Conjugated polymer nanocomposites for electrochemical hydrogen production and supercapacitor applications

Thesis Submitted in Partial Fulfilment for

the Award of Degree

Doctor of Philosophy

By

Ajay Kumar

Supervisor Prof. Rajiv Prakash

SCHOOL OF MATERIALS SCIENCE & TECHNOLOGY INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI-221005

Roll. No. 16111501

2022

CERTIFICATE

It is certified that the work contained in the thesis titled "Conjugated Polymer Nanocomposites for Electrochemical Hydrogen Production and Supercapacitor Applications" by "Ajay Kumar" has been carried out under my supervision and this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy, and SOTA.

Kaled

Prof. Rajiv Prakash (Supervisor) School of Materials Science & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi–221005 Professor/आचाय

School of Materials Science & Technology/पदार्थ विज्ञान एवं प्रौद्योगिकी स्कूल Indian Institute of Technology/भारतीय प्रौद्योगिकी संस्थान (Banaras Hindu University), Varanasi/काशी हिन्द्र विश्वविद्यालय, वाराणसी

DECLARATION BY THE CANDIDATE

I, *Ajay Kumar* certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of *Prof. Rajiv Prakash* from **December 2016 to December 2022** at the *School of Materials Science & Technology*, Indian Institute of Technology, Banaras Hindu University, Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 26 | 12 | 2022 Place: Varanasi

Certificate by the Supervisor

It is certified that the above statement made by the student is correct to the best of my knowledge.

School of Materials Science & School of Materials s Science & T (Banaras Hindu UniversIIT, (BHU), Varanasi

Coord

School of Materials Science & Technology, IIT (BHU), Varanasi Coordinatori समन्वयंक School of Materials Science & Technology/पदार्थ विज्ञान एवं प्रौद्योगिकी स्कूल Indian Institute of Technology/भारतीय प्रौद्योगिकी संस्थान

(Banaras Hindu University), Varanasi/काशी हिन्दू विश्वविद्यालय, वाराणसी

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis:Conjugated Polymer Nanocomposites for Electrochemical
Hydrogen Production and Supercapacitor Applications

Name of the Student: Ajay Kumar

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "Doctor of Philosophy".

Date: 26/12/2022 Place: Varanasi

Ajay Funch (Ajay Kumar)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for the author's personal use provided that the source and the Institute's copyright notice are indicated.

Acknowledgement

I would like to extend my deepest sincerest gratitude to all the people who helped in any manner, who have shared the effort and knowledge in order to make this research a reality. Whatever has been accomplished and whatever has been the product of every endeavour, there is a great source of all effort, striving, guidance and gracious blessings without whom this task would have been impossible.

First and foremost, I would like to pay the homage to the founder of Banaras Hindu University, Pandit Madan Mohan Malviaji, who made this this magnificent sanctuary to attain spiritual, intellectual, and scientific understanding of this huge cosmos.

I would like to take this opportunity to offer my sincere gratitude to my respected supervisor **Professor Rajiv Prakash**, School of Materials Science & Technology, IIT (B.H.U.), Varanasi, for his unwavering support, insightful advice, and encouraging words throughout my time working with his research team. I was able to gain the knowledge of the topic because of his consistent encouragement, intellectual stimulation, astute advice, and incredibly valuable ideas and suggestions from the beginning to the end. I have been inspired by his thoughtful advice, wise cautions, intense interest, ongoing assistance, and kind demeanour.

I would like to express my sincere and whole hearted gratitude to **Prof. P. Maiti**, **Dr. A. K. Singh, Dr. C. Rath, Dr. C. Upadhyay, Dr. B. N. Pal, Dr. Ashish Kumar Mishra, Dr. Sanjay Singh, Dr. Shravan Kumar Mishra and Dr. Nikhil** (School of Materials Science and Technology, IIT-BHU, Varanasi) for discussion during seminars and valuable suggestions given by them. I am indeed obliged and sincerely thankful to my RPEC member **Dr. Indrajeet Sinha**, Department of Chemistry, IIT (B.H.U.) for his guidance and untiring attention right from the inception to the successful completion of assigned research work. Without close cooperation, most of the findings in this thesis would not have been possible. I am appreciative to the anonymous reviewers who repeatedly helped me suggesting changes and guided me on my articles. Their feedback allowed me to improve articles by giving them a more polished finish.

