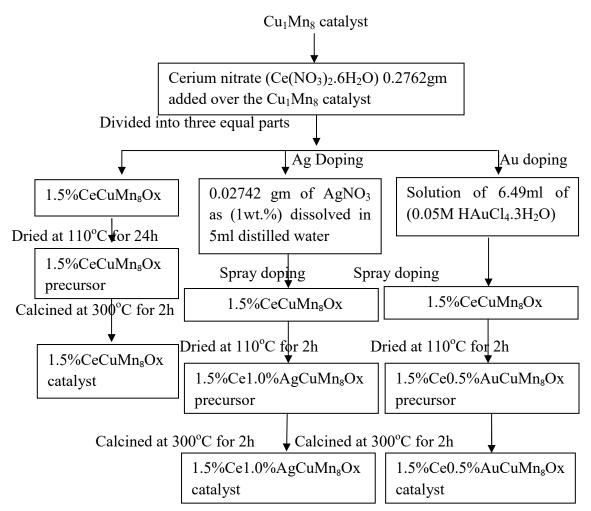
Chapter 8 Effect of (Ce, Ag and Au) doping on catalytic activity of Cu₁Mn₈ catalysts

8. General


Addition of low level of promoters into the CuMnOx catalyst has proven beneficial in other oxidation catalysts. The improved catalyst performance at the higher doping level is found to associate with the observed increase in surface area. There are many attempts has been made to improve the performance of CuMnOx catalyst, in particular by optimizing the preparation conditions and exploring new preparation method [Hutchings et al., 1996]. The addition of gold into the CuMnOx catalyst, the rate of CO oxidation is increase, and the rate of deactivation of the catalyst has been reduced [Cole et al., 2010]. When ceria is doped into the transition metal oxides, in situ forming ceria oxide could promote oxygen storage and release, enhance oxygen mobility and improved redox property of the catalyst [Zhang et al., 2010]. CeO₂ plays a crucial role in Cu–CeO₂ catalyst for the total oxidation of CO, exhibiting a particular activity of the various orders of magnitude superior to that of conventional Cu-based catalysts and even comparable to precious metals [Kundakovicand Stephanopoulos 1998; Cao et al., 2008]. A solution of AuCl₄ is adjusted to the desired pH and gold precipitated onto an indistinct support material by controlled addition of a base [Perrault and Chan 2009]. The inclusion of gold into the nano-rods of rutile, specially prepared in a flowerlike structure, had been reported very high thermal stability (of the gold), most probably due to the substantially reduced gold-gold nano-particle interactions [Khoudiakov et al., 2005].

The preparation of catalyst has a crucial role in the performance of resulting catalyst. Addition of Au or Ag into the 1.5%CeCuMn₈Ox catalyst has resulted in a marked improvement in the catalytic performance. The 1.5%CeCuMn₈Ox catalyst doped with Au was more active than those that did not contain Au. The results and discussions clearly demonstrate that the precious effect of adding Au to promote CO oxidation activity [Morgan *et al.*, 2010; Solsona *et al.*, 2004]. The main object of this research work to get the effect of noble metal doping into the Cu₁Mn₈ catalyst can modify the CO adsorption ability of the catalyst. Stagnant air calcination (SAC) of Cu₁Mn₈ catalyst for CO oxidation was studied for the first time. This chapter discussed about the addition of noble metal doping into Cu₁Mn₈ catalyst can modify the CO adsorption ability of the catalyst can modify the CO adsorption ability of the first time. This chapter discussed about the addition of noble metal doping into Cu₁Mn₈ catalyst can modify the CO adsorption ability of the

8.1 Experimental

8.1.1 Catalyst preparation

The Cu₁Mn₈ catalyst was prepared by the co-precipitation method, as discussed earlier in the Chapter 4. Ceria was added in the form of cerium nitrate (Ce(NO₃)₂.6H₂O) 0.2762gm over the Cu₁Mn₈ catalyst at the time of precipitation process so that the ceria concentration was made 1.5wt.% by the weight of final catalyst. The precipitate was filtered and washed several times with hot distilled water to eliminate all the anions. After washing dry the precursor at 110°C temperature for 24h into an oven. The preparation of doped Cu₁Mn₈ catalyst by wet impregnation method was shown in the Figure 8.1. After completing the drying process divided the precursors into two equal's parts according to the weight of catalyst. In the first part, we added 0.02742 gm of AgNO₃ as (1wt.%) in 3.7047 gm of 1.5%CeCuMn₈Ox catalyst by wet impregnation method and the second part; we added 6.49ml of (0.05M HAuCl₄.3H₂O) in 3.7047 gm of 1.5%CeCuMn₈Ox catalyst by wet impregnation method. The nomenclature of the resulting catalysts thus obtained after calcination process was given in table 8.1.

Figure 8.1: Preparation of doped Cu_1Mn_8 Catalysts by wet impregnation method The entire precursor was carried out in a furnace at a stagnant air calcination conditions at 300°C for 2h to produce the catalyst and after calcination it was stored in an airtight glass bottle.

