LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Figure 1.1	Sources of CO emission	4
Figure 1.2	Effect of CO on human health	6
Figure 1.3	Effect of CO on plant	7
Figure 1.4	Formation of CO in internal combustion engines	9
Figure 1.5	Internal combustion engine	10
Figure 1.6	Schematic diagram of an automobile catalytic converter	14
Figure 1.7	Catalytic converter construction	15
Figure 1.8	Catalysts for CO oxidation	18
Figure 1.9	Noble metal oxide catalysts	21
Figure 1.10	Base metal oxide catalysts	22
Figure 1.11	Catalyst preparation methods	29
Figure 1.12	Preparation parameters of hopcalite catalysts	35
Figure 1.13	Calcination strategy of hopcalite catalysts	37
Figure 1.14	Promoters used in CuMnOx catalysts	40
Figure 1.15	Supports used in hopcalite catalysts	41
Figure 1.16	Mechanism of CO oxidation over hopcalite catalysts	42
Figure 1.17	Schematic diagram of catalytic convertor for solution of cold start problems	44

Figure 3.1	XRD instrument	76
Figure 3.2	FTIR spectrometer	77
Figure 3.3	SEM instrument	79
Figure 3.4	XPS instrument	80
Figure 3.5	BET instrument	82
Figure 3.6	Schematic diagram of Experimental Set up	84
Figure 3.7	Experimental Set up	85
Figure 3.8	Schematic diagram of GC	86
Figure 3.9	Gas Chromatograph	90
Figure 4.1	SEM image of (A) $CuMn_{2RC4}$, (B) $CuMn_{2RC3}$, (C) $CuMn_{2RC2}$ and (D) $CuMn_{2RC1}$	101
Figure 4.2	SEM-EDX image of (A) CuMn _{2RC4} , (B) CuMn _{2RC3} , (C) CuMn _{2RC2} and (D) CuMn _{2RC1}	102
Figure 4.3	XRD analysis of the catalysts	104
Figure 4.4	FTIR analysis of the catalysts	106
Figure 4.5	XPS analysis of Cu(2p) in (A) CuMn _{2RC1} , (B) CuMn _{2RC2} , (C) CuMn _{2RC3} and (D) CuMn _{2RC4}	108
Figure 4.6	XPS analysis of $Mn(2p)$ in (A) $CuMn_{2RC1}$, (B) $CuMn_{2RC2}$, (C) $CuMn_{2RC3}$, (D) $CuMn_{2RC4}$	110
Figure 4.7	Textural propertiesA)N2adsorption-desorptionisotherms and B)Pore size distributions curves	112
Figure 4.8	Catalytic activity of various CuMn _{2SA} catalysts for CO oxidation	114
Figure 4.9	Catalytic activity of various CuMn _{2FA} catalysts for CO	116

	oxidation	
Figure 4.10	Catalytic activity of various CuMn _{2RC} catalysts for CO oxidation	118
Figure 4.11	Activity test of $CuMn_2$ catalysts under various calcination conditions	119
Figure 5.1	Scanning electron micrographs of (A) CuMn _{2RC3} , (B) CuMn _{2RC2} and (C) CuMn _{2RC1} catalysts	126
Figure 5.2	SEM-EDX image of A) CuMn _{2RC3} , B) CuMn _{2RC2} and C) CuMn _{2RC1} catalysts	128
Figure 5.3	XRD analysis of the catalysts	130
Figure 5.4	FTIR analysis of the catalysts	132
Figure 5.5	XPS analysis of Cu(2p) in CuMn _{2RC} catalysts	133
Figure 5.6	XPS analysis of Mn(2p) in CuMn _{2RC} catalysts	134
Figure 5.7	XPS analysis of O(1s) in the catalysts	135
Figure 5.8	Textural properties A) N ₂ adsorption-desorption isotherms and B) Pore size distributions curves	138
Figure 5.9	Catalytic activity of various CuMn _{2SA} catalysts for CO oxidation	140
Figure 5.10	Catalytic activity of various $CuMn_{2FA}$ catalysts for CO oxidation	142
Figure 5.11	Catalytic activity of various CuMn _{2RC} catalysts for CO oxidation	144
Figure 5.12	Activity test of $CuMn_2$ catalysts under various calcination conditions	145
Figure 6.1	SEM image of Cu_1Mn_8 catalyst A) 2.0KX and B) 5.0KX magnifications	150
Figure 6.2	SEM-EDX image of Cu ₁ Mn ₈ catalyst A) 2.0KX and B)	151