Acknowledgement

My acknowledgement really deserves the special mention of my seniors in the lab who have taught me the lab culture and basic principles of the journey of research. I would like to acknowledge Dr. Narsingh Raw Nirala, Dr. Uday Pratap Azad, Dr. Monika Srivastava, Dr. Ashish Kumar, Dr. Rajiv Kumar Pandey, Dr. Gopal Ji, Dr. Neeraj Giri, Dr. Madhu Tiwari, Dr. Kashish, Dr. Preeti Tiwari, Dr. Manish Kumar Singh and Dr. Richa Mishra, Dr. Vinita, Dr. Chandrajeet Verma, Dr. Ravi Prakash Ojha for all their support and motivation during the initial days of my PhD. I express my special thanks to Dr. Ashish Kumar for his guidance, motivation and valuable suggestions during the tenure my PhD.

Also, I am thankful to my lab fellows, specially Vineet Kumar Mall, Nikhil, Aniruddha, Subhajit, Priya, Shweta, Saurabh, Rajpal, Shipra, Nupur, Radhe for their helping behaviour. A special thanks to Saurabh for his help during my work. It's my fortune to gratefully acknowledge to my research seniors and juniors from the School of Materials Science & Technology Dr. Om Prakash, Pragyan, Deepti, Bishu Pada Majee, Abhay Narayan, Manish, Ravi Prakash, Raman Hasariya from the list is endless...thanks to one and all. Very special mentioned of my friends who helped me directly or indirectly throughout the work. I am thankful to all non-teaching staff of SMST, IIT (BHU) and CIFC for their cooperation at all levels. I also acknowledge Shiv Charan Saroj (Shiv Bhaiya) for his helping hand.

I gratefully acknowledge UGC, NewDelhi for providing me the necessary funding and fellowship to pursue the research work.

I express my indebtedness to my parents Smt. Basmati Devi and Shri Teemal Prasad and sisters for their love, affection, and support during every moment in my life. This work would not have been possible without the grace of the Almighty "Maa Durge, Maa Saraswati and Baba Kashi Vishwanath".

Ajon Kumal

(Ajay Kumar)

Figure No.	Figure Caption	Page No.
Figure 1.1	Structure of the Carbazole monomer	5
Figure 1.2	Mechanism of polymerization of carbazole using an	5
	oxidizing agent	
Figure 1.3	Synthesis mechanism of polypyrrole	6
Figure 1.4	Range of conductivity comparison of a conjugated	7
	polymer in undoped (pure) and doped conditions	
Figure 1.5	(a) Creation of polaron, bipolaron and bipolaron band	8
	on a different level of doping, (b) merging of the band	
	at the high level of doping, (c) distribution of gaussian	
	states in LUMO and HOMO of conjugated polymers	
Figure 1.6	(a) Creation of two soliton charges on the trans-PA	8
	chain, (b) Band structure of trans-PA comprising of	
	soliton with neutral, negative, and positive charge	
Figure 1.7	Various techniques to synthesize the conjugated	14
	polymer nanocomposites using CPs and nanomaterials	
Figure 1.8	Different areas of applications of conjugated polymer	15
	nanocomposites	
Figure 1.9	Different areas of electrochemical applications of	18
	conjugated polymer nanocomposites	
Figure 1.10	Potential energy diagram for a reaction. An	24
	electrocatalyst reduces the activation energy of an	
	electrochemical reaction, frequently lowering the	
	electric Potential at which the reaction occurs	
Figure 1.11	A schematic for the electrode poisoning during indirect	29
	pathways of FAO at (a) Pt/GC, and (b) Pt/PANi/GC	
	electrodes where the amount of adsorbed CO is	
	reduced, and PANi may even trap CO more effectively	
Figure 1.12	HER mechanism on the electrode's surface in acidic	32
	and alkaline conditions	
Figure 1.13	A volcano plot for an experimentally determined j_0 for	37
	hydrogen adsorption on the surface of a catalyst as a	

