
Chapter 2

Background

A dataset is the collection of objects or instances or samples, each of which is char-

acterised by set of properties. These set of properties are referred to as features.

This collection of all the objects is called universe of discourse and is denoted by U .

Let U = {x1, x2, . . . xn} be non empty collection of objects xi ∈ U . Similarly, let C

be non empty set of features such that for any a ∈ C, a : U =⇒ Va, where Va is the

set of all possible values taken by feature a. These two sets cummulatively i.e. pair

(U,C) forms an information system.

2.1 Rough Set Theory

Rough set theory as proposed by Pawlak [176] is an extension of classical set theory

that can be utilized to mine knowledge from data. It is based on the concept of

indiscernibility. It can be effectively applied to reduce the size of data while retaining

the actual information content. Suppose (U,C) is an information system, then an
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equivalence relation RA is associated with each feature subset A ∈ C given by:

RA = {(x, y) ∈ U × U | ∀a ∈ A, a(x) = a(y)} (2.1)

where a(x) is the value of feature a for an instance or object x. Two objects x and y

are indistinguishable or indiscernible with respect to feature subset A if (x, y) ∈ RA.

The corresponding equivalence class [x]A consists of all the objects related to x

according to RA. So, any set of objects X ⊆ U can be approximated by a pair of

concepts employing the above defined equivalence relation as:

R ↓A X = {x | [x]A ⊆ X} (2.2)

R ↑A X = {x | [x]A ∩X 6= φ} (2.3)

where R ↓A X and R ↑A X denotes the lower and upper approximation respectively.

The pair (R ↓A X,R ↑A X) is called the rough set. Lower approximation denotes

those objects that belong to X with certainty while objects belonging to upper

approximation may possibly be member of X. The difference between these two

approximations gives the boundary region.

BNDA(X) = R ↑A X −R ↓A X (2.4)

A unique form of information system in which one of the feature is class or decision

or target label of the instance is called decision system. Let the decision feature

be denoted by D. Then, the decision system is (U,C ∪ D), where C is the set of

conditional features. Union of lower approximations over all the equivalence classes

of target label gives the positive region and is defined as:

PosA(D) = ∪X∈U\DR ↓A X (2.5)

Employing the value of positive region, the degree of dependence of decision class

on feature subset is calculated as:

γA(D) =
| PosA(D) |
| U |

(2.6)

An informtion system is consistent if γA(D) = 1. This measure is utilized to reckon

the quality of feature subset. A feature subset A ⊆ C is reduct if its dependency is

same as that of dataset containing entire set of conditional features, i.e. γA(D) =
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γC(D). If this condition is relaxed, then subset A may not be necessarily optimal

and is referred to as super reduct.

Feature selection can be effectively done using rough set based approach without

requiring any additional information. However, it can only be applied to discrete

valued dataset. Thus, real valued data needs to be discretized for applying rough

set based approaches which may result in loss of valuable information.

Fuzzy rough set theory [37, 38], an extension of rough set theory is the solution

that can be effectively applied to real valued dataset by assigning the membership

degree to each objects in the set thereby eliminating the need for discretization.

The hybridization of fuzzy set and rough set can resolve both the uncertainities and

vagueness arising in the data along with overcoming the limitations of rough set

based approaches.

2.2 Fuzzy Set Theory

Instead of assigning a strignent condition on whether an object belongs to a set

or not, fuzzy set theory associates a degree of memebership µ with which a object

belongs to a set. So, a fuzzy set A can be written as:

A = {µA(x) | x ∈ U} (2.7)

For example, if we want to ask a whether a person is intelligent or not. So, instead

of just saying yes or no, fuzzy set allows to answer with partial degree i.e. quite

intelligent, very intelligent, etc.

Some of points/terms related to fuzzy set theory:

� A fuzzy relation R : U × U =⇒ [0, 1] is fuzzy similarity relation if it is:

1. Reflexive: R(x, x) = 1,∀x ∈ U
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2. Symmetric: R(x, y) = R(y, x),∀x, y ∈ U

� The cardinality of fuzzy set A is given as: | A |=
∑

x∈U A(x)

� An increasing function T : [0, 1]× [0, 1] =⇒ [0, 1] satisfying T (1, x) = x,∀x ∈

[0, 1] is called triangular norm or t norm.

