DECLARATION BY THE CANDIDATE

I, *Priya Singh* certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of *Prof. Rajiv Prakash* from July 2017 to July 2022 at the *School of Materials Science & Technology*, Indian Institute of Technology, Banaras Hindu University, Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date : 02/11/2022 Place : Varanasi

Briya Singh (Priya Singh)

Certificate by the Supervisor

It is certified that the above statement made by the student is correct to the best of my knowledge.

gjur Rockesh

Prof. Rajiv Prakash School of Materials Science & Technology, ग/आचार्य IIT (BHU), Varanasi

Professor/आचार्य School of Materials Science & Technology।पवार्थ विज्ञान एवं प्रौद्योगिकी स्कूल Indian Institute of Technology।भारतीय प्रोद्योगिकी संस्थान (Banaras Hindu University), Varanasi/काशी हिन्दू विश्वविद्यालय, वाराणसी

Coordinator School of Materials Science & Technology, IIT (BHU), Varanasi

> Coordinator/समन्वयक School of Materials Science & Technology/पदार्थ विज्ञान एवं प्रौद्योगिकी स्टूल Indian Institute of Technology/भारतीय प्रौद्योगिकी संस्थान ¡Banaras Hindu University), Varanasi/काशी हिन्दू विश्वविद्यालय, वाराणसी

CERTIFICATE

It is certified that the work contained in the thesis titled "Field deployable sensors for health monitoring using colorimetric and chemiluminescence techniques" by "*Priya Singh*" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy, and SOTA.

Ju Rabol

Prof. Rajiv Prakash (Supervisor) School of Materials Science & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi–221005

Professor/आचार्य

School of Materials Science & Technology/पदार्थ विज्ञान एवं प्रौद्योगिकी स्कूल Indian Institute of Technology/भारतीय प्रौद्योगिकी संस्थान (Banaras Hindu University), Varanasi/काशी हिन्दू विश्वविद्यालय, वाराणप्री

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Field deployable sensors for health monitoring using colorimetric and chemiluminescence techniques

Name of the Student: Priya Singh

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "Doctor of Philosophy".

Date: 02/11/2022 Place: Varanasi

Priya Singh (Priya Singh)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for the author's personal use provided that the source and the Institute's copyright notice are indicated.

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Field deployable sensors for health monitoring using colorimetric and chemiluminescence techniques

Name of the Student: Priya Singh

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "Doctor of Philosophy".

Date: 02/11/2022

Place: Varanasi

Priya Singh (Priya Singh)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for the author's personal use provided that the source and the Institute's copyright notice are indicated.

The work presented in this thesis would not have been possible without my close association with many peoples who were always there when I needed them the most. I take this opportunity to acknowledge them and extend my sincere gratitude for helping me make this thesis a possibility. At this moment of accomplishment, first of all, I would like to pay homage to the founder of Banaras Hindu University, Pandit Madan Mohan Malviya Ji, who made this glorious temple to realize spiritual, technical, and scientific knowledge about this vast existing universe.

I embrace the opportunity to express my deep sense of gratitude to my research supervisor **Dr. Rajiv Prakash**, Professor, School of Materials Science & Technology, IIT (B.H.U.), Varanasi for his constant guidance, valuable suggestions, and kind encouragement during my association with his research group. His encouragement, constant support, intellectual stimulation, perceptive guidance, immensely valuable ideas, and suggestions from the initial to the final level enabled me to develop an understanding of the subject. His scholarly suggestions, prudent admonitions, immense interest, constant help, and affectionate behavior have been a source of inspiration for me. His suggestions will remain with me as an inexhaustible source of scientific learning throughout my life.

I would like to express my sincere and whole-hearted gratitude to Dr. P. Maiti, Dr. C. Rath, Dr. S. K. Mishra, Dr. Akhilesh K. Singh, Dr. B. N. Pal, Dr. C. Upadhyay, Dr. A. K. Mishra, Dr. Sanjay Singh, Dr. Ashish K. Singh, and Dr. Nikhil (School of Materials Science and Technology, IIT-BHU, Varanasi) for discussion during seminars and valuable suggestions given by them. I am indeed obliged and sincerely thankful to my RPEC member Dr. I. Sinha, Department of Chemistry, IIT- BHU, for his guidance and untiring attention right from the inception to the successful completion of assigned research work. Most of the results described in this thesis would not have been obtained without close collaboration with a few laboratories. I am thankful to the unknown reviewers who have rejected my papers some times in some of the international conferences and journals. The comments that they provided helped to polish our articles in better shape. But the bigger and nobler cause of thanking them is that the rejections have equipped me with a high level of patience and helped me a lot to exercise/implement my scientific thoughts in practice.