 Table 8.1: Nomenclature of prepared catalysts

Catalyst Name	Nomenclature
CuMnOx catalyst	Cu_1Mn_8
Cu ₁ Mn ₈ catalyst cerium doping 1.5wt.% by impregnation method	1.5%CeCuMn ₈ Ox
1.5%CeCuMn ₈ Ox catalyst silver doping 1wt.% by impregnation method	1.5%Ce1.0%AgCuMn ₈ Ox
1.5%CeCuMn ₈ Ox catalyst gold doping 0.5wt.% by impregnation method	1.5%Ce0.5%AuCuMn ₈ Ox

8.2 Catalyst Characterization

Characterization of the doped and un-doped Cu_1Mn_8 catalyst reveals their morphology, surface structure, phase identification, material identification and surface area etc. All the catalysts prepared in stagnant air calcination conditions were done by the different techniques and their activity for CO oxidation was discussed below:

8.2.1 Morphological analysis

The SEM image showed that the particle size and morphology of the resulting doped and un-doped Cu₁Mn₈ catalyst. In SEM micrograph the particles were present in a catalyst was comprised of more coarse, coarse, fine and finest size grains resulted by stagnant air calcination of Cu₁Mn₈, 1.5%CeCuMn₈Ox, 1.5%Ce1.0%AgCuMn₈Ox, and 1.5%Ce0.5%AuCuMn₈Ox catalyst, respectively. Figure 8.2 (A), (B), (C) and (D) shows that the SEM image of Cu₁Mn₈, 1.5%CeCuMn₈Ox, 1.5%Ce1.0%AgCuMn₈Ox and 1.5%Ce0.5%AuCuMn₈Ox catalyst respectively. The entire catalyst sample was composed of different size of particles. The SEM image of the catalysts derived from calcination of these precursors. In the presence of higher oxidation state phases could be the result of a greater degree of surface interface between the easily oxidisable Mnphase and the highly reducible Cu-phase. The presence of particles in a 1.5%Ce1.0%Ag CuMn₈Ox and 1.5%Ce0.5%AuCuMn₈Ox catalyst have a fine size, less agglomerated, and more uniform as compared to the other catalysts. The size of particles present in a Cu₁Mn₈ catalyst was more coarse, agglomerated and non-uniform in nature.

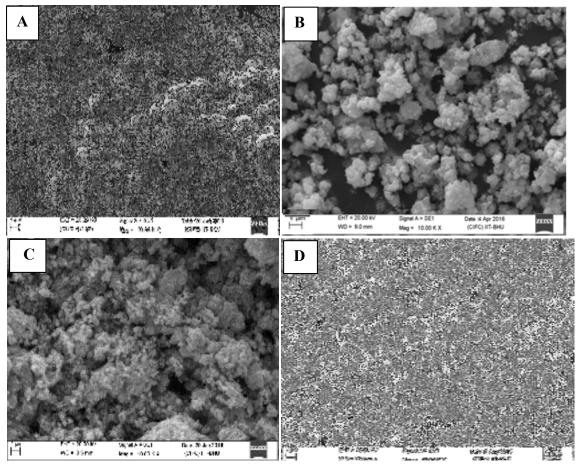


Figure 8.2: SEM image of (A) Cu_1Mn_8 , (B) 1.5%CeCuMn₈Ox, (C) 1.5%Ce1.0%Ag CuMn₈Ox and (D) 1.5%Ce0.5%AuCuMn₈Ox catalysts

The crystalline Cu₁Mn₈ phases have a less activity than the amorphous ones, and the high activity of doped Cu₁Mn₈ catalyst for CO oxidation at a low temperature should attributed to the active amorphous phase. The addition of Au into the 1.5%CeCuMn₈Ox catalyst had a valuable effect on their stability. The stability was related to the presence of AuOx into the 1.5%CeCuMn₈Ox catalyst, which also promotes their activity. Activity of the catalyst was increased by the addition of cerium, silver or gold into the Cu₁Mn₈ catalyst. Doping of Cu₁Mn₈ catalyst by lower amounts of silver or gold was more efficient in improving their catalytic activity for CO oxidation. For the catalysts with and without Au, there was a constant decrease of the surface area when the calcination temperature was increased, and this was apparently due to an increase in particle size due to thermal sintering.

8.2.2 Elemental analysis

In the Cu_1Mn_8 catalysts, the percentages of different elements were present analysis by the energy dispersive X-ray (EDX) analysis. The results of energy dispersive X-ray analysis (EDX) has showed that all the catalyst samples were pure due to the presence of their relative elemental peaks only as illustrated in Figure 8.3.

