Chapter 2

Preliminaries

2.1 Notations

Symbol R denotes set of real numbers, R>, = {z € R: z > ¢} and R” represents set of
real numbers having n-components. [e;]? = |e;|’sign(e;), with § € (0 1) and ¢; € R. The
vector z = [z1, 2o, , 2] € R, ||2]], = (32 |2i|P)Y/P refers to the Euclidean p-norm

i=1
respectively on R™. For a matrix A € R"*", AT represents transpose matrix.

The signum function is defined as follows:

-1 if z<0
sign(2) = ¢ [-1,1]  if2=0
1 if z>0

where sign(z) is a multivalued function.

The saturation function sat,(-) is defined as follows

1 z>w
sat,(z) = 2, 2] < w
-1, 2 < —w

where w is a small positive constant.
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2.2 Stability Notions and Definitions

We here present some standard definitions in context of stability. Consider the nonau-

tonomous system
= f(t,x), z(to) = xo (2.1)

where € R" is the system state and f: Rso x R" — R” is a nonlinear function such
that f(¢,0) = 0, i.e., origin # = 0 is an equilibrium point of (2.1), ¢y > 0 is the initial
time and zg is the initial state.

Now, let’s delve into stability notions. Stability theory holds a central role in systems
theory and engineering, where various kinds of stability notions emerge in the study of

dynamical systems. These stability notions can be classified as follows:

Definition 1 [21/(Lyapunov stability) The origin of the system (2.1) is said to be Lya-
punov stable if for Ye € Ry and Yty € R there exists 6 = d(e,t) € Ry such that for
Vg € B(d)

1. any solution x(t,t,xq) of Cauchy problem (2.1), xq exists for t > to

2. x(t,t,x0) € B(e) fort > t.

Definition 2 [21] (Asymptotic stability). The origin of the system (2.1) is said to be
asymptotically stable if it is Lyapunov stable and asymptotically attractive.
If U(ty) = R™ then the asymptotically stable (attractive) origin of the system (2.1) is

called globally asymptotically stable (attractive). The set U(ly) is called attraction domain.

Remark 1 [t is important to note that Definition 1 and 2 highlight the notion of unrated
stability [21].

Definition 3 [21] (Exponential stability). The origin of the system (2.1) is said to be
exponentially stable if there exist an attraction domain U C R™ : 0 € int(U) and number

C,r € R, such that
[[(, to, wo)|| < Cllzolle ™5t >t

forto € R and xoy € U.
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Definition 4 [20] (Global finite-time stability).

The origin of the system (2.1) is said to be globally finite-time stable if it is globally
asymptotically stable and any solution x(t,to, o) of (2.1) converges to the origin at some
finite time, i.e., V't > to + T(tg, xo). x(t,to,v0) = 0, where T: Rsg x R™ — Rsq, s the

settling time function.

Definition 5 [20] (Fixed-time stability).

The origin of the system (2.1) is said to be fized-time stable if it is globally finite-time
stable and the settling time function is bounded, i.e., AT > 0: Vg € R" and Vi, €
Rso, T(to,z0) < Trmas-

Definition 6 [37] (Predefined Time Stability)

The origin of the system (2.1) is said to be predefined time stable, if it is fixed time
stable and any solution z(t,to, z0) of the system (2.1) converges to the origin within some
predefined time and the settling time function is independent of the initial conditions of

the system.

Remark 2 Please note that Definition 3, 4, 5, and 6 emphasize the concept of rated
stability [21].
Now, let us define the next definition, which is related to Persistent Excitation (PE).

Definition 7 [14] (Persistent Ezcitation)
A signal u(t) is persistently exciting of order r if there exists a constant v > 0 and a time

T > 0 such that for all t > 0 and all sets of coefficients cy, . .., c,, the inequality

t+T r
7/ ds > Z c?
¢ i=0

holds, where ®(s,t) is the state transition matriz of the system at time s, starting from

2

D(s, 1) [u(s) u"“)(sﬂT

time t and the parameters ¢; represent a set of arbitrary real numbers, and the condition

must hold for all possible choices of these coefficients.