	function of DFT-calculated Gibbs free energy for	
	hydrogen adsorption (ΔG_{adsH^*})	
Figure 1.14	Ragone plot for various energy storage devices; CP	39
	stands for conjugated polymers	
Figure 1.15	(a) A conventional capacitor, (b) an EDLC, (c) a	42
	pseudocapacitor, and (d) a hybrid capacitor	
Figure 1.16	Schematic illustration of a mechanism for (a) an EDLC	43
	and (b) a pseudocapacitor	

Figure 2.1	Schematic diagram and photograph of a UV-Visible spectrophotometer	51
Figure 2.2	(a) Block diagram of the diffraction pattern of X-ray, and(b) Diffractometer photograph	52
Figure 2.3	(a) Block diagram (b) photograph of FTIR spectrophotometer	53
Figure 2.4	(a) Block diagram (data extracted from microbe notes)and (b) photograph of SEM microscope instrument	55
Figure 2.5	(a) Schematic diagram and (b) photograph of a typical TEM microscope instrument	57
Figure 2.6	(a) Basic principle and (b) photograph of XPS spectrophotometer	58
Figure 2.7	Photograph of BET instrument for surface area measurement	60
Figure 2.8	(a) A typical three-electrode system of an electrochemical cell and (b) CHI7044 electrochemical workstation (in our lab)	61
Figure 2.9	(a) A typical cyclic voltammogram and (b) CV waveform and (c) LSV waveform	62

Figure 3.1	(I) UV-Visible spectra of PCz, WO ₃ , PCz-WO ₃ /1, PCz-	74
_	WO ₃ /2 and PCz-WO ₃ /4 and (II) enlarged view of fig	
	3.1(I) from 300 to 500 nm	

Figure 3.2	(I) X-ray diffraction pattern of PCz, WO ₃ , PCz-WO ₃ /1,	75
	PCz-WO ₃ /2 and PCz-WO ₃ /4, Le Bail profile matching	
	and integrated intensity refinement of (II) WO ₃ and (III)	
	PCz-WO ₃ /4	
Figure 3.3	FTIR spectrum of PCz, WO ₃ , PCz-WO ₃ /1, PCz-WO ₃ /2	77
	and PCz-WO ₃ /4	
Figure 3.4	SEM of (a) PCz, (b) WO ₃ , (c) PCz-WO ₃ /1, (d) PCz-	79
	$WO_3/2$ and (e) PCz- $WO_3/4$. Encircled area of the inset	
	of fig. 4b shows zoomed view of WO ₃ as attached in 4b	
Figure 3.5	TEM image and SAED pattern of (a, a') PCz, (b, b') WO ₃ , (c,	80
	c') PCz-WO ₃ /1, (d, d') PCz-WO ₃ /2 and (e, e') PCz-WO ₃ /4	
Figure 3.6	DPV (anodic scan) of PCz, WO ₃ , PCz-WO ₃ /1, PCz-	82
	WO ₃ /2 and PCz-WO ₃ /4 vs. Ag/AgCl in 0.5 M H ₂ SO ₄ +	
	1.0 M HCOOH. Lower inset indicates the DPV response	
	of bare GCE and upper inset indicates the DPV response	
	of WO ₃	
Figure 3.7	CA of PCz, WO ₃ , PCz-WO ₃ /1, PCz-WO ₃ /2 and PCz-	83
	WO ₃ /4 at (I) 0.26 V and (II) 0.42 V vs. Ag/AgCl in 0.5	
	M H ₂ SO ₄ containing 1.0 M HCOOH. Inset shows	
	zoomed view of similar and respective plots	
Figure 3.8	EIS of PCz, WO ₃ , PCz-WO ₃ /1, PCz-WO ₃ /2 and PCz-	85
	WO ₃ /4 at (I) OCP, (II) 0.26 V, (III) 0.42 V and (IV)	
	comparative EIS of PCz-WO ₃ /4 at OCP, 0.26V and	
	0.42V vs. Ag/AgCl in 0.5 M H ₂ SO ₄ + 1.0 M HCOOH.	
	The inset of Fig. 8I to 8IV shows a zoomed view of	
	similar and respective EIS plots	