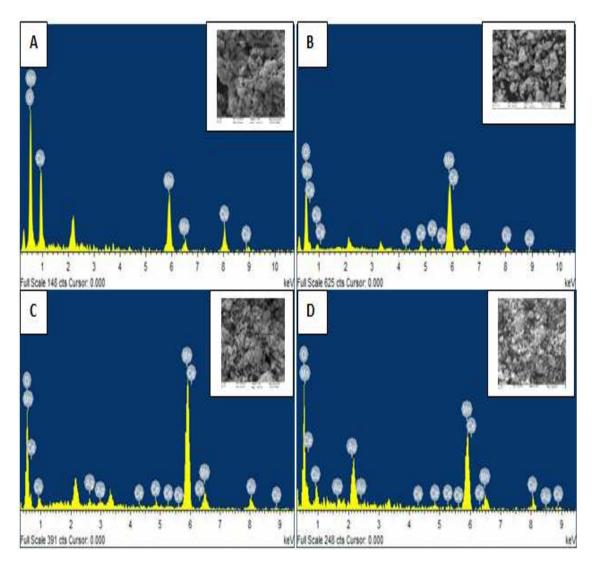
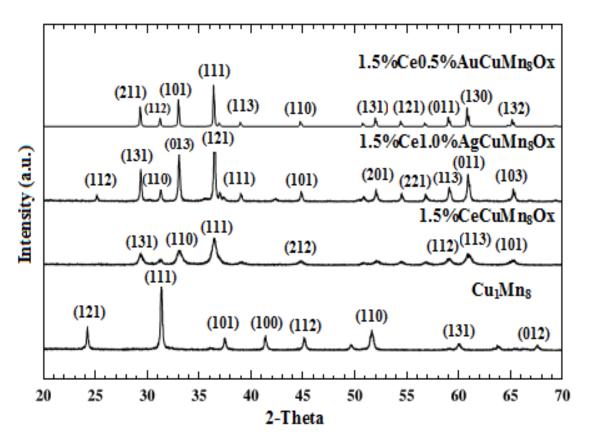


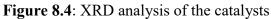
Figure 8.3: SEM-EDX image of (A) Cu_1Mn_8 , (B) 1.5%CeCuMn₈Ox, (C) 1.5%Ce1.0%AgCuMn₈Ox and (D) 1.5%Ce0.5%AuCuMn₈Ox catalysts

Cu ₁ Mn ₈	Cu	Mn	0			Cu/Mn
	10.39	54.46	35.15			0.190
1.5%CeCuMn ₈ Ox	Cu	Mn	Ce	0		Cu/Mn
	12.81	55.35	1.24	30.60		0.231
1.5%Ce 1.0%AgCuMn ₈ Ox	Cu	Mn	Ce	Ag	0	Cu/Mn
	13.14	57.30	1.14	0.72	27.70	0.229
1.5%Ce0.5%Au CuMn ₈ Ox	Cu	Mn	Ce	Au	0	Cu/Mn
	17.22	58.70	1.18	0.45	22.45	0.293

Table 8.2: Atomic percentage of a catalyst by EDX analysis

Table 8.3: Weight percentage of a catalyst by EDX analysis


Cu ₁ Mn ₈	Cu	Mn	0			Cu/Mn
	10.38	55.91	33.71			0.185
1.5%CeCuMn ₈ Ox	Cu	Mn	Ce	0		Cu/Mn
	10.60	56.90	1.40	31.10		0.186
1.5%Ce 1.0%AgCuMn ₈ Ox	Cu	Mn	Ce	Ag	0	Cu/Mn
	11.35	57.45	1.24	0.90	29.06	0.197
1.5%Ce0.5%Au CuMn ₈ Ox	Cu	Mn	Ce	Au	0	Cu/Mn
	11.70	58.90	1.36	0.47	27.57	0.198


To understand the influence of silver or gold on the activity and stability of the promoted Cu_1Mn_8 catalysts towards CO oxidation, by EDX characterization technique have been carried out. It was clear from the EDX analysis that the atomic percentage of Mn was also higher than Cu in the Cu₁Mn₈ catalyst. The oxygen content of the 1.5%Ce0.5%AuCuMn₈Ox catalyst was least in comparison to the other catalysts. This

indicates the existence of oxygen deficiency in the 1.5%Ce0.5%AuCuMn₈Ox catalyst which makes the high density of active sites. The doping materials associated with Cu₁Mn₈ catalyst to promote the oxygen storage, release and enhanced their oxygen mobility. It was also evident that the addition of silver or gold did not extensively alter the textural properties of the catalysts, but the surface area was increased significantly by the additional of gold. This negligible dispersion indicates that the cell unit of ceria was hardly affecting by the presence of a doping elements. Therefore it was concluded that the dispersed among the ceria crystallites not forming a true solid solution. The catalysts obtained at increasing the heating rates during the calcination step present a slightly decreasing the catalytic activity. It must be noted that a calcination temperature of the catalysts with the presence of gold higher activities and specific activities than the subsequent gold free Cu₁Mn₈ catalyst.

8.2.3 Phase identification and cell dimensions

XRD analysis of the Cu₁Mn₈ catalyst doping with Ce, Ag or Au was providing information about the crystallite size and coordinate dimensions presence in the catalysts. Figure 8.4 shows that the XRD analysis of Cu₁Mn₈, 1.5%CeCuMn₈Ox, 1.5%Ce1.0%AgCuMn₈Ox and 1.5%Ce0.5%AuCuMn₈Ox catalysts prepared in stagnant air calcination conditions. XRD analysis of the promoted Cu₁Mn₈ catalyst was used to verify the final phases after heat treatment at calcination conditions. The Cu₁Mn₈ was come from the interface between the stable re-oxidized CuO and MnO₂ phases and formation take place due to the metal ion concentration of the Cu/Mn oxide phase boundaries to form the spinel structure. In XRD analysis of Cu₁Mn₈ catalyst, observed that the diffraction peak at 20 was 32.06 corresponds to its lattice plane (h k l) values was (121), (111), (101), (100), (112), (110), (131) and (012) with JCPDS reference no. (35-0429).