Some of the common t norms widely employed are: TL(x, y) = max {0, x+ y − 1} ,

forx, y ∈ [0, 1] (Lukasiewicz t norm) and TM(x, y) = min {x, y}.

� A mapping increasing in its first and decreasing in its second component de-

fined as I : [0, 1] × [0, 1] =⇒ [0, 1] satisfying I(0, 0) = 1 and I(1, x) =

x,∀x ∈ [0, 1] is an fuzzy implicator. Some of the widely used implicators

are: IL(x, y) = min {1, 1− x+ y} ,∀x, y ∈ [0, 1] (Lukasiewicz implicator) and

IM(x, y) = max {1− x, y}.

2.3 Fuzzy Rough Set Theory

Rough set theory handles uncertainty arising in the data while fuzzy set theory

handles the vagueness. Hybridisation of these two theories has therefore got lot of

applications namely information retireval, feature selection, etc.

Given any set X ⊆ U and the fuzzy similarity relation R, the lower and upper

approximation of X by R is given as:

R ↓A X(x) = infy∈UI(R(x, y), X(y)) (2.8)

R ↑A X(x) = supy∈UT (R(x, y), X(y)) (2.9)

where I and T are fuzzy implicator and fuzzy t norm respectively. However, the

above defined approximations are prone to noise because of presence of infemum

and supremum operators.
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2.4 Fuzzy Rough Set based Feature Selection

The applicability of rough set for feature selection was limited to dicrete data. Fuzzy

rough set based feature selection was introduced as most real life applications con-

taining real valued datasets. The equivalence relation in rough set can be extended

to similarity relation in case of fuzzy rough set. And the corresponding approxima-

tions (eq (2.8)) are calculated. Based on the value of lower approximation, positive

region is reckoned as:

PosA(D)(x) = supx∈U\DR ↓A D(x) (2.10)

where D is the decision class. Then, the degree of dependency of decision feature D

on feature subset A is defined as:

γA(D) =
| PosA(D)(x) |

| U |
(2.11)

Using the dependency degree, the quality of feature subset is evaluated.

One of he most common method for finding feature subset is by using forward

greedy quick reduct algorithm. It iteratively adds feature producing highest degree of

dependency to reduct set until some termination condition is reached. The algorithm

for quick reduct is as follows:

Reduct Algorithm (C,D)

Input: C: the set of all conditional attributes, D: the set of decision attributes.

Red← {}; γbest = 0; γprev = 0

repeat

T ← Red

γprev = γbest

for ∀a ∈ (C \Red) do

if (γRed∪{a})(D) > γTD then

T ← Red ∪ {a}
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end if

end for

γbest = γT (D)

Red← T

until γbest == γprev

return Red

Illustrating the above defined concept with the help of toy example (as shown in

Table 2.1). If the task is to calculate degree of dependency of A = {a, b}. The sim-

ilarity relation of feature subset is formed by taking t norm of the constituents fea-

tures as: RA(x) = Ta∈ARa(x). Using Ta∈A(x) = min {a1(x), a2(x), . . . an(x)} ifA =

{a1(x), a2(x), . . . an(x)}. The equivalence class for decision feature is:

U \D = {{x1, x3, x6} , {x2, x4, x5}}.

