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Preface 

Solar energy is a most abundant, free, clean and sustainable energy source which can be 

directly utilized through the photovoltaic (PV) effect. If technological advancement can 

utilize only 0.2% of the solar radiation falling on earth every second with 10% 

efficiency, it will produce 24 terawatts, sufficient to fulfil the societal needs. However, 

limitation of efficiency in conventional Si-based photovoltaic solar cells, toxic waste 

and CO2 emission during photovoltaic panel production limit their contribution in the 

current energy supply market. Emerging photovoltaic technologies such as ferroelectric 

perovskite solar cells have drawn great attention for their low-cost manufacturing 

techniques and for possibility of brisk increases of power conversion efficiency up to 

25%. Efficiency of conventional PV technologies mainly depends upon the barrier field 

strength at the p-n junctions which separates the charge carriers, and band gap of the 

semiconductor. Maximum efficiency of conventional PV technologies that can be 

achieved is limited by Shockley-Queisser limit. The charge separating electric field i.e., 

the barrier electric field is formed at the time of manufacture of the p-n junction and 

cannot be controlled externally. However, a different PV mechanism in ferroelectric 

photovoltaic materials is present; here photovoltage is not constrained to inbuilt internal 

barrier fields. In ferroelectric materials, separation of photo-excited charge carriers is 

done by polarization induced electric field and this field is present throughout the entire 

crystal and hence also known as the “bulk photovoltaic effect” (BPVE). This property 

of ferroelectric based solar cells can create above-band gap open-circuit voltages which 

is not possible in the conventional solar cells. In spite of these attractive properties, 

there are many challenges in ferroelectric photovoltaic materials like high band gap, low 

conductivity, device fabrication etc. which restricts their efficiency to remain lower than 

the conventional solar cells. These challenges demand more research and investigation 
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on ferroelectric photovoltaic materials. A key challenge is to reduce the wide band gap 

of ferroelectric material to make suitable for exploring visible range spectrum without 

compromising the ferroelectric properties. Thus a proper designing of ferroelectric 

material is required via band gap engineering. The band gap engineering in these 

systems could potentially be approached through chemical substitution, cation ordering, 

quantum size effects, lattice mismatch or super lattice formation.  

        To achieve these goals outlined above, we focused our investigation on the 

“Development of Photo-Ferroelectric Materials for Energy Harvesting and 

Storage” for this Ph.D. thesis. Our motive is to modify the properties of typical 

ferroelectrics like PbTiO3, BaTiO3 and Bi-based perovskite materials in such a way that 

they become useful for ferro-photovoltaic applications. Our detailed investigations on 

various materials have led to several new findings in the field of ferro-photovoltaic 

oxide materials. A brief summary of important findings from our investigation on 

various developed systems in this thesis work is discussed below: 

In Chapter 1, the requisite fundamental concepts, knowledge and literature survey are 

discussed in a detailed and systematic way. This chapter starts with illustrating how the 

energy demand of the world is increasing year by year and still the major source to fulfil 

this demand is fossil fuels. Then the contribution of renewable energy sources 

especially the contribution of solar cells is described here. Different types of solar cells 

along with their efficiencies are compared together and main focus has been paid to 

ferroelectric photovoltaic solar cells which have great potential to increase the 

efficiency. The working principle and the advantages of ferroelectric photovoltaic solar 

cells over conventional solar cells is discussed in detail. Then the physical properties 

that an ideal photo-ferroelectric material should possess are described. Further, the 

different type of ferroelectricity and ferroelectric materials are narrated in detail. A brief 
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review on Pb-based and Pb-free photo-ferroelectric materials has also been carried out 

in this chapter. In this sequence, we have discussed many interesting photo-ferroelectric 

materials, which have low band gap and good conversion efficiency. Finally, we have 

outlined the objective of our research work on ferroelectric photovoltaic oxide 

materials. 

In Chapter 2, we have discussed the experimental method of sample preparation and 

different techniques used to characterize the sample along with their working principle. 