The structure was Cubic face-centered CuMn₈O₄ phase with crystallite size of catalyst was 4.70 nm. In 1.5%CeCuMn₈Ox catalyst diffraction peak at 20 was 36.20 corresponds to its lattice plane (131), (110), (111), (212), (112), (113) and (101) with JCPDS reference no. (35-0849). The structure was Body centered CuO(Mn)Ce phase with crystallite size of catalyst was 2.30 nm. In 1.5%Ce1.0%AgCuMn₈Ox catalyst diffraction peak at 20 was 36.57 corresponds to its lattice plane (112), (131), (110), (013), (121), (111), (101), (201), (221), (113), (011) and (103) with JCPDS reference no. (35-0441). The structure was Tetragonal-body centered CuMn(Ce)AgO phase with crystallite size of catalyst was 2.06 nm. In 1.5%Ce0.5%AuCuMn₈Ox catalyst diffraction peak at 20 was 36.42 corresponds to its lattice plane (211), (112), (101), (111), (113), (110), (131), (121), (011), (130) and (132) with JCPDS reference no. (35-0112). The structure was Cubic face centered CuO(MnAu)Ce phase with crystallite size of catalyst was 1.65 nm.

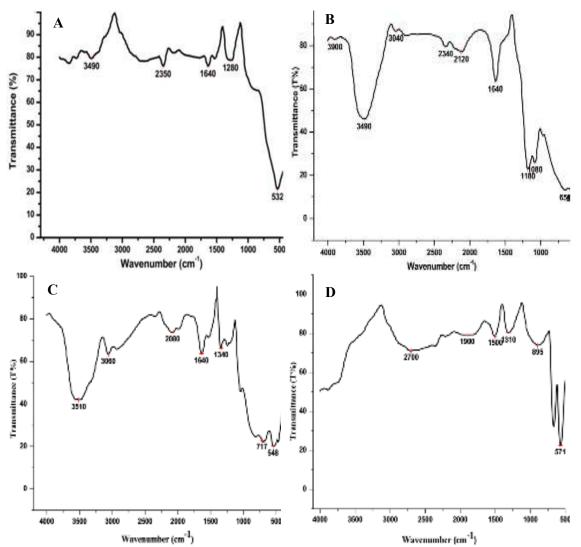
An X-ray diffraction pattern of the 1.5%CeCuMn₈Ox catalyst has shown that the amorphous and crystalline phases could be clearly identified. The most extreme diffraction peak for metallic Au would be expected at a 20 value of ca. 36.42 and Au was present in the 1.5%Ce0.5%AuCuMn₈Ox mainly as Au⁰ since the calcination temperature 300°C leads to the reduction of gold. From XRD analysis the crystallite size of particles present in catalysts was as follows: Cu₁Mn₈ > 1.5%Ce0uMn₈Ox > 1.5%Ce0.5%AuCuMn₈Ox. The highest crystallite sizes of particles were present in Cu₁Mn₈ catalyst and lowest crystallite sizes of particles were present in 1.5%Ce0.5%AuCuMn₈Ox catalyst.

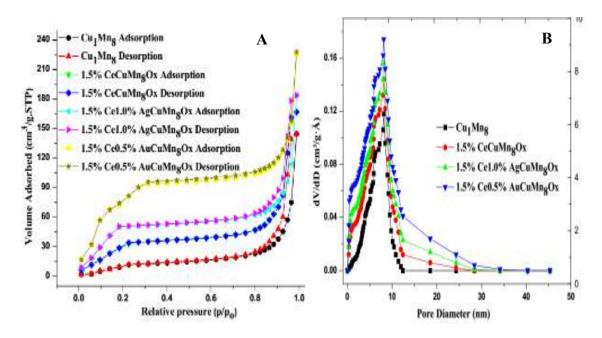
After XRD analysis confirmed that the particles present in 1.5%Ce0.5%AuCuMn₈Ox catalyst were most crystalline form and producing narrow size high-intensity diffraction lines; as compared to other catalysts. The large crystallite size suggests agglomeration due to the in-situ thermal treatment process. XRD peak of 1.5%Ce0.5%AuCuMn₈Ox catalyst was significantly broader than those of the micrometer-sized sample, indicating that the sample possessed very small size particles. The crystallite size of particles present in catalyst was analysis by the XRD technique was matched with the particle size calculated by the SEM characterization. In further, the experimental results prove that the lower crystallite size of CuMn₈Ce_{FRC} catalyst was highly active for CO oxidation.

8.2.4 Identification of materials

The metal-oxygen bonds present in the doped Cu_1Mn_8 catalysts was done by the Fourier transform infrared spectroscopy (FTIR) analysis. The different peaks were shown, various types of chemical group present in the catalyst surfaces at the invested region (4000-400cm⁻¹). FTIR analysis was performed to recognize the functional groups of the entire calcined samples. Figure 8.5 (A), (B), (C) and (D) show that the FTIR image of

Cu₁Mn₈, 1.5%CeCuMn₈Ox, 1.5%Ce1.0%AgCuMn₈Ox and1.5%Ce0.5%AuCuMn₈Ox catalyst respectively. FTIR analysis of the Cu₁Mn₈ catalyst prepared by the stagnant air calcination conditions, there were total five peaks obtained. The transmission spectra at (1640cm⁻¹) has shown the presence of Mn₂O₃ group, (1280cm⁻¹) CO₃²⁻ group, (2350cm⁻¹)C=O group, (3490cm⁻¹)–OH group, and (532cm⁻¹)CuO group. In the 1.5%CeCuMnOx catalyst at the transmittance conditions there were total eight peaks obtained. The IR bands (1640cm⁻¹) has shown the presence of Mn₂O₃ group, (3490cm⁻¹ and 3900cm⁻¹) - OH group, (2120cm⁻¹ and 656cm⁻¹) CuO group, (1180cm⁻¹ and 1080cm⁻¹) -COO group and (2340cm⁻¹) CeO₂ group.