2.3 Important Lemmas

This section presents essential lemmas, which are used in the upcoming chapters in order
to get the desired results. These lemmas are common to chapters. For this reason, we

have accumulated the lemmas here.
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Lemma 1 [37]: Consider the nonlinear system (2.1), if a positive-definite, smooth, ra-

dially unbounded function V(x) ezists such that

Viz)= %f(t,x) < —n%, Yo £0, ty<t<t, (2.2)

where n € Rsy and ts is the desired settling time. Then, the state of the system (2.1)

converges to zero within the desired settling time.

Lemma 2 [38]: For every z € R, the following condition holds

—z(1—e%) < —|z| (1 - eilzl) .

2.4 High-Gain Observer

Let us consider the nonlinear dynamical system:
i =F(x)+ ) Gi(x)u;;  alto) =
j=1 (2.3)
y =h(x)
where the functions F', h and G;(j = 1,--- ,r) are assumed to be sufficiently continuous
differentiable in a domain D C R”. The mappings F' : D — R" and G; : D — R" are

vector fields on D and A : D — R is the scalar function on D.

Now, the system (2.3) can be written as the following observable canonical form (see [12]):
Z =22+ ZQLJ‘(ZOW
j=1

T
Zo =23 + 292,1'(21, 2’2)%'

=1
(2.4)
Zn =¢(Zla e ;Zn) + Zgn,j(zla e 7Zn)uj
=1
y=z=0Cz
where C' = [1, 0, -, Olixn, 2= [21, 29, -+, )", ¢and g;; (i =1, -+, n, j=

1

,

-, r) are smooth enough functions.
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Lemma 3 [31]: For the system (2.4), a global finite-time observer is designed for non-

linear systems that are uniformly observable and globally Lipschitz. This approach ensures

that the observer’s state converges to the actual states in a finite amount of time. The

observer is formulated as follows:

2=+ L([e) + o)+ Z.Ch,j(fl)uj
i=1

2y =5+ bh([e1]” + o) + Zgz,j(i’h Zo)u;
j=1

én :¢(21, e ;271) + ln([elJﬁn + 061) + Zgn,j(21: e 72n)uj
=1

where €; = z; — 21, ¢ be the positive constant and 3; is defined as:
. ) . 1
Gi=if—(i—1);i=1, ---, n, B € (1——,1).
n
The gain values Iy, l5, ---, [, are given as:
[lla l27 T ln]T = Sil(a)CT; a>0

where S(«) is positive-definite symmetric n X n matrix.

2.5 Planar Missile-Target System

(2.5)

The planar missile-target interaction geometry is depicted in Figure 2.1. The missile and

the target’s relative motion is represented by M and T, respectively. The distance between

the missile and the target is K. The missile and the target velocities are represented by

Vi and Vi, respectively. The missile’s and the target’s flight paths are denoted by 7,

and 7, respectively. The LOS angle is defined by o. The kinematic equations of the

planar motion shown in Figure 2.1 can be written as [96]:

R =Vrcos(o — yr) — Vacos(o — ~var)

Ro = — Vpsin(o — yr) + Viysin(o — )

where ¢ represents the LOS rate.

The target acceleration can be defined into three cases.
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Figure 2.1: Planar Missile-Target Engagement Geometry

2.5.1 Non-Maneuvering Target

A non-maneuvering target is a type of target that does not change its trajectory or
speed in response to external stimuli, such as a tracking system. In other words, a non-
maneuvering target moves along a predictable path at a constant speed, which makes it

relatively easy to track and predict its future location.

2.5.2 Constant Maneuvering Target

A constant maneuvering target is a type of maneuvering target that changes its motion
characteristics at a constant rate over time. The target’s acceleration or velocity changes

at a fixed rate, which makes it more difficult to track using simple kinematic models.

2.5.3 Time-varying Maneuvering Target

Time-varying maneuvering targets combine the characteristics of both maneuvering and
non-maneuvering targets. They may exhibit different acceleration profiles or follow spe-
cific patterns in their maneuvers. Therefore, their motion characteristics are more complex
and unpredictable over time.

The term time-varying maneuvering target refers to a target whose motion or behav-
ior changes over time due to intentional actions, external influences, or dynamic factors.
The signal that drives the time-varying maneuver can originate from various sources and
depends on the specific application or scenario. It can come from sources such as con-
trol inputs, environmental factors, interactions with other targets, mission objectives, or
information gathered from onboard sensors. The specific driving signal depends on the

target’s nature, its operating environment, and the objectives it aims to achieve.
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