The TGA-DTA measurement, Scanning electron microscopy, X-ray diffraction 

measurement and X-ray photoemission spectroscopy have been employed for thermal, 

morphological, structural, phase, elemental and chemical state analysis. UV-vis 

spectroscopy and Tauc plots using Kubelka Munk function for the band gap 

determination has been described. Temperature dependent permittivity and ac resistance 

were determined from the frequency and temperature dependent complex impedance 

measurement. At the end of this chapter, polarization (P)-Electric field (E) hysteresis 

loop measurements are discussed which is performed to see the ferroelectric nature and 

polarization properties of the sample. 

      In Chapter 3, the results of investigation on PbTiO3 based material is described in 

detail. Crystal structure, micro-structural, optical, dielectric and ferroelectric properties 

have been investigated on various compositions of PbTi1-xMoxO3 (x = 0.025, 0.050, 

0.075, 0.100). All Mo-doped PbTiO3 powder samples were synthesized by solid state 

method using high energy ball milling process. Structural analysis shows all samples 

crystallize into tetragonal phase and unit cell parameters change in such a way that c/a 

ratio increases with increasing substitution concentration. The microstructure of the 

sintered samples exhibit agglomerated grains leading to non-uniformity in grain size 

distribution. Temperature dependent permittivity curve reveals that Curie temperature 
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(Tc) slightly increases with increasing Mo-substitution concentration which is in 

consistence with the increase in tetragonality i.e., c/a ratio as revealed by XRD analysis. 

UV-Vis spectroscopy shows that Mo-substitution in PbTiO3 reduces the band gap 

significantly without influencing the ferroelectric properties. The P-E hysteresis loops 

of all the samples show the ferroelectric nature of the material and increasing tetragonal 

distortion (c/a ratio) with Mo-incorporation implies increase in polarization. So 

enhanced polarization in Mo-substituted samples will result in more efficient separation 

of charge carriers. Mo-substitution in PbTiO3 also increases the conductivity which will 

help the charge carriers, separated by polarization field to reach their respective 

electrodes.  

 In Chapter 4, we have tried to design a Bi-based novel material compositions 

BiY(1-x)MnxO3 (x = 0.0, 0.10, 0.25, 0.50, 0.75 ) that have low band gap, good 

conductivity and significant  ferroelectric polarization. The samples were synthesized 

by solid state method using ball milling process. Structural, morphological, optical, 

dielectric, electrical and ferroelectric properties of BiY(1-x)MnxO3 were analyzed using 

different characterization techniques.  XRD analysis shows that most of the samples 

(except x = 0.75), were indexed with cubic fluorite structure and Fm3m space group. 

Here, we observed that one of the composition x = 0.50 has sufficiently low band gap 

(1.76 eV) and significant ferroelectric polarization. Conductivity of the samples were 

also found to increase with increase in Mn- concentration as well as with increasing 

temperature showing semiconducting behavior of the developed system. 

 In Chapter 5, we have discussed structural, morphological, dielectric, transport, 

impedance and ferroelectric properties of polycrystalline lead free material Ba(1-

x)(Bi0.5Li0.5)xTiO3 (x = 0.10, 0.12, 0.15, 0.20, 0.25). The material crystallizes into 

pseudocubic perovskite structure with space group Pm-3m. Microstructural analysis of 
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the samples suggests a spheroid shaped non-porous grains with homogeneous grain size 

distribution. Temperature dependent permittivity curve of all the compositions reveal 

absence of any high temperature phase transition. This is consistent with XRD analysis 

results showing the most symmetric cubic crystal structure for all the compositions at 

room temperature. One of the composition (x = 0.12) is found to have exceptionally 

high permittivity among all doped compositions. Nyquist plot for all the compositions 

show a single semicircular curve, the radius of which increases with increasing Bi-Li 

concentration and decreases with rise in temperature confirming semiconducting 

behavior. The band gap decreases at first and then starts increasing with increasing Bi-

Li co-substituent concentration. Ferroelectric analysis of various compositions showed 

slim and slanted P-E loops with significant polarization, suitable for energy storage 

applications. The two compositions of Ba(1-x)(Bi0.5Li0.5)xTiO3 with x = 0.12 and 0.25 

have shown extraordinary storage efficiency of ~95% and 96% with good energy 

storage density which seems to be promising material for energy storage devices.  

In Chapter 6, a brief summary of the important findings of the present thesis and 

possibility of future work in this research field, have been discussed.  