Figure 8.5: FTIR analysis of (A) Cu₁Mn₈, (B) 1.5%CeCuMn₈Ox, (C) 1.5%Ce1.0%Ag

CuMn₈Ox and (D) 1.5%Ce0.5%AuCuMn₈Ox catalysts

In the 1.5%Ce1.0%AgCuMn₈Ox catalyst at the transmittance conditions there were total seven peaks we obtained. The IR band (1640cm⁻¹) has shown the presence of Mn₂O₃ group, (2080cm⁻¹) AgOx, (3510cm⁻¹ and 3060cm⁻¹) -OH group, (548cm⁻¹) CuO group, and (717cm⁻¹)CeO₂ group. In the 1.5%Ce0.5%AuCuMn₈Ox catalyst at the transmittance conditions there were total five peaks we obtained. The IR band (1900cm⁻¹) has shown the presence of Mn₂O₃ group, (2700cm⁻¹)AuO₂ group, (1310cm⁻¹) -OH group, (1500cm⁻¹) Carbonate species, (571cm⁻¹) CuO group, and (895cm⁻¹) CeO₂ group. The spectra of impurities like hydroxyl group (–OH) at (3490cm⁻¹) decreases in the following order: Cu₁Mn₈> 1.5%Ce0.5%AuCuMn₈Ox catalyst was highly pure as compared to the other catalysts. All the Cu₁Mn₈ catalysts which originate from the stretching vibrations of the metal-oxygen bond and confirmed the presence of CuO and Mn₂O₃ phases.

8.2.5 Textural properties

The BET surface area of (CeOx, AgOx or AuOx) promoted Cu₁Mn₈ catalyst was prepared by the stagnant air calcination conditions as shown in the Figure 8.6. Total pore volume and specific surface area were two major factors which can affect the catalytic activity for CO oxidation. When the activity of the catalyst has been tested, it was found that the 1.5%Ce0.5%AuCuMn₈Ox catalyst has a higher surface area and pore volume resulted in the maximum CO oxidation. The surface area was a key parameter in determining the catalyst activity for CO oxidation. Activity of the Cu₁Mn₈ catalyst has highly influenced by the addition of Au or Ag on their surfaces. Textural properties like surface area, pore volume and pore size of 1.5%Ce0.5%AuCuMn₈Ox catalyst has more efficient for CO oxidation.

Figure 8.6: Textural properties of (A) N₂ adsorption-desorption isotherms and (B) Pore size distributions curves.

The larger number of more pores presence in a catalyst surfaces means a larger number of CO molecules capture on their surfaces, and it has to shows the better catalytic activity. The surface area of $(1.5\%Ce0.5\%AuCuMn_8Ox=129.76m^2/g)$ catalyst was much higher than the $(1.5\%Ce1.0\%AgCuMn_8Ox=115.45m^2/g, 1.5\%CeCuMn_8Ox = 104.70 m^2/g$ and $Cu_1Mn_8 = 85.40 m^2/g)$ catalyst as shown in the table and figure.

Catalyst	Surface Area (m²/g)	Pore Volume (cm ³ /g)	Ave. Pore Size (Å)
Cu ₁ Mn ₈	85.40	0.310	42.55
1.5%CeCuMn ₈ Ox	104.70	0.365	40.70
1.5%Ce1.0%AgCuMn ₈ Ox	115.45	0.410	39.35
1.5%Ce0.5%AuCuMn ₈ Ox	129.76	0.428	37.65

Table 8.4: Textural property of Cu_1Mn_8 catalysts

Department of Civil Engineering, IIT (BHU) Varanasi

It was also noted that the average pore volume and pore size of 1.5%Ce0.5%Au CuMn₈Ox catalyst was much superior to the other catalysts. The average pore diameter was also increases with the increasing of calcination temperature because a high-temperature treatment led to particle sintering accompanied with a loss in the active area. In the mesopores, molecules form a liquid-like adsorbed phase having a meniscus of which curvature was associated with the Kelvin equation, providing the pore size distribution calculation. The specific surface area was measured by the BET analysis and it also followed the SEM and XRD results. The 1.5%Ce1.0%AgCuMn₈Ox and 1.5%Ce0.5%AuCuMn₈Ox catalyst surface area and pore volume was so high so that it was most active for CO oxidation. The presence of Au in the 1.5%Ce0.5%AuCuMn₈Ox catalyst increased their stability for long time CO oxidation.

8.3 Catalyst performance and activity measurement

Activity test of the catalyst was carried out to evaluate the effectiveness of different types of doped and un-doped Cu_1Mn_8 catalysts as a function of temperature. All the catalysts prepared in stagnant air calcination conditions.

