TABLE OF CONTENTS

Chapters	Titles	Page No.
	Certificate	ii
	Declaration By the Candidate	iii
	Copyright Transfer Certificate	iv
	Acknowledgements	\mathbf{v}
	Table of Contents	vi-ix
	List of Figures	x-xi
	List of Tables	xii
	Abbreviations	xiii-xiv
	Preface	xv-xviii
Chapters-1	Introduction and Literature Survey	1-45
	1.1 Introduction	1
	1.2 Background	2
	1.3 Objectives	2
	1.4 Gas Sensoring	3
	1.5 Gas Chromatography: The Gold Standard	5
	1.6 Gas Sensor Array	7
	1.7 Electronic Noses (e-Noses)	8
	1.8 Virtual Sensor Response(VSRs)	10
	1.9 Pattern Recognition Techniques Used in e-Nose System	11
	1.9.1 Principal Component Analysis	13
	1.9.2 Probability-Based Techniques	14
	1.9.3 Cluster Analysis-Based Techniques	15
	1.9.4 Discriminant Analysis-Based Techniques	17
	1.9.5 Nearest Neighbor-Based Techniques	18
	1.9.6 Genetic Algorithms	19
	1.9.7 Decision Tree-Based Techniques	20
	1.9.8 Support Vector Machine (SVM)	22
	1.9.9 Ensemble Techniques	23
	1.9.10 Artificial Neural Networks (ANNs)	24
	1.10 Convolution Neural Networks (CNNs)	25

	1.11 Unmanned Aerial Vehicles (UAVs)	27
	1.12 Search and Rescue (SAR) Operations	28
	1.13 Intelligent Edge Computing	30
	1.14 Literature Review	31
	1.15 Problem Statements	37
	1.16 Outline of the Thesis	39
	1.17 Conclusion	44
Chapter-2	Materials, Methods, and Technology Background	46-63
	2.1 Materials	46
	2.1.1 Metal oxide semiconductors (MOX) for Gas Sensing	46
	2.1.2 MOX Gas Sensors: Working	47
	2.1.3 Responses of MOX Gas Sensors	48
	2.1.4 Steady-State and Sampled Dynamic/Transient Responses	50
	2.1.5 Dataset	52
	2.2 Methods	52
	2.2.1 Artificial Neural Networks (ANN)	52
	2.2.2 ANN Compatibility with Array Response Modalities	56
	2.3 Technology Background	57
	2.3.1 A General Architecture of 2D-CNN	58
	2.3.2 Motivation for Using 2D-CNN for Gas Classification	60
	2.4 Conclusion	61
Chapter-3	Spatial Upscaling -Based Algorithm for Detection and Estimation of Hazarous gases	64-82
	3.1 Abstract	64
	3.2 Introduction	65
	3.3 Material and Methods	69
	3.3.1 Gas Sensor Responses /Dataset	69
	3.3.2 Proposed Approach	72
	3.3.3 Spatial Upscaling	72
	3.3.4 Convolution Neural Network(CNN	76
	3.4 Results	78

	3.4.1 Detection Performance	79
	3.4.2 Estimation Performance	81
	3.5 Discussion and Conclusion	82
Chapter-4	A Novel Data-driven Technique to Produce Multi- sensor Virtual Responses Gas Sensor Array-Based Electric Noses	83-97
	4.1 Abstract	83
	4.2 Introduction	84
	4.3 Material and Methods	87
	4.3.1 Physical Gas Sensor Response	88
	4.3.2 Contextual Outline of Data driven VSRs	89
	4.3.3 Machine Learning Algorithm	91
	4.4 Experimental Result and Discussion	92
	4.4.1 Result	92
	4.4.2 Discussion	95
	4.5 Conclusion	96
Chapter-5	UAV Computing -Assisted Search and Rescue Mission Framework for Disaster and Harsh Envirnonment Mitigation	98-131
	5.1 Abstract	98
	5.2 Introduction	99
	5.2.1 Related work	102
	5.2.2 Motivation	103
	5.2.3. Contribution	105
	5.3 UAV- Enabled Disaster Management Strategies	107
	5.4 UAV Computing	110
	5.4.1 SAR Missions	111
	5.4.2 AI for UAV and SAR	113
	5.5 Proposed Network Architecture	115
	5.6 Simulation Experiment Setup on OPNET	119
	5.6.1 Node Domain	120
	5.6.2 Network Domain	121
	5.6.3 Processing Domain	121
	5.6.4 Complexity Analysis	122

	References	141-178
Chapter-7	Author's Contribution	140
	6.2 Future Scope	137
	6.1 Conclusion	132
Chapter-6	Conclusion and Future Scope	132-139
	5.9 Conclusion	131
	5.8 Result and Discussion	125
	5.7.4 Delay	124
	5.7.3 Throughput	124
	5.7.2 Network Load	123
	5.7.1 Data Traffic	123
	5.7 Simulation Metrices of the Network Performance	123