Figure 4.1	XRD of (a) Le Bail Profile fitting of the NFS XRD	98
	pattern, (b) XRD pattern of pure PPy and PPy/NFS	
	composites, (c) FTIR spectra of pure PPy, pure NFS, and	
	their composites, (d) TGA of pure PPy, pure NFS and	
	PPy/NFS-5%	

Figure 4.2	XPS spectra of (a) peak survey of pure PPy,	100
	Deconvoluted high-resolution XPS peaks of pure PPy (b)	
	C1s, (c) N1s, (d) peak survey of pure NFS, Deconvoluted	
	high-resolution XPS peaks of pure NFS (e) Na1s, (f)	
	Fe2p, (g) S2p and (h) O1s and (i) P2p	
Figure 4.3	XPS spectra of PPy/NFS-5% (a) peak survey, high-	101
	resolution deconvoluted XPS peaks of (b) C1s, (c) N1s,	
	(d) O1s, (e) Na1s, (f) Fe2p, (g) S2p and (h) P2p	
Figure 4.4	N_2 adsorption-desorption isotherm of (a) pure PPy, (b)	103
	pure NFS and (c) PPy/NFS-5%, (d) pore size distribution	
	curve PPy/NFS-5%	
Figure 4.5	SEM images of (a) pure PPy, (b) pure NFS and (c)	105
	PPy/NFS-5%, (d) TEM image (inset shows the HR-TEM	
	image), (e) EDAX, and (f) elemental mapping of	
	PPy/NFS-5%	
Figure 4.6	LSV curve of (a) all ratios of PPy/NFS composite	108
	materials, (c) PPy/NFS-5% with blank Torrey paper,	
	Pt/C, pure PPy, and pure NFS. Tafel slope of (b) all	
	PPy/NFS composite materials ratios, (d) PPy/NFS-5%	
	with Pt/C, pure PPy, and pure NFS. (e) stability of LSV	
	curve of PPy/NFS-5%. (f) EIS spectra of all PPy/NFS	
	composites with blank Torrey, pure PPy, and pure NFS.	
Figure 4.7	(a) LSV polarization curve at different scan rates, (b)	112
	LSV curve in the different medium at a scan rate of 10	
	mV/s, (c) LSV curve comparison for environmental	
	stability and (d) Chronoamperometry curve for the long-	
	term stability of PPy/NFS-5% in 0.5 M H ₂ SO ₄	

Figure 5.1	(a) XRD patterns corresponding to pure NFPS and Ni-	121
	doped NFPS with different concentrations, (b) XRD of	
	pure PPy, and composite PPy/NFPS(Ni _{0.5})	
Figure 5.2	(a) FTIR spectra of pristine PPy, pristine NFPS and its	123
	composites with varying doped amounts of Ni in NFPS,	

