0.659 0.879 83.1
PART 83.9 76.7 80.8 0.608 0.817 80.2
J48 82,1 74.4 78.8 0.567 0.776 78.1
Vote 96.4 88.4 92.9 0.857 0.914 92.3
RandomTree 73.2 83.7 77.8 0.565 0.785 78.2
RandomForest 89.3 90.7 89.9 0.796 0.934 89.9

Table 3.11: Performance evaluation parameters of learning algorithms with re-
duced primary dataset using 10-fold cross validation

Learning Algorithm Sensitivity Specificity Accuracy AUC MCC g-means
SVM 82.56 64.93 73.48 0.737 0.478 73.21
RealAdaBoost 78.34 75.38 76.54 0.847 0.534 76.84
RotationForest 70.06 71.86 70.81 0.789 0.418 70.95
PART 71.7 67.38 68.97 0.700 0.391 69.51
J48 64.08 66.04 65.09 0.674 0.300 65.05
Vote 77.42 75.38 76.53 0.843 0.535 76.39
RandomTree 65.62 73.72 69.59 0.697 0.393 69.55
RandomForest 78.87 73.46 75.93 0.838 0.521 76.11
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Table 3.12: Performance evaluation parameters of learning algorithms with re-
duced secondary dataset using 10-fold cross validation

Learning Algorithm Sensitivity Specificity Accuracy AUC MCC g-means
SVM 90.84 74.62 82.26 0.827 0.660 82.33
RealAdaBoost 89.18 85.09 86.93 0.933 0.740 87.11
RotationForest 85.27 82.25 83.69 0.911 0.673 83.74
PART 76.68 78.68 77.97 0.809 0.558 77.67
J48 76.02 82.08 78.99 0.818 0.585 78.99
Vote 89.18 84.71 86.72 0.931 0.737 86.92
RandomTree 79.90 75.24 78.56 0.776 0.555 77.53
RandomForest 90.29 84.25 87.16 0.928 0.745 87.21

Table 3.13: Comparison of performance evaluation parameters of learning algo-
rithms with reduced training set of primary dataset with percentage split of 80:20

using feature selection approaches of Tan et. al. and Neumann et. al.

Learning Algorithm
Tan et al Approach Neumann et al Approach Proposed Approach
Accuracy AUC Accuracy AUC Accuracy AUC

SVM 49.5 0.500 69.4 0.693 80.8 0.813
RealAdaBoost 49.5 0.500 65.3 0.701 84.8 0.895
RotationForest 49.5 0.500 73.5 0.811 77.8 0.859
PART 49.5 0.500 72.4 0.684 73.7 0.743
J48 49.5 0.500 72.4 0.711 72.7 0.720
Vote 49.5 0.500 81.6 0.877 87.8 0.922
RandomTree 49.5 0.500 63.3 0.631 71.7 0.716
RandomForest 49.5 0.500 77.6 0.872 84.8 0.900

Table 3.14: Comparison of performance evaluation parameters of learning al-
gorithms with reduced training set of secondary dataset with percentage split of

80:20 using feature selection approaches of Tan et. al. and Neumann et. al.

Learning Algorithm
Tan et al Approach Neumann et al Approach Proposed Approach
Accuracy AUC Accuracy AUC Accuracy AUC

SVM 44.5 0.500 83.7 0.837 86.9 0.857
RealAdaBoost 44.5 0.500 74.5 0.807 88.9 0.930
RotationForest 44.5 0.500 87.8 0.944 82.8 0.879
PART 44.5 0.500 74.5 0.785 80.8 0.817
J48 44.5 0.500 69.4 0.694 78.8 0.776
Vote 44.5 0.500 89.8 0.968 92.9 0.914
RandomTree 44.5 0.500 71.4 0.718 77.8 0.785
RandomForest 44.5 0.500 83.7 0.946 89.9 0.934
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Table 3.15: Comparison of the performance evaluation metrics of the current
work with the previous method

Method Dataset Accuracy AUC

Usmani et. al.
Primary 75.87 0.830
Secondary 78.54 0.860

Proposed method
Primary 87.80 0.922
Secondary 92.90 0.914

Primary Secondary

Figure 3.2: AUC of eight machine learning algorithms for the dataset

Primary Secondary

Figure 3.3: AUC of eight machine learning algorithms for the reduced dataset
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Table 3.16: Performance evaluation parameters of learning algorithms with re-
duced Yi et. al. dataset (ACP 740) using percentage split of 80:20