8.3.1 Effect of Ceria promoter doping in Cu₁Mn₈ catalysts

In the activity test, we have evaluated the performance of Cu_1Mn_8 and 1.5%CeCu Mn_8Ox catalyst as a function of temperature prepared by stagnant air calcination condition. Improvement in the activity of Cu_1Mn_8 catalyst, by the addition of ceria was accompanied the increase in the catalyst surface area. The CeO₂ phase presence in a Cu_1Mn_8 catalyst was accelerating the CO oxidation due to the availability of lattice oxygen. The CO conversion initiated at 40°C over 1.5%CeCuMn_8Ox catalyst which was less by 15°C over than that of Cu_1Mn_8 catalyst.

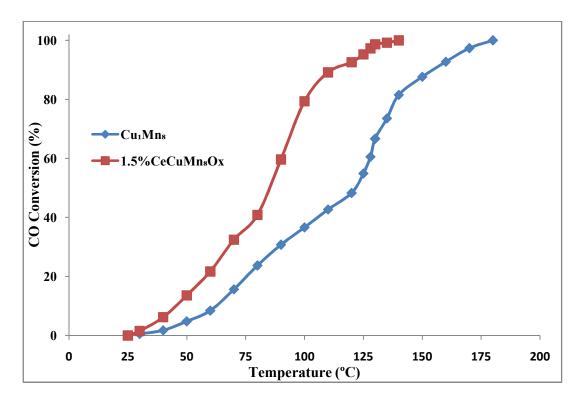


Figure 8.7: Activity test of Cu1Mn8 and 1.5%CeCuMn8Ox catalysts

The 50% conversion of CO was achieved at 85°C for 1.5%CeCuMn₈Ox catalyst which was less by 40°C over than that of Cu₁Mn₈ catalyst. The rising of temperature slightly faster CO oxidation was observed on the catalyst. The complete oxidation temperature of CO was 135°C for 1.5%CeCuMn₈Ox catalyst which was less by 45°C over than that of Cu₁Mn₈ catalyst.

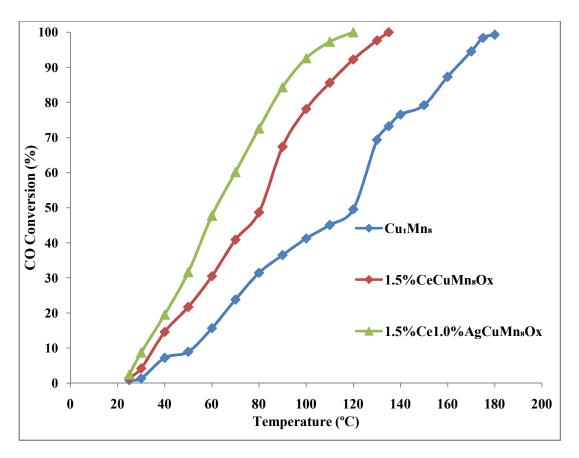

Catalyst	T ₁₀	T ₅₀	T ₁₀₀
Cu ₁ Mn ₈	55°C	125°C	180°C
1.5%CeCuMn ₈ Ox	40°C	85°C	135°C

Table 8.5: Light off characteristics of ceria doped and un-doped Cu1Mn8 catalysts

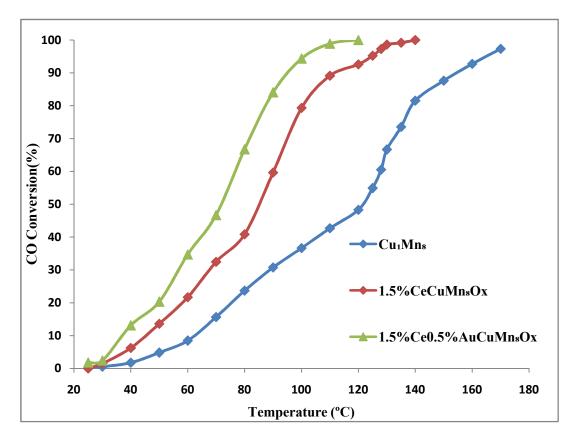
From the Table 8.5 and Figure 8.7 we have confirmed that the addition of small amount ceria into the Cu_1Mn_8 catalyst has further improving their performance for CO oxidation.

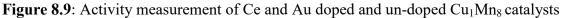
8.3.2 Effect of (Ce and Ag) doping in Cu₁Mn₈ catalysts

The addition of silver into the 1.5%CeCuMn₈Ox catalyst to improved their performance for CO oxidation. Thus, the Cu₁Mn₈ catalyst promoted with AgO and CeO₂ shows a high catalytic activity at a low temperature. The promoters have shown that the greatest effect on the performance of resulting catalyst for CO oxidation. The addition of Ag will introduce the new active sites on the 1.5%CeCuMn₈Ox catalyst and it also increases the reducibility of the catalyst significantly compared to the un-doped Cu₁Mn₈ catalyst. Activity of the surface normalized oxidation rate was similar to the normalized for catalyst mass. Figure 8.8 represents the activity order of Cu₁Mn₈, 1.5%CeCuMn₈Ox and 1.5%Ce1.0%AgCuMn₈Ox catalyst for CO oxidation.

