Chapter 5

Nonlinear Polytopic Systems with

Predefined-Time Convergence

5.1 Introduction

The problem of designing control for uncertain systems has been a topic of considerable
interest in the control community. When uncertainty is present in the control affine model,
one can represent the system as a polytopic form that has a versatile modeling structure.
The polytopic model is an effective way to characterize the plant uncertainty due to its
simpler design. In this approach, parametric uncertain systems are described by the
parameters of a set of models that have a convex structure [80-84]. This chapter focuses
on nonlinear polytopic systems with predefined-time convergence, where the convergence
time is invariant with respect to the initial conditions of the system and can be chosen
by the designer in advance.

The motivation for the work here is drawn from the limitation of fixed-time stability
[10], where the settling time function depends on system parameters. This dependence
requires adjusting the system parameters to achieve different convergence time. In many
modern applications, the desired convergence time needs to be chosen at the outset.
Therefore, the importance of settling time functions with minimal dependence on system
parameters is increasing. A part of the work is also motivated by the design of controllers
with arbitrary convergence time, where the settling time function is independent on the
initial values and system parameters and can be chosen as per our own choice, as noted

by [37].
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The main contributions are:
1. Predefined-time convergence is enabled for a class of nonlinear polytopic systems.
2. The control Lyapunov function is employed, which yields less conservative results.

3. The proposed predefined-time controller demonstrates robustness to uncertain sys-

tem parameters.

The rest of this chapter is organized as follows. The problem formulation of nonlinear
polytopic systems is described in section 5.2. Section 5.3 presents the predefined time
control of the nonlinear polytopic systems, followed by their respective proof. Section 5.4
demonstrates the application of the proposed method in the practical example with the

simulation results. Finally, section 5.4 summarizes the chapter.

5.2 Problem Formulation

Consider a nonlinear system given by
Z= f(2); 2(0) = % (5.1)

where, z € R" denotes the state vector and f : R® — R" represents a continuous function

and the origin is a fixed point.

Definition 8 (Predefined-Time Stable)

The origin of the system (5.1) is said to be predefined-time stable, if it is fived time
stable and any solution z(t,to, zo) of the system (5.1) converges to the origin within some
predefined time and the settling time function is independent of the initial conditions of

the system.

Consider the following nonlinear polytopic system

= afylz) + Y Buga(2)u (5.2)

where, z € R™ denotes the state vector, u € R represents the control input vector,
i R*=R"p=12-.-- Kandg, : R" = R" ¢=1,2,---, L are sufficiently smooth
nonlinear functions, a = [y, -+, x|’ and B = [B1, -+, Bz]T are uncertain parameters.

Let’s assume that the system given in (5.2) is controllable.
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Assumption 6 The uncertain parameters as and Bs satisfy: a3 + --- + ag = [ +
o+ B =1 >0 ,>0,p=12,--- K, q=1,2,---,L and can be completely
independent.
Ap unforced part and control part of the nonlinear polytopic system (5.2) are given by
i a, fp(z) and EL: B494(2), respectively. Suppose that the nonlinear polytopic system
Izg.l2) is predeﬁnqu-ltime stabilizable for all possible o and 3. Furthermore, consider the
function f,(0) =0Vpe{l,--- K}

Next, the objective is to design a continuous state feedback control function v =

v(z) : R™ — R, such that the closed-loop system

=Y apfyl2) + ) Baga(2)0(2) (5.3)

is predefined time stabilizable for all possible o and f.

5.3 Predefined-Time Control

In this section, firstly, stability criteria of the unforced nonlinear polytopic system are
discussed. For the existence of a continuous and predefined-time stable state feedback
controller, a sufficient condition is defined. After that, it is established that the achieved
sufficient condition is also necessary, such that the closed-loop nonlinear polytopic system
has the RCLF for all possible uncertainties.

Consider the following nonlinear unforced polytopic system

£=) apf(2) (5.4)

where, z € R" is the system state, f, : R — R", p =1,2,--- | K is sufficiently smooth

nonlinear function.

Lemma 6 Consider the nonlinear unforced system (5.4). If there exists a positive-definite,

smooth, and radially unbounded function V : R™ — R such that

A% (1—e")

%,fp(Z) < —"/(ts—_t), Vz 7é 0, o<t <ty, v>1 (55)
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then, the system (5.4) is predefined-time stable for all possible a,; p = 1,2, --- | K, satis-

fying Z a, = 1.
Pmof The time derivative of Lyapunov function along the system trajectory is given by

, OV, _ov - (1—e")
7 < A~ - 7
V = i pg_l apfp(z) < —v TR v>1 (5.6)

where, t, is the predefined time within which the system trajectory converges to the origin.