Learning Algorithm Sensitivity Specificity Accuracy AUC MCC g-means
SVM 80.2 77.6 79.1 0.789 0.578 78.89
RealAdaBoost 86.4 83.6 85.1 0.893 0.700 84.99
RotationForest 82..7 71.6 77.7 0.832 0.548 76.95
PART 77.8 67.2 73.0 0.742 0.542 72.30
J48 72.8 62.7 68.2 0.678 0.357 67.56
Vote 86.4 83.6 85.1 0.896 0.700 84.99
RandomTree 74.1 67.2 70.9 0.706 0.413 70.56
RandomForest 88.9 82.1 85.8 0.893 0.713 85.43

Table 3.17: Performance evaluation parameters of learning algorithms with re-
duced Thakur et. al. dataset (Antiviral) using percentage split of 80:20

Learning Algorithm Sensitivity Specificity Accuracy AUC MCC g-means
SVM 81.5 85.5 83.2 0.835 0.665 83.48
RealAdaBoost 88.0 84.3 86.4 0.944 0.723 86.13
RotationForest 88.0 77.1 83.2 0.919 0.658 82.37
PART 83.3 74.7 79.6 0.846 0.583 78.88
J48 85.2 74.7 80.6 0.836 0.604 79.78
Vote 88.0 84.3 86.4 0.945 0.723 86.13
RandomTree 77.8 69.9 74.3 0.738 0.477 73.74
RandomForest 87.0 85.5 86.4 0.944 0.724 86.25

Table 3.18: Performance evaluation parameters of learning algorithms with re-
duced Manavalan et. al. dataset (Anti-hypertensive) using percentage split of

80:20

Learning Algorithm Sensitivity Specificity Accuracy AUC MCC g-means
SVM 84.5 79.8 81.9 0.821 0.640 82.12
RealAdaBoost 90.1 86.9 88.4 0.958 0.768 88.49
RotationForest 88.7 82.1 85.2 0.935 0.706 85.34
PART 83.1 84.5 83.9 0.859 0.676 83.80
J48 83.1 79.8 81.3 0.860 0.627 81.43
Vote 90.1 86.9 88.4 0.956 0.768 88.49
RandomTree 87.3 79.8 83.2 0.835 0.669 83.47
RandomForest 91.5 88.1 89.7 0.956 0.744 89.78
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Table 3.19: Performance evaluation parameters of learning algorithms with re-
duced Charoenkwan et. al. dataset (Bitter) using percentage split of 80:20

Learning Algorithm Sensitivity Specificity Accuracy AUC MCC g-means
SVM 87.5 78.1 82.8 0.828 0.659 82.67
RealAdaBoost 84.4 85.9 85.2 0.904 0.703 85.15
RotationForest 87.5 84.4 85.9 0.908 0.719 85.94
PART 71.9 85.9 78.9 0.836 0.584 78.59
J48 81.3 82.8 82.0 0.864 0.641 82.05
Vote 85..9 87.5 86.7 0.929 0.734 86.70
RandomTree 73.4 82.8 78.1 0.781 0.565 77.96
RandomForest 84.4 81.3 82.8 0.925 0.657 82.84

Table 3.20: Comparison of the performance evaluation metrics of the current
work with the previous method

Methods Dataset Accuracy AUC
Yi et. al. ACP 740 81.48 0.894
Proposed method ACP 740 85.80 0.892
Thakur et. al. Antiviral 85.70 na
Proposed method Antiviral 86.40 0.945
Manavalan et. al. Anti-hypertensive 88.30 0.951
Proposed Method Anti-hypertensive 89.70 0.956
Charoenkwan et. al. Bitter 84.38 0.904
Proposed method Bitter 86.7 0.929

3.2 k-mean based Intuitionistic Fuzzy Rough Set

Model

An intuitionistic fuzzy rough set model based on k-mean is proposed in this work.

The conventional intuitionistic fuzzy lower and upper approximations are prone

to noise. The infimum and supremum are very sensitive to noisy sample objects

and might lead to misleading results in presence of outliers. Since, a single noisy

sample might affect value of infimum or supremum, this would further degrade

the performance in case of noisy datasets. To overcome such situations, k nearest

neighbour of an object is used to compute approximations. Hence, the lower and
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upper approximations are reformulated as:

R ↓A Di(x) = (µR↓ADi(x), νR↓ADi(x)) = (
1

k

k∑
l=1

y/∈Di
νRAl (x, y),

1

k

n∑
l=n−k

y/∈Di
µRAl (x, y))

(3.7)

R ↑A Di(x) = (µR↑ADi(x), νR↑ADi(x)) = (
1

k

n∑
l=n−k

y∈Di
µRAl (x, y),

1

k

k∑
l=1

y∈Di
νRAl (x, y))

(3.8)

where n samples of µRA(x, y)
{
µRA1

(x, y), µRA2
(x, y), . . . µRAn (x, y)

}
and νRA(x, y){

νRA1
(x, y), νRA2

(x, y), . . . νRAn (x, y)
}

are sorted in increasing order of their magni-

tudes.