	(b) Thermogravimetric Analysis (TGA) curve of pristine	
	PPy, pristine NFPS(Ni _{0.5}), and PPy/NFPS(Ni _{0.5})	
	composite	
Figure 5.3	XPS spectra of PPy/NFPS(Ni _{0.5}) composite (a) XPS	125
	survey of PPy/NFPS(Ni _{0.5}) composite, deconvoluted	
	high-resolution XPS of (b) C1s, (c) N1s, (d) O1s, (e)	
	Na1s, (f) Fe2p, (g) Ni2p, (h) S2p and (i) P2p	
Figure 5.4	N_2 isotherm of (a) pristine PPy, (b) pristine NFPS(Ni _{0.5})	127
	and (c) PPy/NFPS(Ni _{0.5}), (d) curve of pore-size	
	distribution of PPy/NFPS(Ni _{0.5})	
Figure 5.5	SEM image of (a) pristine PPy, (b) pristine NFPS, (c)	129
	PPy/NFPS-5% (optimized ratio for NFPS), (d)	
	NFPS(Ni _{0.5}), (e) PPy/NFPS(Ni _{0.5}), (f) elemental mapping	
	of PPy/NFPS(Ni _{0.5}), (g) EDAX of PPy/NFPS(Ni _{0.5})	
Figure 5.6	Polarization curves of (a) different PPy/NFPS(Nix)	134
	composites ratios, (c) PPy/NFPS-5% and	
	PPy/NFPS(Ni _{0.5}) along with 20% Pt/C, pristine PPy,	
	pristine NFPS and blank Torrey. The Tafel slope of (b)	
	different PPy/NFPS(Nix) composites ratios, (d)	
	PPy/NFPS-5% and PPy/NFPS(Ni _{0.5}) along with 20%	
	Pt/C, pristine PPy and pristine NFPS	
Figure 5.7	(a) LSV curve of PPy/NFPS(Ni _{0.5}) at the different scan	136
	rate, (b) stability of LSV curve of PPy/NFPS(Ni _{0.5}) (inset	
	of figure7(b) shows the electrochemical setup), (c) LSV	
	curve of PPy/NFPS(Ni _{0.5}) in different electrolytic media,	
	(d) environmental stability test using LSV of	
	PPy/NFPS(Ni _{0.5}), (e) EIS spectra of different ratios of	
	PPy/NFPS(Ni _x) composites, inset of figure 7(e) shows the	
	zoom view and equivalent circuit, and (f)	
	chronoamperometry of PPy/NFPS(Ni _{0.5})	
Figure 5.8	(a) CV curve of pure PPy at the different scan rate, (b)	139
	its corresponding current density vs. scan rate curve, (c)	
	CV curve of pure NFPS at the different scan rate, (d) its	

corresponding current density vs. scan rate curve, (e) CV	
curve of PPy/NFPS(Ni _{0.5}) at different scan rate and (f) its	
corresponding current density vs. scan rate curve for the	
estimation of electrochemical surface area (ECSA)	

Figure 6.1	(a) XRD spectra of pure NFS and NFS(Nix) with	146
	different Ni doping, (b) The XRD pattern of pristine	
	PPy, PPy/NFS-5% and PPy/NFS(Ni _{0.5}) composites	
Figure 6.2	SEM image of (a) pristine PPy, (b) NFS pure, (c)	147
	composite PPy/NFS-5%, (d) NFS(Ni _{0.5}) (optimized	
	ratio for Ni), (e) composite PPy/NFS(Ni _{0.5}) and (f)	
	elemental mapping of PPy/NFS(Ni _{0.5})	
Figure 6.3	(a) The CV curve of pure PPy, pure NFS, and PPy/NFS-	149
	5% composites, (b) CV curve of PPy/NFS-5% with pure	
	PPy and pure NFS, (c) CV of PPy/NFS-5% at the	
	different scan rates, and (d) corresponding specific	
	capacitance, (e) Galvanic charge-discharge (GCD) of	
	PPy/NFS-5% at different current density, (f) specific	
	capacitance corresponding to GCD at different current	
	densities	
Figure 6.4	(a) CV curve of blank Torrey paper, pure PPy, pure NFS	151
	and various $PPy/NFS(Ni_x)$ composites, (b) CV of	
	$PPy/NFS(Ni_{0.5})$ with pure PPy and pure NFS for	
	comparison, (c) CV at different scan rates and (d) GCD	
	curve of PPy/NFS(Ni _{0.5}) at different current densities	
Figure 6.5	(a) Comparison of C_{sp} of PPy/NFS-5% and	153
	PPy/NFS(Ni _{0.5}) along with pristine PPy and NFS, and	
	(b) GCD curve comparison of PPy/NFS-5% and	
	PPy/NFS(Ni _{0.5})	