My acknowledgment will never be complete without the special mention of my lab seniors who have taught me the lab culture and have lived by example to make me understand the hard facts of life. I would like to acknowledge Dr. Narsingh Raw Nirala, Dr. Ashish Kumar, Dr. Monika Srivastava, Dr. Uday Pratap Azad, Dr. Neeraj Giri, Dr. Rajiv Kumar Pandey, Dr. Gopal Ji, Dr. Madhu Tiwari, Dr. Kashish, Dr. Preeti Tiwari, Dr. Manish Kumar Singh, Dr. Richa Mishra, Dr. Vinita, Dr. Chandrajeet Verma, Dr. Ravi Prakash Ojha, Vineet Kumar Mall, Dr. Aniruddha Jaiswal, Nikhil, Dr. Bishnu, Ajay Kumar for all their support and motivation during the initial days of my PhD. I can see my thesis in the good shape because of his help in formatting the entire thesis. I express my special thanks to my senior Dr. Ravi Prakash Ojha for his guidance, support, motivation, and valuable suggestions.

Also, I am thankful to my lab fellows and juniors of my lab specially Subhajit Jana, Shweta Pal, Nupur, Saurabh, Rajpal, Shipra, Radhe, Radha, Shivam, Shania, Preetam, and Gaurav for their helping behavior. It's my fortune to gratefully acknowledge my seniors and friends **Dr. Chhotelal Yadav**, Dr. Anamika Kushwaha, Abhishek Sharma, Dr. Priyanka Pandey (Department of Chemistry, BHU), Dr. Savita Yadav, Kavita, Alok Kumar Singh, Shruti Singh (Department of Chemistry) for their generous care and support. Their association has made my stay at IIT (BHU) a pleasurable and memorable experience. They were always beside me during the happy and hard moments to push me and motivate me. My research seniors and juniors from Materials Science, Dr. Aparna, Shanu, Pooja, Krishna, Saurabh, Pravesh, Manish, Abhay, Narendra, Satyaveer, Om Prakash, thanks to one and all. I am also thankful to all, whom I could not mention here who helped me directly or indirectly throughout the work. I am thankful to all non-teaching staff of SMST, IIT (BHU), and central instrument facility center (CIFC) for their cooperation at all levels.

I express my indebtedness to my parents Late Mithlesh Singh and Sri. Rajnath Singh, my sisters Charu, Pragati, and Minakshi for their love, affection, and support during every moment of my life. Words fail me to express my appreciation to my elder brother Himanshu Singh, sister-in-law Poonam and my husband Kamalesh Kumar for their love, affection, continuous support, generous care, and encouragement. I gratefully acknowledge the Ministry of Human Resource and Development (MHRD) and Council of Scientific & Industrial Research (CSIR) New Delhi for providing me with the necessary funding and fellowship to pursue research work. This work would not have been possible without the grace of the "Lord Shiva and Mata Di".

(Priya Singh)

List of Tables

Table No.	Table Caption	Page No.
Table 1.1	Typical properties of nanomaterials used in sensing and catalysis pathway.	36
Table 3.1	Comparative table of steady-state kinetics of different catalytic substrates through TMB oxidation.	61
Table 3.2	Comparison of various nanoparticle-based methods for detection of GSH.	64
Table 4.1	Comparison of catalytic property of 2D carbon with other nanozymes.	80
Table 4.2	Comparison table for the 2D carbon with other nanozymes.	87
Table 4.3	Real sample analysis of A.A. in orange, lemon, and grapes extracts.	88
Table 4.4	Sensing of A.A. in human serum.	89
Table 5.1	Comparison of K_m and V_{max} of TMB with Pt-C ₃ N ₄ and different nanomaterials.	103
Table 5.2	Comparison table for LOD and linear range of Ascorbic acid for Pt-C3N4 and different nanomaterials	109
Table 5.3	Analytical recovery study results of AsA in real samples.	111
Table 6.1	Comparison of non-enzymatic glucose sensors.	130-131
Table 6.2	Glucose spike and recovery in urine samples using eCL imaging.	133
Table 6.3	Comparison of our method with laboratory method for determination of Diabetic conditions	134