From the aforementioned discussions, it is ensured that (5.6) shows predefined-time
convergent dynamics. Thus, using (5.6) one obtains V' = 0V t > t,, and since V is a
Lyapunov function in z therefore it implies that z is zero for every t > t,. Therefore, the
nonlinear unforced polytopic system (5.4) leads to predefined-time stability. The proof is
completed. ]

Remark 9 The above proof shows that the convex combination of predefined-time stable

dynamics is also predefined-time stable.

At this point, it is interesting to investigate whether for a predefined-time stable
system there exist convex combinations such that the elements of each combination are
predefined time stable. For predefined time stable system we have V < ((— which

leads to

oV —(1-e")
5 ——(afi(2) + - +axfr(2)) < OEDE

From (5.7), it follows that a straightforward converse results for lemma 6 cannot be drawn.

(g + -+ ak). (5.7)

However, it is possible to outline a generalization in connection to lemma 6. To that end,

the following lemma is given:

Lemma 7 Let there exists a positive-definite, smooth and radially unbounded function
Vi R>p X R" — Rsq for the nonlinear unforced system (5.4). Assume that S is an index
set of r(< K) elements of a particular convex combination satzsfymg fl < —¢,1 € S,

for some ¢; > 0. Let the remaining I —r elements satisfy a_vfj < ((tl—e), j € T, where

T is the index set of those K — r elements. Suppose ¢; > Wltse for alli € S, then

system (5.4) is predefined-time stable.

Proof: Let us consider an arbitrary r less than K. Without loss of generality, we assume

the index set S = {1,2,--- 7}, over which %—‘Z/fi < —¢;, is satisfied for some ¢; > 0. Then
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we can write

~ y(1—e)
V< —aigr —azdo — - — . — W(QK—T +ag i1+ Qg _py2- -+ ak)
_ y(1—e) y(1-e)
= —0q (¢1 (ts — 1) Qs ( @2 (ts — 1)
3 @ =e)\ - eY)
a, <¢r = R (a1 +ag+ -+ ak).
Now if ¢; > W(Et:z)v), i€ S, then V < 77((;;_6;/), which implies predefined-time stability.
|

Further, having some knowledge about the gains of the polytopic system (5.4) allows

us to make the following conclusions:

Lemma 8 The required condition ¢; > 7((1;:)‘/) for predefined-time stability in lemma 7

can be relaxed to any ¢; > 0, if > va; > 1.
JET

A positive-definite, smooth, and radially unbounded function V' (z) that satisfies (5.5)
is called as robust Lyapunov function (RLF) for the unforced nonlinear polytopic system
(5.4).

In the above discussions, if a continuous control v(z) is established such that there
exists a Lyapunov function V(z), which holds the following small control property [89],

for all possible a and £,

agi@ (Z apfy(2) + Zﬁng(Z)v(2)> < —v(l(t:—e;)), Va0, to <t <t (58)

then, v(z) is predefined time stable controller for the nonlinear polytopic system (5.2). It

is noticed that if (5.8) is satisfied, then

8;2,2) qz_;ﬂng(z) =0= 8222) Z apfp(z) < — 7%. (5.9)

p=1

In the given RCLF V/(z) of the nonlinear polytopic system (5.2), let

2,(2) =228 1) ana 1) = D1, 02)

Next, define

Sp(2) ={a € {1,2,--, L}|lly(2) > 0}
Sn(2) = {C] € {1727 T >L}|Hq(z) < O}
S.(2)={ge{1,2,-- L}, (z) = 0}.
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Moreover, consider

D, = {z € R"S.(2) # 0}

Dy = {z € RYS.(2) = 0, 5,(2) £ 0, 50(2) = 0}
D, ={z e R"|S.(z) =0, Sp(z) =0, Sn(z) # 0}
D, ={z e R"|S.(2) =0, S,(z) # 0, S, (z) # 0}

where ) is an empty set. One can obtain S,(z) U S, (z) US,(2) ={1,2,---,L} and D, U
D,UD,UD,, CR".

The following assumptions are considered for proofing the theorems.