	5.0KX magnifications	
Figure 6.3	XRD analysis of Cu ₁ Mn ₈ catalyst	152
Figure 6.4	FTIR analysis of Cu ₁ Mn ₈ catalyst	153
Figure 6.5	XPS analysis of A) Cu and B) Mn in a Cu ₁ Mn ₈ catalyst	155
Figure 6.6	Optimization of Cu:Mn Molar ratio in CuMnOx catalyst	157
Figure 6.7	Optimization in particle size of Cu ₁ Mn ₈ catalyst	158
Figure 6.8	Optimization of drying temperature of Cu ₁ Mn ₈ precursor	159
Figure 6.9	Optimization of the calcination temperature of Cu ₁ Mn ₈ precursor	160
Figure 6.10	Optimization of calcination time of Cu ₁ Mn ₈ precursor	161
Figure 6.11	Optimization of weight of Cu ₁ Mn ₈ catalyst	162
Figure 6.12	Optimization of CO flow rate on Cu ₁ Mn ₈ catalyst	163
Figure 7.1	Preparation of (Co, Ce, Fe, Ag) doped Cu ₁ Mn ₈ Catalyst	169
Figure 7.2	XRD analysis of Cu_1Mn_8 catalyst doped with Co, Ce, Fe and Ag	171
Figure 7.3	FTIR analysis of the catalyst	173
Figure 7.4	$\begin{array}{llllllllllllllllllllllllllllllllllll$	175
Figure 7.5	$\begin{array}{llllllllllllllllllllllllllllllllllll$	176
Figure 7.6	Textural propertiesA)N2adsorption-desorptionisotherms and B)Pore size distribution	178

Figure 7.7	Catalytic activity of doped and un-doped Cu1Mn8	180
	catalysts produced by calcination in stagnant air	
Figure 7.8	Catalytic activity of doped and un-doped Cu1Mn8	182
	catalysts produced in flowing air	
Figure 7.9	Catalytic activity of doped and un-doped Cu1Mn8	184
	catalysts produced by reactive calcination	
Figure 7.10	Activity test of 3%AgCuMn ₈ Ox catalysts under	185
	different calcination conditions	
Figure 7.11	Optimization of silver doping in Cu ₁ Mn ₈	187
Figure 8.1	Preparation of doped Cu1Mn8 Catalysts by wet	192
	impregnation method	
Figure 8.2	SEM image of (A) Cu ₁ Mn ₈ , (B) 1.5%CeCuMn ₈ Ox, (C)	194
	1.5%Ce1.0%AgCuMn ₈ Ox and (D) 1.5%Ce0.5%AuCu	
	Mn ₈ Ox catalysts	
Figure 8.3	SEM-EDX image of A) Cu ₁ Mn ₈ , B) 1.5%CeCuMn ₈ Ox,	195
	C) 1.5%Ce1.0%AgCuMn ₈ Ox and D) 1.5%Ce0.5%Au	
	CuMn ₈ Ox catalysts	
Figure 8.4	XRD analysis of the catalysts	198
Figure 8.5	FTIR analysis of A) Cu ₁ Mn ₈ , B) 1.5%CeCuMn ₈ Ox, C)	200
	1.5%Ce1.0%AgCuMn ₈ Ox and D) 1.5%Ce0.5%AuCu	
	Mn ₈ Ox catalysts	
Figure 8.6	Textural properties of A) N ₂ adsorption-desorption	202
	isotherms and B) Pore size distributions curves	
Figure 8.7	Activity test of Cu1Mn8 and 1.5%CeCuMn8Ox catalysts	204
Figure 8.8	Activity measurement of Ce and Ag doped and un-	205
	doped Cu ₁ Mn ₈ catalysts	
Figure 8.9	Activity measurement of Ce and Au doped and un-	207
	doped Cu ₁ Mn ₈ catalysts	

Figure 8.10	Catalytic activity of (Ce and Au or Ag) doped and un-	209
	doped Cu ₁ Mn ₈ catalysts	
Figure 9.1	Steps involved in support synthesis	214
Figure 9.2	Preparation of γ -Al ₂ O ₃ supported 3%AgCuMn ₈ Ox catalysts	214
Figure 9.3	SEM image of A) γ-Al ₂ O ₃ , B) 3%AgCuMn ₈ Ox/60%γ-	216
	Al ₂ O ₃ and C) 3%AgCuMn ₈ Ox	
Figure 9.4	SEM-EDX image of A) y-Al ₂ O ₃ , B) 3%AgCuMn ₈ Ox/	219
	60%γ-Al ₂ O ₃ and C) 3%AgCuMn ₈ Ox	
Figure 9.5	XRD analysis of the catalysts	220
Figure 9.6	FTIR analysis of (A) 3%AgCuMn ₈ Ox/60%γ-Al ₂ O ₃ and	221
	(B) 3%AgCuMn ₈ Ox catalysts	
Figure 9.7	Textural properties of A) N ₂ adsorption-desorption	222
	isotherms and B) Pore size distributions curves	
Figure 9.8	Effect of metal loading on γ -Al ₂ O ₃ support for oxidation	225
	of CO	
Figure 9.9	Optimization of 3%AgCuMn ₈ Ox in γ-Al ₂ O ₃ supported	227
	catalysts	
Figure 9.10	Comparison of 3%AgCuMn ₈ Ox and 3%AgCuMn ₈ Ox/	229
	$60\%\gamma$ -Al ₂ O ₃ catalysts	
Figure 10.1	Blank test for CO oxidation	233
Figure 10.2	Stability test of 3%AgCuMn ₈ Ox/60%γ-Al ₂ O ₃ catalyst	234
	for oxidation of CO	
Figure 10.3	CO conversion vs temperature for varying CO	241
	concentration in air	
Figure 10.4	CO conversion $X_{CO}(\%)$ vs W/F _{CO} (g-cat.hr/g.mol) at	244
	various temperatures	
Figure 10.5	Plot of $\ln(-r_{CO})$ vs $\ln(-C_{CO})$	247
Figure 10.6	Plot of ln(<i>k</i>) vs 1000(1/T)	248