Figure 8.8: Activity measurement of Ce and Ag doped and un-doped Cu₁Mn₈ catalysts The doped noble metal in Cu₁Mn₈ catalysts seems to be quite active for low temperature CO oxidation. An accumulation of Ag was highly dispersing in the various oxides form

of 1.5%CeCuMn₈Ox catalyst surfaces at the sub-ambient temperature. The oxidation of CO was initiated at 55°C, 40°C and 35°C over than that of Cu₁Mn₈, 1.5%CeCuMnOx and 1.5%Ce1.0%AgCuMn₈Ox catalysts respectively. The 50% conversion of CO was achieved at 70°C for 1.5%Ce1.0%AgCuMn₈Ox catalyst which was less by 15°C and 55°C over than that of 1.5%CeCuMn₈Ox and Cu₁Mn₈ catalyst respectively.


Catalyst	T ₁₀	T ₅₀	T ₁₀₀
Cu ₁ Mn ₈	55°C	125°C	180°C
1.5%CeCuMn ₈ Ox	40°C	85°C	135°C
1.5%Ce1.0%AgCuMn ₈ Ox	35°C	70°C	120°C


Table 8.6: Light off characteristics of Ce and Ag doped and un-doped Cu1Mn8 catalysts

The complete oxidation temperature of CO was 120°C for 1.5%Ce1.0%AgCuMn₈Ox catalyst which was less than 15°C and 60°C over than that of 1.5%CeCuMn₈Ox and Cu₁Mn₈ catalyst respectively. The order of activity of the catalysts matches with their characterization results by XRD, FTIR, SEM-EDX and BET. The interaction of CuO, CeO₂, Ag₂O₃ and Mn₂O₃ with the formation of an exceedingly disordered mixed metal oxide was the cause of higher activity for CO oxidation. The addition of silver promoters into the 1.5%Ce1.0%AgCuMn₈Ox catalyst, they have an attribute to the larger surface area, amorphous in structure and production of surface adsorbed oxygen it enhances the mobility of lattice oxygen.

8.3.3 Effect of (Ce and Au) doping in Cu₁Mn₈ catalysts

From the activity test, we have observed that the promoting Au into the 1.5%CeCuMn₈Ox catalyst was a great improvement in their catalytic activity. The abundant large pores and specific surface area present in the Au promoted 1.5%CeCuMn₈Ox catalyst has a great potential to further improving their catalytic performance. It was clearly indicated that Au was not only acting as a structural promoter, which consider the high efficiency of highly dispersed Au particles for low-temperature CO oxidation. Figure 8.9 represents the activity order of Cu₁Mn₈, 1.5%CeCuMn₈Ox and 1.5%Ce1.0%AuCuMn₈Ox catalyst for CO oxidation. The 1.5%CeCuMn₈Ox catalyst was highly dispersed in the HAuCl₄ solution and highly effective for low-temperature CO oxidation.

The oxidation of CO was initiated at 55°C, 40°C and 30°C over the Cu₁Mn₈, 1.5%CeCuMn₈Ox and 1.5%Ce0.5%AuCuMn₈Ox catalysts respectively. The 50% conversion of CO was achieved at 65°C over 1.5%Ce0.5%AuCuMn₈Ox catalyst which was less by 20°C and 60°C over than that of 1.5%CeCuMn₈Ox and Cu₁Mn₈ catalyst respectively.

Catalyst	T ₁₀	T ₅₀	T ₁₀₀
Cu ₁ Mn ₈	55°C	125°C	180°C
1.5%CeCuMn ₈ Ox	40°C	85°C	135°C
1.5%Ce0.5%AuCuMn ₈ Ox	35°C	65°C	110°C

Table 8.7: Light off characteristics of Ce and Au doped and un-doped Cu₁Mn₈ catalysts

The total oxidation temperature of CO was 110°C for 1.5%Ce0.5%AuCuMn₈Ox catalyst which was less by 25°C and 70°C over than that of 1.5%CeCuMn₈Ox and Cu₁Mn₈ catalyst respectively. In the 1.5%Ce0.5%AuCuMn₈Ox catalyst, a large number of oxygen atoms adsorbed during the O₂ multi-pulse was smaller than the amount of CO consumed during the first CO multi-pulse series. The CO multi-pulse experiments have detected two distinct types of active oxygen species participating in the CO oxidation. The first type of active oxygen was observed in a similar amount of both the catalysts and associated with the mixed oxide catalyst surface. The second type of active oxygen was found only on the Au-doped 1.5%CeCuMn₈Ox catalyst; therefore, it was clearly associated with the presence of gold on the surface of catalyst.

8.3.4 Effect of (Ce and Au or Ag) doping in Cu₁Mn₈ catalysts

In comparison between the doped and un-doped Cu_1Mn_8 catalysts, we have observed that the 1.5%Ce0.5%AuCuMnOx catalyst has shown the best performance for CO

oxidation. The presence of CuO, CeO₂, Mn₂O₃ and AuO phases in the 1.5%Ce0.5%Au CuMn₈Ox catalyst as evidenced by the XRD and FTIR characterization and may be a possible cause for the higher activity of the catalysts. Figure 8.10 represents the comparison study of un-doped Cu₁Mn₈, 1.5%CeCuMn₈Ox, 1.5%Ce1.0%AgCuMn₈Ox and 1.5%Ce0.5%AuCuMn₉Ox catalyst for CO oxidation. It was proposed that the higher activity of 1.5%Ce0.5%AuCuMn₈Ox catalyst recognized to their amorphous structure, surface area and highly dispersed CeO₂ in the lattice which can promote the generation of surface adsorbed oxygen and improve the mobility of lattice oxygen. After the comparison study, we have observed that the Au doped 1.5%CeCuMn₈Ox catalyst was much active for CO oxidation at a low temperature. Au was acting an oxide support and it was broadly accepted that a CO molecule was chemisorbed on Au atom, while an hydroxyl ion moves from the support to Au(III) ions, creating an anion vacancy.