Figure No.	Figure Caption	Page No.
Figure 1.1	An illustration of the various sensor components schematically.	3
Figure 1.2	Classification of optical and electrochemical sensors based on	4
	transducer and receptor.	
Figure 1.3	Colorimetric sensing.	7
Figure 1.4	Chemiluminescence mechanism for the luminol-H ₂ O ₂ system.	8
Figure 1.5	Nanomaterial's subdivision on the basis of morphology and	13
	size.	
Figure 1.6	The size, shape, material, and surface of the nanoparticles.	14
Figure 1.7	Structure of various Carbon nanoparticles (a) fullerenes	16
	molecule, (b) graphene sheet, (c) carbon nanotubes, (d) carbon	
	nanofibers, and (e) carbon black nanomaterials.	
Figure 1.8	Role of nanomaterials for sensing biomolecules through	18
	colorimetric and chemiluminescence techniques.	
Figure 1.9	A brief timeline for sequential development of nanozyme.	19
Figure 1.10	Mechanism of colorimetric sensing based on TMB as a	23
	chromogenic substrate.	
Figure 1.11	Types of Nanozymes.	23
Figure 1.12	Behaviour of nanomaterials in the CL system.	27
Figure 1.13	A mechanism for the oxidation of luminol in the eCL system.	28
Figure 1.14	Jablonski diagram.	30
Figure 1.15	Flow chart of research strategy.	36
Figure 2.1	Schematic diagram of UV-Vis spectrophotometer.	39
Figure 2.2	UV-Visible spectrometer (EPOCH microplate reader (Biotek))	39
Figure 2.3	(a) Michelson Interferometer	41
	(b) FTIR Spectrometer (NICOLET iS5 Thermo Scientific)	
Figure 2.4	(a) Schematic diagram for X-ray diffraction	42
	(b) Miniflex 600 X-ray Diffractometer (Rigaku)	
Figure 2.5	(a) X-ray photoelectron spectrometer	43
	(b) Schematic representation of X-ray Photon spectroscopy (K-	
	alpha model of Thermo Fischer Scientific)	
Figure 2.6	(a) Scanning electron microscope' Schematic presentation	44
	(b) Scanning electron microscope (FEI NOVA NANO SEM	

	450, Courtesy CIFC IIT BHU)	
Figure 2.7	(a) Schematic representation of different modes in TEM	46
	(Image credit: Black Tubus)	
	(b) Transmission electron microscope with EDX (FEI,	
	TECHNAI G ² 20 TWIN)	
Figure 2.8	Autolab (PGSTAT 101, Metrohm, Netherlands)	47
Figure 3.1	SEM images for (a) Pure MoS_2 (b) Fe-MoS ₂ . TEM images for	54
	MoS_2 (c,d) and Fe-MoS ₂ (e,f). Analogous SAED (selected area	
	electron diffraction) for MoS_2 (inset c) and Fe-MoS ₂ (inset e),	
	(g) FTIR spectra for MoS_2 and Fe-MoS ₂ . XRD profiles of	
	MoS_2 as well as Fe-MoS ₂ (h). XPS survey spectrum of pristine	
	MoS ₂ and Fe-MoS ₂ (i).	
Figure 3.2	EDS mapping. (a) SEM image for mapping, (b) Elemental	55
	mapping of Mo, (c) S, (d) Fe	
Figure 3.3	EDS spectrum of Fe-MoS ₂	55
I Iguite 5.5		55
Figure 3.4	XPS spectra of Fe-MoS ₂ corresponding to (a) Fe 2p. (b)	56
8	Mo 3d, (c) S 2p. XPS spectra of MoS ₂ (d) Mo 3d, (f) S 2p.	
Figure 3.5	(a) UV-Visible spectrum representing comparison for	57
	mimetic behavior of various metal ions doped MoS ₂ .	
	(b) UV-Visible Spectrum and (inset b) Endpoint spectrum	
	at 652 nm showing the effect of percentage doping of Iron	
	on the mimetic activity of MoS ₂ .	
		=0
Figure 3.6	UV-Visible spectra with different combinations (a) GSH	59
	$(100 \ \mu\text{L}) + 1\text{MB} (50 \ \mu\text{L}) (b) \text{ Fe-MoS}_2 (10 \ \mu\text{L}) + 1\text{MB} (50 \ \mu\text{L}) (b) \text{ Fe-MoS}_2 (10 \ \mu\text{L}) + 1 \ \text{MB} (50 \ \mu\text{L}) (b) \text{ Fe-MoS}_2 (10 \ \mu\text{L}) + 1 \ \text{MB} (50 \ \mu\text{L}) (b) \text{ Fe-MoS}_2 (10 \ \mu\text{L}) + 1 \ \text{MB} (50 \ \mu\text{L}) (b) \text{ Fe-MoS}_2 (10 \ \mu\text{L}) + 1 \ \text{MB} (50 \ \mu\text{L}) (b) \text{ Fe-MoS}_2 (10 \ \mu$	
	μ L) (c) GSH (100 μ L) + Fe-MoS ₂ (10 μ L) + TMB (50 μ L)	
	(B) time-based kinetic study for (a) Fe-MoS ₂ , (b) H_2O_2 +	
	TMB and (c) Fe-MoS ₂ + H_2O_2 +TMB . (corresponding	
	contrast image shown in inset). TMB (600 μ M), Fe-MoS ₂	
	(0.2 μ g/ml), and H ₂ O ₂ (400 μ M) was the corresponding	
	concentration used in the system.	