The degree of dependency of decision feature on singleton sets is calculated using [75]

and is given by: γ{a}(D) = 1.2
6
, γ{b}(D) = 2.4

6
, γ{c}(D) = 1.2

6
, γ{d}(D) = 1.2

6
, γ{e}(D) =

2.2
6

and γ{f}(D) = 1.2
6

. Since, the value of degree of dependency is highest for the fea-

ture subset {b}, so this feature set is used for finding the potential reduct. Now, iter-

atively adding features to this feature subset and choosing the one producing highest

dependency degree. So, the respective dependencies are: γ{a,b}(D) = 2.2
6
, γ{b,c}(D) =

2.2
6
, γ{b,d}(D) = 2.6

6
, γ{b,e}(D) = 2.2

6
and γ{b,f}(D) = 2.0

6
. The set {b, d} has highest

dependency, continuing as above. γ{a,b,d}(D) = 2.4
6
, γ{b,c,d}(D) = 2.2

6
, γ{b,d,e}(D) = 2.2

6

and γ{b,d,f}(D) = 2.2
6

. Since, there is no increase in dependency for these subset than

feature subset {b, d}. The set {b, d} is the required reduct.
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Table 2.1: Example Dataset

``````````````̀Instances
Features

a b c d e f D

x1 0.4 0.4 1.0 0.8 0.4 0.2 1
x2 0.6 1.0 0.6 0.8 0.2 1.0 0
x3 0.8 0.4 0.4 0.6 1.0 0.2 1
x4 1.0 0.6 0.2 1.0 0.6 0.4 0
x5 0.2 1.0 0.8 0.4 0.4 0.6 0
x6 0.6 0.6 0.8 0.2 0.8 0.8 1

2.4.1 Related Work

Fuzzy rough set based feature selection has been discussed by many researchers in

their work. A discernibiity matrix and similarity relation based fuzzy rough feature

selection is proposed in [76]. A different classes ratio based fuzzy rough set model

is introduced to diminish the impact of noisy instance in the calculation of lower

and upper approximation [90]. The high computational complexity was reduced by

neighbourhood approximation and feature grouping in [71]. Further, an accelerator

for fuzzy rough feature selection was proposed [119]. A fuzzy rough feature selection

for semi supervised data is also introduced where objects are only partially labeled.

The generated subsets are only sub optimal with respect to whole dataset [77].

Researchers exploited fuzzy rough set model for identifying the probability of cervical

cancer in [86]. A special type of relation known as tolerance relation was employed

for feature selection by Jensen et. al. [74]. A method that combines fuzzy c mean

clustering and equivalence relation was proposed for feature selection [174]. Also,

incremental approach to feature selection is also discussed in [115] using fuzzy rough

set. Some of more recent works can be found in [23, 57, 105, 107, 153, 155, 166] that

have employed fuzzy rough set model for feature selection.
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2.4.2 Limitation of Fuzzy Set

Fuzzy set theory effectively deals with the uncertainty arising in the data, but it has

got number of limitations.

� Many of the applications cannot be handled by fuzzy set theory, like the voting

problem wherein some of the voters may vote in favour of the item, some may

be against the item while some may remain neutral. This could be modeled

by having non-membership degree for voters against the item and hesitancy

for neutral voters.

� Fuzzy set theory handles vagueness by assigning a membership degree between

0 and 1 but the uncertainty found in judgement and identification cannot be

simultaneously handled by single value. Thus, there is a need for some theory

that can deal with this uncertainty.

There are number of ways to handle uncertainty arising in information system like

vague set and intuitionistic fuzzy set. Vague set assigns membership based on in-

tervals while intuitionistic fuzzy set assigns membership, non-membership and hesi-

tancy. However, vague set more costly than intuitionistic fuzzy set in handling vague-

ness and Bustice and Burillo [17] showed both of them to be equivalent. Therefore,

intuitionistic fuzzy set provides much better way to handle real world ambiguities.

So, imprecision could be efficiently modeled by intuitionistic fuzzy set.

2.5 Intuitionistic Fuzzy Set

An intuitionitic fuzzy set [4] is an ordered pair (µ, ν) such that 0 ≤ µ, ν ≤ 1 and

0 ≤ µ + ν ≤ 1. For the universe of discourse, an intuitionistic fuzzy set A is given