Assumption 7 There exists a Lyapunov function V (z), such that for all z € D,(z)\{0}

(1(:__5)7 vy>1, to<t<ts Vpe{l,2,--- K}.

and for all z € Dy, ®p(z) < —v

Assumption 8 RCLF V(z) of the nonlinear polytopic system (5.2) satisfies the small
control property:

Ve >0, 36 > 0 such that if z # 0 satisfies ||z|| < 0, then there exists some u = v(z)
with ||ul| < € such that ¥p € {1,2,--- K} and g € {1,2,--- , L},

VvV (z) VvV (z)

Oz fp(Z) + 92 gq(z)v(z) <— 7(1 — e*V)

(ts - t)

>, g <t <ty

Lemma 9 [128] If a state feedback control function v(z) is continuous at the origin and
there exists a radially unbounded, positive definite and smooth Lyapunov function V(z),

for all possible o and 3, i.e.

mgiz) (Z apfp(z)+2/3ng(z)v(z)> < —Vw, Vx40

p=1 (ts o t)

then v(z) is a finite-time stabilizing controller for the system (5.2).

Necessary and Sufficient Condition

Theorem 3 For a given nonlinear polytopic system (5.2), which is predefined-time sta-
bilizable for all possible o and 3, if the assumptions 7 and 8 holds, then there exists a
continuous controlu = v(z) and a positive-definite, smooth, and radially unbounded RCLF

V(2) that satisfies
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\/<I>f)(z) + 112 (2)p3 (2) > ’y%,h’z #0, ze D, CR" (5.10)
\/<I>I2)(z) +1IX(2)p3(2) > 7%,#2 #0, ze D, CR" (5.11)

where, v > 1 and tg <t < ts. Moreover, the control is structured as

(
v,(2), if z€ D, CR"

up(2), if z€ D, CR"
w=uv(z)=4 " : (5.12)
vn(2), if z€ D, CR"

kvm(z), if ¢ D,, CR"

with
v,(2) =v(2) =0
o) = — T Bp(2)} +y/max;, {©,(2)}* + min, {I1,(2) }* (1 + p3(2))
’ ming {T1,(2)}
on(2) = — max, {®,(2) } +y/max, {P,(2) }* + max, {Il,(2) }* (1 + p3(2))
! max,{I1,(2)}
where
2w Lo VD TR L, [ OHV() ~ 22
) =m0 UGS st - oo UGS}

O(z) ::’y%, 7> 1, ®(2) == max{®(z), Py(2)},

L(z) ==min{Il1(2)/1 + pi(2), Ha(2)y/1+ p3(2)},

II(2) := max{ILi(2) /1 + p3(2), Ma(2)y/1+ p3(2)}.
Proof: Firstly, the proof of continuity of state feedback control law v(z) is presented.
Then, the predefined-time stabilization of closed-loop nonlinear polytopic system (5.3) is
proven by considering that,

(1=c)

= (5.13)

V(z) =Y ap®y(2) + > Bl (2)u(z) < —

for each possible a and §, where v > 1 and ty <t < t,.
A. Continuous Control
The ®,(z) and I1,(z) are smooth functions, on the respective domain of the definition

of v(z). Employing the small control property, it can be shown that v(z) is continuous
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in the interior regions of D,, D,, D,, and D,,. The only feasible point of discontinuity
of v(z) occurs on the boundary between the following sets D, and D, or the sets D, and
D,, or the sets D, and D,,,.

Consider {z"} € D, is a series of vectors. It converges to a point zZ € D, on the

boundary of D, and D, min {II,(2)} = 0. If Z # 0, lim ¢,(2") < ) =
7—00

(ts—t)

1,2,--- , K from the assumption 7. Moreover,
f @ T E T
lim v(z") = lim v,(z") = lim (_maxp{. o)} + 2 )) =0=1u0,(2) (5.14)
r—00 r—00 r—00 mlnq{Hq(z’")}

where Z(2") := y/max,{®,(2")}? + min,{II, (")} (1 + p3(z")).

If Z=0, then rli—>Holo ®,{2"} =0,Yp=1,2,---, K. Thus, (5.14) also holds the small control
property. This indicates that on the boundary between the sets D, and D, the controller
v(z) is continuous.

Similarly, for the boundary between the sets D, and D,,, the controller v(z) is contin-
uous. Given that the controller v(z) = 0 in both the sets D, and D,,,, it is also continuous
on the boundary of the sets D, and D,,.

