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PREFACE

Due to advancement in modern technologies, various sources like network of sensors,
interconnected devices, etc generate millions of data every day. This has lead to
circumstances where proportion of data to the number of tools to access the same
is large. Such ever expansive data is rich both in dimension and size (number of
instances). Also, noise, human error in measurement, lack of proper communication,
etc further lead to presence of irrelevant and redundant features, missing values
in the dataset gathered. Hence, it is necessary to preprocess the datasets before
applying any classification algorithm. Feature selection is a preprocessing step to
remove irrelevant and/or redundant features and offers more concise and explicit
descriptions of data. Feature selection has got wide applications in data mining,
signal processing, bioinformatics, machine learning, etc. While instance selection
removes conflicting or spurious data sample arising in the datasets. However, feature
selection (F'S) or instance selection (IS) alone cannot handle the ever increasing size
and dimensionality of dataset. Both the aspects of data reduction must be taken
into consideration for enhancing classification accuracy along with handling missing
values and noise.

Rough set theory has been effectively employed as a tool for 'S to solve many real-life
problems without any additional parameter. However, one of the main limitations
of rough set theory is discretization of data, which might lead to information loss.
Fuzzy and intuitionistic fuzzy rough set comes in handy as a tool to overcome the
limitations of rough set theory. Further, these tools precisely handle the vagueness
and uncertainty arising in the data.

This thesis dive into the details of applying data pre-processing techniques like
missing value imputation, noise removal, feature selection, data reduction or bireduct
generation using fuzzy rough and intuitionistic fuzzy rough set assisted techniques.
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Mathematical formulation of each concept along with underlying model construction
is introduced herein. Hence, an exhaustive study is conducted covering areas such
as data reduction, missing value imputation, noise removal, etc both in supervised

and unsupervised domain.
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