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by:

A = {(µA(x), νA(x)) | x ∈ U} (2.12)

where µA, νA : U =⇒ [0, 1] and are called membersip and non-membership degree

of an object x respectively.

Some of the properties of intuitionistic fuzzy set are:

� (µ1, ν1) = (µ2, ν2)↔ µ1 = µ2, ν1 = ν2

� (µ1, ν1) ∩ (µ2, ν2) = (min {µ1, µ2} ,max {ν1, ν2})

� (µ1, ν1) ∪ (µ2, ν2) = (max {µ1, µ2} ,min {ν1, ν2})

� The cardinality of intuitionistic fuzzy set is defined as: | A |=
∑

x∈U
1+µA(x)−νA(x)

2

� An intuitionistic fuzzy relation R is an equivalence relation iff:

1. Reflexive: µR(x, x) = 1 and νR(x, x) = 0

2. Symmetric: µR(x, y) = µR(y, x) and νR(x, y) = νR(y, x),∀x, y ∈ U

3. Transitive: µR(x, z) ≥ ∨(µR(x, y)∧µR(y, z)) and νR(x, z) ≤ ∧(νR(x, y)∨

νR(y, z)), ∀x, y, z ∈ U . An intuitionistic fuzzy relation is tolerance rela-

tion if its reflexive and symmetric.

� Some of the common intuitionistic fuzzy t norms are: TM(x, y) = (min(x1, y1),max(x2, y2))

and TW = (max(0, x1+y1−1),min(1, x2+y2)), where x = (x1, x2), y = (y1, y2).

� IM(x, y) = (max(x2, y1),min(x1, y2)) and IW (x, y) = (min(1, x2+y1),max(0, x2+

y2 − 1)) are some of the common intuitionistic fuzzy implicators.

2.5.1 Intuitionistic Fuzzy Rough Set Theory

Integrating rough and intuitionistic fuzzy set theory provides a better or more pre-

cise way of handling uncertainty and vagueness occurring in real valued datasets.
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Employing the above defined terms, intuitionistic fuzzy lower and upper approxi-

mations are defined as:

R ↓A X(x) = infy∈UI(R(x, y), X(y)) (2.13)

R ↑A X(x) = supy∈UT (R(x, y), X(y)) (2.14)

where I and T are intuitionistic fuzzy implicator and t norm respectively. The pair

(R ↓A X,R ↑A X) is called intuitionistic fuzzy rough set. These approximations are

employed in calculating degree of dependency of feature subset and thereby applied

for feature selection.

2.5.2 Related Work

Intuitionistic fuzzy rough set theory is an emerging model that has been applied by

few researchers for feature selection. A genetic algorithm for feature selection was

employed by Lu et. al. [99]. A combination of information entropy with intuitionistic

fuzzy rough set was used for attribute reduction [25]. The structure and properties

of intuitionistic fuzzy rough set was discussed and employed for feature selection

in [44]. An intuitionistic fuzzy rough set model based on distance function and

discernibility matrix was applied for feature selection by Huang et. al. [64] and

Zhang [173] respectively. However, none of them discussed intuitionistic fuzzy rough

set model based on dependency function except few works like [142, 143], etc.

In the current thesis, various methods for feature selection employing fuzzy and

intuitionistic fuzzy rough set models are discussed while addressing the issues like

noise, incompleteness, outliers, etc arising in the dataset.
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2.6 Summary

This chapter dive into the mathematical details of theories that are used to solve

dimensionality problem i.e. feature selection. The notion of rough set theory along

wih its application in feature selection is given. However, the need for data dis-

cretization to apply rough set based feature selection may lead to information loss.

Fuzzy set theory, an extension of rough set theory, associates a membership value

with each object. The hybridization of fuzzy and rough set effectively handles vague-

ness and indiscernibility arising in the data along with overcoming the need for data

discritization. Fuzzy rough set theory has therefore got lot of applications in in-

formation retrieval, feature selection, etc. Fuzzy rough set based feature selection

along with related work in this field is given in this chapter.

A step advancement in fuzzy set theory, intuitionistic fuzzy set theory employs mem-

bership and non-membership value to show the belongingness of an object to a set.

Intuitionistic fuzzy rough set theory is therefore being effectively applied for feature

selection.

***********
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