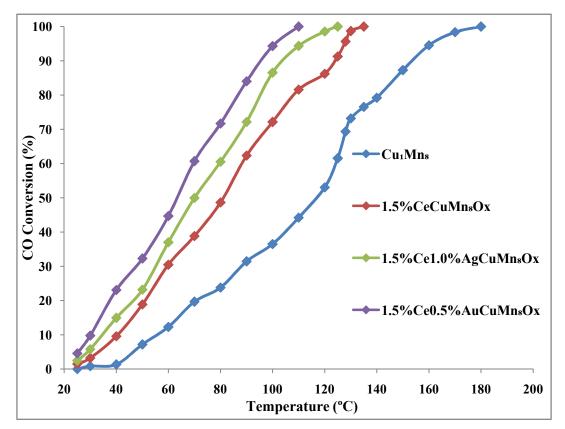


Figure 8.10: Catalytic activity of (Ce and Au or Ag) doped and un-doped Cu_1Mn_8

catalysts

In Table 8.8, we have compared the catalytic activity of all the catalysts. The total conversion of CO has occurred at 180° C over Cu₁Mn₈ and 135° C over 1.5%CeCuMn₈Ox catalyst. The 1.5%Ce0.5%AuCuMn₈Ox catalyst full conversion of CO has occurred at 110° C, which was lowered by 10° C over than that of 1.5%Ce1.0%AgCuMn₈Ox catalyst.

Table 8.8: Light off characteristics of (Ce and Au or Ag) doped and un-doped Cu_1Mn_8 catalysts

Catalyst	T ₁₀	T ₅₀	T ₁₀₀
1.5%CeCuMn ₈ Ox	40°C	85°C	135°C
1.5%Ce1.0%AgCuMn ₈ Ox	35°C	70°C	120°C
1.5%Ce0.5%AuCuMn ₈ Ox	35°C	65°C	110°C

The presence of Ag or Au into the 1.5%CeCuMn₈Ox catalyst enhances their activity for CO oxidation. The 1.5%Ce1.0%AgCuMn₈Ox catalyst CO conversion was so high but slightly lower than the 1.5%Ce0.5%AuCuMn₈Ox Catalyst. In the catalytic oxidation process, the CO molecules interact with the oxygen species and resulting vacant oxygen sites were removed by the adsorption of oxygen molecules from the gas phases. The order of activity of the catalysts for CO oxidation was as follows: 1.5%Ce0.5%Au CuMn₈Ox> 1.5%Ce1.0%AgCuMn₈Ox> 1.5%CeCuMn₈Ox> Cu₁Mn₈. CO was regarded as the reductive gas, which partially reduces the surface sites. The heating of precursor in the oxygen-containing atmosphere (calcination process) may increase the amount of highly active oxygen species presence on the catalyst surface. The other species was easily removed by the CO molecules and enhance the rate of this process also observed in the temperature range of 50-120°C.

The catalysts with high surface area shows the high initial activity. The addition of Au or Ag into the 1.5%CeCuMn₈Ox catalyst their structural property was affected and their oxygen mobility was increased. The CO multi-pulse experiments indicate that the two different types of active oxygen species were found to be concerned in the CO oxidation. One type was observed in a similar amount on both the doped and un-doped Cu₁Mn₈ catalysts and associated with the mixed oxides, while the second type was only found on the Au-doped catalyst, therefore clearly associated with the presence of gold on the 1.5%CeCuMn₈Ox catalyst surface. These experimental data clearly demonstrate that the valuable effect of adding Au or Ag on the 1.5%CeCuMn₈Ox catalyst to improved their performance.

8.4 Concluding Remarks

The oxidation of CO over the various types of Cu_1Mn_8 catalysts were significantly influenced by the crystallite size, pore volume, pore size and surface area of the catalyst. Activity of the catalysts was strongly influenced by the presence of Au, Ag and Ce oxides on the Cu_1Mn_8 catalyst. The additional of smaller amount (1.5wt.%) CeOx into the Cu_1Mn_8 catalyst to improved their performance for CO oxidation. The presence of active species of Cu^+ makes a strong interaction with ceria to make more oxygen vacancies on the surface of catalyst. Further addition of (1wt.%) AgO₂ or (0.5wt.%) AuO into the 1.5%CeCuMn₈Ox catalyst also increased their activity for CO oxidation. The new surface sites created upon doping results in improved the catalytic activities for CO oxidation over AuOx or AgOx promoted on 1.5%CeCuMn₈Ox catalyst. The addition of Au was significantly increases the reducibility of the 1.5%CeCuMn₈Ox catalyst. It was remarked of high activity at a low temperature that stimulated important current interest in these types of catalysts.