Intuitionistic fuzzy positive region is defined using above formulated lower approxi-

mation and hence the degree of dependency.

Proposition 3.2.1. The k-means based intuitionistic fuzzy lower and upper approxi-

mations are intuitionistic fuzzy set in U .

Proof. Since, RA is intuitionistic fuzzy set in U =⇒ R ↓A Di is an intuitionistic

fuzzy set in U .

3.2.1 Feature Selection based on Intuitionistic Fuzzy Rough

Set Model based on k-means

A greedy forward quick reduct algorithm for feature selection is employed in which

dependency function is used as evaluation criterion. Hence, an attribute subset

Red ⊆ C is considered as potential reduct if its dependency does not increase on

addition of attributes or its dependency is equal to dependency of whole feature set

and decreases on removal of feature.
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3.2.2 Application for Enhancing Prediction of Aptamer-protein

Interacting Pairs

Aptamers, first discussed by [43],[144], are artificially synthesized single stranded

DNA/RNA molecules or peptide molecules ([80]). These artificial molecules fold

into specific three dimensional configurations and can combine to definite targets

with exceptionally high specificity and affinity. Aptamers are found to be encourag-

ing reagents in new drug development and protein detection due to their molecular

recognition ability for proteins. In the area of therapeutics, biosensing and diag-

nostics, aptamers give good latent because of powerful ligands class. Consequently,

aptamers–target interactions have drawn greater attention and have broad appli-

cations in the fundamental research. However, characterization of aptamers and

experimental identification is usually costly and time consuming. Therefore, it is

the essential requirement to establish a computational methodology for effectively

and abruptly determining the aptamer-protein interacting pairs by taking into ac-

count the DNA, RNA and primary sequence information of protein.

Prediction of aptamer-target interacting pairs has been reported by only three com-

putational methods. The first prediction model was presented by [89], which was

based on random forest. [171] presented another approach by using an ensemble

classifier containing three random forest sub-classifiers to overwhelm the imbalanc-

ing issue. [165] proposed third approach by using ensemble classifier method, which

was a three SVMs (support vector machine) ensemble classifier.

There are various issues, which directly affect the learning of different classifiers. Ex-

traction of suitable features, imbalance between classes, selection of non-redundant

and relevant features, and selection of appropriate learning algorithms are consid-

ered as key issues in case of biological datasets. Here, dataset from [171] was used

with the same extracted features. A few of the attributes may be irrelevant and/or
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redundant for classification task; they may extremely reduce the overall accuracy

of classification learning and lead to a great degree of computational complexity.

Therefore, before employing the dataset, it is needed to preprocess the data to elim-

inate redundant and non-predictive features.

3.2.2.1 Result

Seven different machine learning algorithms were employed to evaluate performance.

Firstly, irrelevant and/or redundant features were removed by using the proposed

k-mean approach. The value of k was set to 5. The number of attributes is re-

duced to 207 using k-mean based feature selection approach as shown in table 3.21.

As the dataset is imbalanced, before evaluating performance synthethic minority

oversampling technique (SMOTE) at 200% is applied to obtain optimal balancing

ratio. Classification performance is then obtained using ten-fold cross validation.

Among these seven classifiers, boosted random forest gave highest overall accuracy

of 91.60% and 85.60% and sensitivity of 91.30% and 86.40% for training and testing

set respectively. The values of the various performance evaluation metrics clearly

demonstrate the effectiveness of the k-mean model. The values of various perfor-

mance evaluation metrics for reduced training and test sets are given in table 3.22,

3.23. Also, classification performance along with standard deviation evaluated by

paired t-test is also illustrated in table 3.24.

Further, a comparative study of the proposed k-mean approach with models of Li

et. al. [89], Zhang et. al. [171] and Yang et. al. [165] is shown in Table 3.25, 3.26.