Figure 3.7	The catalytic behaviour of Fe-MoS ₂ dependent of (a)	60
	Temperature, (b) pH.	
Figure 3.8	Enzyme kinetic study of Fe-MoS $_2$ was done. Optimized	62
	condition of Fe-MoS ₂ (0.2 μ g/ml) in 100 μ L of acetate	
	buffer (A, B) Kinetic study of $Fe-MoS_2$ for TMB in a	
	constant H_2O_2 concentration (400 μ M) (C, D) kinetic for	
	H_2O_2 in constant TMB concentration (600 μ M).	
Figure 3.9	The proposed mechanism for the GSH detection through	63
	colorimetric method based on TMB oxidation in the	
	presence of H_2O_2 and catalytically active Fe-MoS ₂ .	
D . 210		()
Figure 3.10	(a) UV -Visible spectra for colorimetric (optical) sensing of	63
	GSH in acetate buffer based on Fe-MoS ₂ + TMB + GSH.	
	Inset shows color change with varying GSH concentration	
	(0, 1, 5, 10, 15, 20, 25, 30 µM)	
	(b) curve for calibration plot.	
Figure 3.11	Interference study of GSH with different amino acids.	65
Figure 3.12	The reproducibility of the developed colorimetric sensor	66
	(a) Intra as well as (b) Inter-day research in identical	
	conditions for GSH (0 μ M to 30 μ M) detection.	
Figure 3.13	(a) UV-Visible spectrum of GSH level in the blood sample	66
	(based on Fe-MoS ₂) and the color change of Eppendorf	
	solution in presence of GSH level shown in the inset (at	
	concentrations: 0, 1, 5, 10, 15, 20, 25, 30 µM), and	
	(b) corresponding calibration curve.	
Figure 4.1	SEM image of 2D carbon (a) at 5 μ M scale, (b) at 1 μ M	73
	Scale	
Figure 4.2	Characterization of 2D carbon. (a) FTIR spectrum, (b) XRD,	75
	(c) TEM image at 50 nm scale, (d) at 10 nm scale (Inset shows	
	SAED pattern), (e) HAADF image area for mapping, (f)	

	mapping image corresponding to C, (g) N, (h), O respectively.	
Figure 4.3	XPS study of 2Dcarbon (a) XPS survey spectrum, (b)	76
	Deconvoluted XPS spectra for C, (b) O, (c) N respectively.	
Figure 4.4	Absorption spectra for the oxidase activity of 2D carbon and	78
	inhibition property of A.A.	
Figure 4.5	Endpoint spectrum for 2D carbon optimization.	79
Figure 4.6	Steady-state kinetic assay of 2D carbon as nanozyme.	80
	(a) The variation of enzyme velocity with TMB concentration,	
	(b) Line weaver Burk plot.	
Figure 4.7	Schematic representation of oxidation of TMB.	81
Figure 4.8	Schematic representation of the principle for colorimetric	82
	detection of A.A.	
Figure 4.9	Spectrum for the optimization of the parameters for nanozyme.	83
	(a) Temperature, (b) pH	
Figure 4.10	(a)UV-Vis absorption spectra for A.A. sensing (1 to 70	84
	μ M). (b) Endpoint calibration plot at 450 nm.	
Figure 4.11	(a) Reproducibility study over different days, (b) cycle stability	85
	of catalytic activity of 2D carbon	
Figure 4.12	Interference study of A.A. in the presence of Glucose, Citric	86
	acid, Cu ²⁺ , Ca ²⁺ , K ⁺ , Cl ⁻ , GSH (in the absence and presence of	
	NEM)	
Figure 5.1	(a) UV-Visible spectra and Tauc plot of g-C ₃ N ₄ and Pt-g-	98
	C_3N_4 ; (b) XRD pattern of $g-C_3N_4$ and $Pt-g-C_3N_4$; (c) FT-IR	
	spectra of $g-C_3N_4$ and $Pt-g-C_3N_4$; (d) XPS survey spectra of	
	$g-C_3N_4$ and $Pt-g-C_3N_4$.	
Figure 5.2	Scanning electron microscopy images of (a) g-C ₃ N ₄ and	99
	(b) Pt-C ₃ N ₄ ; TEM image of (c) g -C ₃ N ₄ and (d) Pt-g-C ₃ N ₄ ;	
	inset shows corresponding SAED pattern; (e) Particle-size	
	distribution curve of Pt nanoparticles anchored over the g-	
	C ₃ N ₄ ; (f) EDX spectrum of the Pt@g-C ₃ N ₄ ; (g) Elemental	
	mapping of Pt-g-C ₃ N ₄ corresponding to (i) C, (ii) N, (iii) Pt	