List of Tables

Table No.	Table Caption	Page No.
Table 1.1	Various conjugated polymers and their years of discovery	3
Table 1.2	Classification of conducting polymers based on their chemical structure	4
Table 3.1	Structural parameters for WO ₃ and PCz-WO ₃ /4 from Le- ball profile fitting	76
Table 3.2	Current densities of different electrodes in potentiostatic condition at 500 s <i>vs.</i> Ag/AgCl	83
Table 3.3	Various modified electrodes for the oxidation of formic acid	86
Table 4.1	Structural parameters for NFS	96
Table 4.2	The functional group details analyzed from FTIR spectra	96
Table 4.3	Comparison of HER performance of some recent polymer- based electrodes	107
Table 5.1	Structural information of synthesized samples	121
Table 5.2	Different functional groups in PPy and NFPS as analyzed from FT-IR spectra	122
Table 5.3	Performance comparison of recently published electrocatalyst based on conjugated polymer for HER	131

List of Acronyms/Abbreviations

μA	:	Microampere
μL	:	Microlitre
μΜ	:	Micromolar
υ	:	Scan rate
°C	:	Degree Celsius
0D	:	Zero dimensional
1D	:	One dimensional
2D	:	Two dimensional
3D	:	Three dimensional
А	:	Effective surface area
APS	:	Ammonium persulphate
Aq.	:	aqueous
С	:	Concentration
CD	:	Charge-discharge
cm	:	Centimeter
Conc.	:	Concentrated
СР	:	Conjugated polymer
CV	:	Cyclic Voltammetry
D	:	Diffusion coefficient
DI	:	Deionized
DPV	:	Differential Pulse voltammetry
ECSA	:	Electrochemical active surface area
EDS/ EDAX	:	Energy dispersive X-ray spectroscopy
EIS	:	Electrochemical impedance spectroscopy
eV	:	Electron volt
FTIR	:	Fourier transform infrared

List of Acronyms/Abbreviations

GCD	:	Galvanic charge-discharge
GCE	:	Glassy Carbon Electrode
GO	:	Graphene oxide
h / hr	:	Hour(s)
LSV	:	Linear sweep voltammetry
Min	:	Minute(s)
mM	:	millimolar
ms	:	Millisecond(s)
nm	:	nanometer
NFS/NFPS	:	NASICON structure Na ₃ Fe ₂ (SO ₄) ₂ PO ₄
NFS(Ni)	:	Ni-doped NASICON structure Na ₃ Fe ₂ (SO ₄) ₂ PO ₄
NPs	:	Nanoparticles
PANi	:	Polyaniline
PCz	:	Polycarbazole
PCz-WO ₃	:	Polycarbazole/tungsten oxide composite
PIn	:	Polyindole
РРу	:	Polypyrrole
PPy/NFS	:	Polypyrrole/NASICON structured NFS composite
PPy/NFS(Ni)	:	Polypyrrole/Ni-doped NFS composite
R _{ct}	:	Charge transfer resistance
RT	:	Room temperature
s	:	Second
SAED	:	Selected area electron diffraction pattern
S/N	:	Signal to noise ration
SEM	:	Scanning electron microscopy
Т	:	Temperature

List of Acronyms/Abbreviations

TEM	:	Transmission electron microscopy
TGA	:	Thermogravimetric analysis
TMDs	:	Transition metal dichalcogenides
UV–Vis	:	UV Visible
V	:	Volt
WO ₃	:	Tunsgten oxide
XRD	:	X-ray diffraction
XPS	:	X-ray photoelectron spectroscopy