This approach gave a maximum average accuracy of 91.60% for training and 85.60%

for testing dataset respectively with improved values of other parameters, which is

much higher than previous approaches. The values of sensitivity, MCC is higher

using proposed kmean approach for both training and testing datasets. A small
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Table 3.21: Dataset characteristics and reduct size

Dataset Number of Instances Number of Attributes Reduct Size
Aptamer Train 2329 291 207
Aptamer Test 580 291 207

Table 3.22: Comparison of performance evaluation metrics for reduced training
datasets by proposed model

Learning Algorithm Sensitivity Specificity Accuracy MCC AUC g-means
BayesNet 70.5 60.5 65.5 0.311 0.711 65.3
SVM 84.7 87.1 85.9 0.718 0.859 85.8
IBK 94.4 76.1 85.3 0.718 0.855 84.7
Rotation Forest 86.0 86.0 86.0 0.720 0.938 86.0
RealAdaBoost 91.3 91.9 91.6 0.832 0.969 91.5
PART 84.3 54.8 69.5 0.409 0.760 67.9
Random Forest 89.5 88.6 89.1 0.781 0.957 89.0

Table 3.23: Comparison of performance evaluation metrics for reduced testing
datasets by proposed model

Learning Algorithm Sensitivity Specificity Accuracy MCC AUC g-means
BayesNet 65.1 53.6 59.3 0.187 0.633 59.0
SVM 76.6 77.5 77.0 0.540 0.770 77.0
IBK 89.4 75.2 82.3 0.653 0.823 81.9
Rotation Forest 81.1 77.5 79.3 0.587 0.863 79.2
RealAdaBoost 86.4 84.8 85.6 0.713 0.908 85.5
PART 66.2 64.8 65.5 0.310 0.673 65.4
Random Forest 84.1 83.0 83.6 0.671 0.881 83.5

decrease in specificity is observed but that is overruled by the significant increase in

values of other paramters.

Performance of different machine learning algorithms can be visualised using Re-

ceiver Operating Characteristic (ROC) plot. ROC plot for reduced training and

testing dataset is demonstrated in figure 3.4. The plot demonstrates that the plot

corresponding to boosted random forest classifier is producing highest performance

for both the training and testing datasets.
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Table 3.24: Comparison of average classification accuracies along with standard
deviation for reduced training and testing datasets using proposed approach

Learning Algorithm Training Testing
BayesNet 65.47 ± 2.41 60.18 ± 4.63
SVM 85.87 ± 1.85 76.85 ± 4.29
IBK 85.56 ± 1.80 81.32 ± 4.20
Rotation Forest 86.11 ± 1.87 78.86 ± 4.26
RealAdaBoost 91.94 ± 1.51 84.97 ± 3.81
PART 71.17 ± 3.93 67.37 ± 4.61
Random Forest 89.38 ± 1.72 82.71 ± 4.20

Table 3.25: Comparison of the best values of the performance evaluation metrics
of the current work with the values of previous existing methods on training

dataset

Learning Algorithm Sensitivity Specificity Accuracy MCC
Li et. al. 48.8 92.2 81.3 0.461
Zhang et. al. 75.3 72.5 73.2 0.424
Yang et. al. 77.3 73.7 74.5 0.450
Proposed method 91.3 91.9 91.6 0.832

Table 3.26: Comparison of the best values of the performance evaluation metrics
of the current work with the values of previous existing methods on testing dataset

Learning Algorithm Sensitivity Specificity Accuracy MCC
Li et. al. 48.3 87.1 77.4 0.372
Zhang et. al. 73.8 71.3 71.9 0.398
Yang et. al. 79.3 74.5 75.7 0.478
Proposed method 86.4 84.8 85.6 0.713

Training Testing
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Figure 3.4: AUC of seven machine learning algorithms for the reduced dataset

3.3 Summary

Intuitionistic fuzzy rough set based feature selection is presented in this chapter. Di-

vergence based intuitionistic fuzzy rough set model is proposed along with the proofs

of respective properties of lower and upper approximation. This model is employed

for dimensionality reduction. Experimental and comparative study illustrate the

utility of the proposed model. Further, it was applied to solve real life application

to treat tuberculosis by prediction of anti-tubercular peptides. Likewise, a k-mean

based intuitionistic fuzzy rough set model is introduced that is robust to noisy sam-

ples and applied for prediction of aptamer-protein interacting pairs. However, these

concept can only maintain a maximal dependency function. It cannot preferably

illustrate the differences in object classification and does not fit a particular data

set well. This problem is handled in the upcoming chapter.

***********
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