	respectively.	
Figure 5.3	(a) UV-visible spectrum for different combinations.	100
	(b) The absorbance spectra (corresponding to 450 nm)	
	in the presence and absence of AA at pH 4.	
Figure 5.4	Endpoint absorption spectra (a) Optimization of pH and (b)	101
	Temperature.	
Figure 5.5	(a) Optimization of TMB	103
	(b) Lineweaver-Burk plot in the presence of acetate buffer,	
	TMB, and Pt@g-C ₃ N ₄	
Figure 5.6	Schematic demonstration of TMB's oxidation using Pt@g-	105
	$C_3N_4.$	
Figure 5.7	Cyclic voltammetry study	106
Figure 5.8	(a) The UV-visible absorption spectrum for different	107
	concentrations of AsA (1, 5, 10, 20, 30, 50, 75, 100 µM)	
	(b) Linear calibration plot.	
Figure 5.9	(a) Selectivity of AsA in the presence of different	108
	interfering agents (Glu, Lac, Galac, Man, Na ⁺ , K ⁺ , Ca ²⁺ ,	
	Mg^{2+} , CA, Fruc, AsA) and (b) Corresponding spectral	
	diagram.	
Figure 5.10	(a) Cycle stability and (b) Reproducibility study over	110
	different days.	
Figure 5.11	Paper strip kit-based Colorimetry (a) Procedure for using	112
	kit (b) Color chart to determine AsA conc. μ M) (c) Image	
	showing the color corresponding to different	
	concentrations of AsA.	
Figure 6.1	(a) UV-Visible spectra, (b) TEM image of GNPs, and (c)	121
	GNPs-PDT, (d) EDS mapping of composition of GNPs-	
	PDT	
Figure 6.2	Tauc plot of GNPs and GNPs-PDT.	122
Figure 6.3	Optimization of eCL imaging on the luminol-O2 system	123
	with (a) different volumes of GNPs-PDT (b) Luminol	
Figure 6.4	Chemiluminescence spectra of (a) Luminol + GNPs (b)	124

	Luminol + GNPs + PDT (c) Luminol + GNPs + PDT + 1	
	mM Glucose (d) Luminol + GNPs + PDT + 2 mM	
	Glucose.	
Figure 6.5	Schematic illustration of catalytic and sensing mechanism	125
	based on GNPs-PDT modified luminol-O2 system. PDT	
	treated GNPs accelerated reduction of O ₂ for the formation	
	of O ₂ radicals, which leads to the oxidation of luminol and	
	visualizing eCL signal by naked eyes in terms of CL	
	imaging. In the presence of glucose, the inhibition effect of	
	eCL imaging.	
Figure 6.6	(b) eCL imaging signal (stability upto 20 min)	127
Figure 6.7	Reproducibility study over different days	128
Figure 6.8	Under optimized conditions, (a) validation of eCL imaging	129
	stability and enhanced signal, (b) Assay process of proof of	
	concept for quantification of glucose in urine sample using	
	inhibition of eCL imaging signal, and (c) Calibration curve of	
	eCL imaging response in the presence of standard glucose	
	spiked in human urine.	
Figure 6.9	Determination of selectivity and interferences in the presence	132
	of matching sugar molecules for eCL imaging in urine	
	samples.	
Figure 6.10	Determination of glucose level in 15 volunteers, including	134
	healthy and diabetic urine samples (Urine sample obtained	
	from Hospital).	