B. Predefined-Time Stability

i) For z € D,\{0}

From the assumption 7, if z € D,\{0}, then ®,(z) < —7(1(;:;'),%9 =1,2,---,K. For

this region, u = v(z) = v,(z) = 0, such that for all possible o and 3,

(1—e)

R (5.15)

V() =) a®(2) + ) Bully(2)v(2) = ) ay®y(2) < —

thus, (5.13) is guaranteed in this region (see the Lemma 6).
it) z € D,

For this region, u = v(z) = v,(z) < 0. So, for all possible a and f,

K L K L
V(z) = Z ap®p(z) + Z Ballg(2)vp(z) < Z Qp m?X{‘bi(Z')} + Z Bq mjin{l_[j(z)}vp(z)
p=1 q=1 p=1 q=1 '

L
“mox{0)} + 3 o ) = (0P il () (1 AC)

L
== 3 oy fm{B4(2))2 + {2} (14 4H(2)
g=1

(1—e")

W,’Y>1, to <t <ts.
s

= = (a2 min{ ()} (1+ A G) < =

(5.16)
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Thus, one can observe that (5.13) is satisfied in this case.

iii) Let z € D,
From the case (i), it is easy to show that (5.13) holds in this region with the particular
choice of u = v(z) = v,(2).

iv) Let z € Dy,
From the case (i), it follows that (5.13) is satisfied in this region with the particular choice
of u=2v(z) = vn(z) =0.

According to the aforementioned discussions, if v(z) and V (z) satisfies continuity and
small control property, respectively, then the origin of the system (5.2) is predefined-time

stabilizable for all possible o and 3. Here, the proof is completed. |

Remark 10 The system states = € D, D,, Dy, D, C R" where D, D,, D, and Dy, are

all compact sets which can be chosen by the designer based on the concerned system.

Remark 11 There exists a trade-off between the control input and settling time, i.e.,

large control input is required for obtaining small settling time.

Remark 12 In the aforementioned Theorem, a sufficient condition is presented for the
existence of continuous stable control of the nonlinear polytopic system (5.2). Moreover,

for designing stable controllers, a universal formula is also provided.

Theorem 4 For the given nonlinear polytopic system (5.2), if there exists a continuous
control uw = v(z) then the closed-loop nonlinear polytopic system (5.3) is predefined time
stable and has the RCLEF'V : R™ — R and satisfies assumptions 7 and 8 for all possible
o and f3.

Proof: The RCLF V(z) of the closed-loop nonlinear polytopic system (5.3) for all possible
«a and [ yields

(1—e)

Z ap®y(2) + Z Belly(2)v(z) < —v

For the regions D,\{0} and D,,, it is always possible to find some parameters Bq, q=
L

1,2,---, L such that > Bqﬂq(z) = 0. Thus, in such regions, for all possible o, p =
q=1

1,2,---, K, following is necessary,
S - = (1—e")
Z ap®y(2) + Zﬁqﬂq(z)v(z) = Z a,®,(2) < —’YW
p=1 q=1 p=1 s
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For each z € D,\{0} and for each z € D,,, ®,(z) < —’y(l(;:;') Vp=12--,K are
necessary.
From the continuity of v(z), the small control property holds the assumption 7 in

V(2). Therefore, this completes the proof. [ |

5.4 Simulation results

To illustrate the efficacy of the proposed control design. Let’s take, a continuous stirred
tank reactor [93]. In the reactor, an isothermal parallel/series Van de Vusse reaction is

considered.
The continuous stirred reactor dynamics is given follows as
: 2
2 —T121 — 132 CAg — %1

= + u (5.17)
2o Tz — ey —Z22

where, ¢4, = 1.2 gmol.I”! represents the concentration of species A in feed stream. Re-
action rate constants are r; = 40 h™', 7, = 80 h™! and r3 = 100 (gmol.h)_l. From the

system (5.17), one can easily write

3
3 5 2
: 1 2 1 2 CAg Z{
21 ——="12{ — —7=T3%] & (\/Zl T oo
=| v, v + V= VAT (5.18)
N 2
Z9 —\/Hlel — 929 —2

Suppose that the uncertainty is present in the state z; which is unknown but bounded
i.e. 21 € [Z1min, Z1max] = [1.5, 70].
Next, we can write the system (5.18) into the form as mentioned in the nonlinear

polytopic system (5.2)

