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PREFACE 

Compositional tuning and defect engineering are important tools in the 

development of functional materials with good physical properties. In the present 

scenario, the piezoelectric device market is still dominated by traditional Lead based 

materials such as Pb(ZrxTi1-x)O3, (1-x)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 due to their 

excellent dielectric, piezoelectric and ferroelectric properties. The properties of these 

materials are finely related to the crystal structure and maximum response is achieved 

for the compositions tuned near the morphotropic phase boundary (MPB) regions. MPB 

region is a composition range where the crystal structure changes from one type of 

symmetry to the other, with a nearly vertical phase boundary, which is mostly 

temperature independent, in the temperature-composition diagram.  

Finding new materials with reduced toxicity and without compromising the 

desired piezoelectric properties is the motivation of this thesis. Since MPB is a key for 

obtaining good responses with compositional tuning, an effort has been made to 

develop a new ferroelectric solid solution and explore its compositions for finding 

MPBs and testing physical properties near them. In this thesis, a previously unexplored 

ferroelectric solid solution with formula (1-x)Ba(Cu1/3Nb2/3)O3-(x)PbTiO3 has been 

investigated for its crystal structure, phase transitions and phase stabilities. The present 

work also comprises a comprehensive study of the crystal structure at temperatures 

ranging from cryogenic (14K) to very high temperatures (1073K) and its entanglement 

with various physical properties. These studies have led to the discovery of many 

compositions possessing different crystal structure than the end components 

Ba(Cu1/3Nb2/3)O3 and PbTiO3. Several intermediate crystallographic phases, such as, 

cubic, coexisting cubic and tetragonal phases, coexisting two tetragonal phases, 
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coexisting tetragonal and monoclinic phases etc., are observed while changing 

composition at room temperature. Due to the presence of several distinct phases and 

phase coexistence regions, multiple phase boundaries are found in the phase diagram of 

the solid solution. Composition dependence of the physical properties like dielectric, 

ferroelectric, piezoelectric etc. and their correlation with the microstructure, crystal 

structure has been investigated for various compositions of the solid solution. 

In this thesis, the first-ever construction of the phase diagram has been done for 

(1-x)Ba(Cu1/3Nb2/3)O3-(x)PbTiO3 ceramics. For the very first time in this work, a 

phenomenon of phase separation is noticeably observed, predominantly in a small 

composition region of the solid solution. The MPBs have been observed for relatively 

low Pb-content compositions of the solid solution with negligible thermal expansion 

below pseudocubic phase transition, showing its potential as low-level fatigue 

ferroelectric ceramics. Different advanced characterization techniques like XRD, XPS, 

SEM and EDS have been used to characterize the samples. Compositional controlling 

of different structures and the chemistry of the resulting phases of the solid solution 

have been done. 

The comprehensive investigations on the (1-x)Ba(Cu1/3Nb2/3)O3-(x)PbTiO3 solid 

solution in the present thesis are listed below: 

• Room temperature crystal structural solutions for the entire solid solution at close 

compositional intervals. 

• Temperature-dependent crystal structure solution of selected representative 

compositions near phase boundaries. 

• First ever construction of temperature versus composition phase diagram of the 

solid solution. 
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• Investigation of compositional content for confirmation of stoichiometric integrity 

and homogeneity of the as-prepared samples of the solid solution. 

• Inclusive studies of microstructure, ferroelectric, dielectric and piezoelectric 

properties of the solid solution. 

• Studies of the tailoring effect of MnO2 as an additive on the crystal structure, 

microstructure, dielectric, ferroelectric and piezoelectric properties of a selected 

composition of the solid solution.  

The thesis is organized in 7 different chapters. A brief description of these chapters and 

their important results are as follows: 

Chapter 1: A foundation for basic definitions, terms and concepts driving 

piezoelectricity and ferroelectricity in perovskites has been given in this chapter. The 

origin of high responses of physical properties has been given attention along with 

recent development in MPB ceramics comprising similar solid solutions and defect-

engineered materials. A brief literature review of previous investigations on 

Ba(Cu1/3Nb2/3)O3 compound and its solid solutions are also included in this chapter. 

The objectives of the thesis are listed at the end. 