3 5 3 5
. 45.627 — 11427 13227 — 33z
. = + (%)
21“2 3 3
15.627 — 113.62 13.227 — 266.42,
3 3
4.9./z; — 4.08z2 0.18,/z1 — 0.1522
+ 3 va " B va "o (5.19)
—522 —1.2522
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Now, consider the RCLF V(z) = 327 + 23. Using RCLF, it can be easily calculated

7
D, (z) =45. 621 (229 — 21) — 11427 — 227.223

(
@2(2

(

(

z

=13. 221 (229 — 2z1) — 33z1 — 532.822

=

1(2) =4.92] : —4.08215 — 1023

)
)
)
)

5
My(2) =0.1827 — 0.1527 — 2.522.

From the conditions of the sets D, D,, D,, and D,,

D, ={z € R, 2 € R|II;1(2) =0 or IIx(z) = 0}
D, ={z € R,z € R|II;1(z) > 0 and II5(z) > 0}
D, ={z1 € R,z € R|II;(2) < 0 and TI5(z) < 0}

Dy, = {21 € R, 25 € R|II;(2)1I5(2) < 0}.

Furthermore, the controller u is a continuous predefined-time stable for the nonlinear
polytopic system (5.19) as follows

,

v.(2) =0
R O EFEEC 5.20)
va(2) =-—-v/1+ p%(z)g(z)J“\/W .
vm(z) =0.
In the simulation, the uncertain parameters oy = 0.7, ap = 0.3, 5 = 0.2 and

B2 = 0.8 are taken for Figure 5.1 and Figure 5.2. The constant parameters v =4, t, = 0.7
and z(0) = [3 4] are chosen for the Figure 5.1. In the same way, for the Figure 5.2,
v=28.5,1,=0.7 and z(0) = [7 —5} are selected. The simulation results are depicted in
Figure 5.1 and Figure 5.2. With the controller (5.20), the system trajectory converges to
the origin at the desired time ¢ without bearing to the initial conditions (see Figure 5.1
(a), (b) and Figure 5.2 (a), (b)). Moreover, the approach invokes a very nominal control
effort (see Figure 5.1 (c¢) and Figure 5.2 (c¢)). More importantly observe that irrespective
of the different initial conditions assumed, the convergence happens within the chosen
predefined time. This is the key property of predefined-time control.

The proposed results are compared with the existing approaches in [10] and [11].

It is found that the proposed approach provides the exact convergence at the predefined
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time (ts = 0.7 sec.), which is independent of initial conditions. While, the existing results
on fixed-time [10] and finite-time [11], provides larger convergence time as compared to
the proposed approach. Moreover, in finite-time approach [11], the convergence time
depends on initial conditions and system parameters whereas in fixed-time approach [10],
the convergence time depends on system parameters. Therefore, one can easily see that
the origin of the nonlinear polytopic system (5.19) is stabilized in the desired time ¢

irrespective of the values of initial conditions.

3 I : Proposed 4 l : Proposed 0 =
| R[10] ‘ | R[10]
Sl R[11] 3 | R[11] -4 i
| | = |
— =2 _ S 8 t.=0.7
SHIRY 1,=0.7 = [\ 07 } /s
N N | Proposed
I 1200 RI10]
0 0 R[11]
-16
0 1.2 3 4 5 0 1 2 3 4 5 o 1.2 3 4
Time(sec) Time(sec) Time(sec)

(a) (b) (©

Figure 5.1: (a) state trajectory z;(t), (b) state trajectory z»(t), and (c¢) control input wu(t).

Proposed 0 I of fF—
R[10]
-1 | -5
_ 2 _-1off |i
N : s=0-7 S5 : t,=0.7
'L/ |
|
1
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-4 -20
R[10] R[10]
5 R[11] -25 R[11]
o 1 _2 3 4 5 0 2 3 4 1.2 3 4
Time(sec) Time(sec) Time(sec)

(a) (b) ()

Figure 5.2: (a) state trajectory z(t), (b) state trajectory z5(t), and (c) control input u(t).

5.5 Summary

This chapter suggested predefined-time controller for nonlinear polytopic systems. With
this type of controller, the settling time function (¢;) is invariant with respect to initial
conditions and can be chosen as per own choice. Such kind of systems is said to be
predefined time stable. Stability analysis of the nonlinear polytopic systems is discussed
by using the control Lyapunov function. The effectiveness of the proposed results is

studied through the simulations.
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