Chapter 2: This chapter proceeds with a brief introduction to the physical property 

characterization techniques and instruments. The chapter then, unfolds the details of the 

solid solution synthesis process in ceramic form and optimizations of calcination and 

sintering conditions at various compositions. A pure perovskite phase has been obtained 

for almost all the investigated compositions of (1-x)Ba(Cu1/3Nb2/3)O3-(x)PbTiO3 solid 

solution. 
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Chapter 3: This chapter divulges the evolution of room temperature crystal structure as 

composition varies. The crystal structural solutions of the different compositions with 

distinct crystallographic structures are critically comprehended using comparative 

studies of Rietveld Refinement of the structure from XRD patterns considering 

plausible crystal structures and variations in the lattice parameters and unit cell volume. 

Both the end components of the solid solution (x = 0, 1) crystallize in a tetragonal 

crystal structure. The crystal structure of these end components quickly transforms to 

different symmetry in the solid solution, even with the addition of 0.05 concentration 

variation. Various other crystal structures viz., cubic structure (Pm-3m for 0.05 ≤ x ≤ 

0.55), coexistence of cubic and tetragonal structures (‘Pm-3m + P4mm’ for 0.59 ≤ x < 

0.62), coexistence of two tetragonal structures (‘P4mm + P4mm’ for 0.62 ≤ x < 0.65), 

coexistence of monoclinic and tetragonal structures (‘Pm + P4mm’ for 0.65 ≤ x ≤ 0.85), 

coexistence of two tetragonal structures (‘P4mm + P4mm’ for 0.90 ≤ x < 0.975) have 

been observed at room temperature across the compositional series. Including the 

phenomenological differences between the phase coexistence of monoclinic and 

tetragonal structures, the composition region 0.65 ≤ x ≤ 0.85 is further divided in two 

regions and one more phase boundary is assigned in the region. This way, a total of 

seven phase boundaries have been observed at room temperature between these 

different crystal structure combinations. 

Chapter 4: This chapter is focused on the exploration of the crystal structure from 

cryogenic temperatures (14K) to very high temperatures (1075K) for some selected 

representative compositions having distinct crystal structural configurations in the solid 

solution. The nature of phase coexistence was evaluated based on the temperature 

dependent phase stabilities of the compositions near the phase boundaries. 
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Fascinatingly, two types of phase coexistence have been observed in the solid solution. 

One is predominantly found in the composition regions 0 ≤ x ≤ 0.65 and 0.95 ≤ x ≤ 1 

and is the usual first-order thermodynamic phase transition induced, commonly found 

in the perovskites. The dominance of the second type of phase coexistence was 

observed in the 0.75 ≤ x ≤ 0.90 composition region, which exhibits a typical phase 

separation and finds its similarities with quenched and compositionally disordered 

complex perovskite solid solutions. Although small scale phase separation has been 

spotted many times in similar Pb-based ferroelectric solid solutions, but in this solid 

solution a clear visualization of this phenomenon is observed for the very first time. 

These separated phases are believed to be driven by the large strain variation and 

subsequent accommodation of stress. The chapter illustrates the first ever construction 

of a composition versus temperature phase diagram for this solid solution using crystal 

structural and temperature dependent dielectric permittivity studies on various 

compositions. The interpretation of the phase dynamics and phase stabilities of the solid 

solution is included in this chapter. 

Chapter 5: In this chapter, the compositional homogeneity and integrity of some 

selected compositions of the solid solution has been verified by EDS and XPS studies. 

For the entire composition range, several physical characterizations, including 

microstructure, dielectric, ferroelectric and piezoelectric, are described in detail. This 

chapter emphasizes on the establishment of co-relations of these physical properties 

with their crystal structure and microstructure. In the as-prepared conditions the 

composition region 0.70 ≤ x ≤ 1, exhibit good ferroelectric properties having the 

highest responses for the composition lying near the morphotropic phase boundaries.  
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Chapter 6: In this chapter, the effect of the MnO2 additive on a selected composition 

(0.38)Ba(Cu1/3Nb2/3)O3-(0.62)PbTiO3, of the solid solution has been explored. The 

tailoring in the crystal structure, microstructure, dielectric, ferroelectric and 

piezoelectric properties have been observed along with the establishment of a 

correlation between the structure and physical properties of these MnO2 modified 

ceramics. The observed high responses in piezoelectric and ferroelectric properties have 

been demonstrated as a result of formation of defect-engineered ceramics and is 

investigated for defect chemistry based modifications in compositional content and 

valences. An increase in direct piezoelectric strain coefficient from 2.5pC/N to 72pC/N 

has been observed for a typically 1 weight percent of MnO2 additive in 

(0.38)Ba(Cu1/3Nb2/3)O3-(0.62)PbTiO3. 

Chapter 7: This chapter summarizes the main findings of the research work carried out 

for the present PhD thesis and lists a few important suggestions for future 

investigations. 
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