Chapter 2

Optimal Sizing and Siting of Multiple
Dispersed Generation System Using

PSO-GWO Algorithm

2.1 Introduction

In this chapter a hybrid Particle Swarm Optimization-Grey Wolf Optimization (PSO-GWO)
based methodology is proposed for optimal placement of Distributed Generation (DG)
units in the distribution network. A multi-objective function is framed utilizing a weighted
sum of voltage stability index, real power loss, and voltage deviation at the buses from
the desired value, with weights optimized using Genetic Algorithm (GA). The proposed
methodology is tested on IEEE 33-bus Radial Distribution System (RDS) for placement of
Type-1 DGs. The effectiveness of the proposed approach in loss minimization, voltage
profile improvement, and voltage stability enhancement has been established over existing

metaheuristic approaches.
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2.2 Problem Formulation

A multi-objective function is formulated below that represents the weighted sum of active
power loss, voltage stability index, and voltage deviation from the desired value. The
formulated objective function has been optimized in this work using the PSO-GWO

algorithm under a set of operating constraints.

2.2.1 Active Power Loss

Active power loss (PL,ss) in the distribution network may be expressed as [12]:

Pross = Z Z (aab(Pan + QaQb) + Bab(Qan - PaQb)) 2.1)
a=1b=1
where,
_ Rap _
= VoV, cos(8, — Op) 2.2)
o Rab . .
Bap = VaVbSln(6a Op) (2.3)
and
Zab = Rab + anb (24)

where, Z,5, Rp, and Xy p: represent impedance, resistance and reactance, respectively, of
the line connecting buses a and b.

V; = Voltage magnitude at bus-i

0; = Voltage angle at bus-i

P=Real power injection at bus-i

Q; = Reactive power injection at bus-i

n = Total number of buses present in the system.
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The active power loss given by (2.1) has been considered as the first objective function

(OF) that is being minimized as presented below [12]:

OF, = minimization(Ppyss) (2.5)

2.2.2 Voltage Deviation

Voltage deviation from the reference voltage can be expressed as the squared sum of

voltage deviation from desired voltage for all the buses.
n
AVD =Y (Vi—Vyer,)? (2.6)
i=1

where, V. ; = Reference (desired) voltage at bus i. In this work, reference voltage has
been taken as 1.0 p.u. for all the buses.
The voltage deviation from the desired value given by (2.6) has been considered as the

second objective function (OF3) that has been minimized as presented below [97]:

OF, = minimization(AV D) (2.7)

2.2.3 Voltage Stability Index

Voltage stability is the ability of a power system to maintain bus voltages within acceptable
limits. Remote end buses of radial distribution networks are prone to significantly low
voltage profile as a result of cumulative voltage drops in different sections of the feeder.
Voltage stability margin of a network may be examined in terms of distance of current
operating point to maximum loadability point (which is considered as the critical point).
Several indices have been proposed in literature to determine voltage stability of a network.
One such existing index has been used in this work to determine voltage stability of a
radial distribution network and is presented below:

A branch of a radial distribution network connecting buses n; and n; is shown in Fig.

2.1, where, bus 7 is towards the substation side, whereas, bus n, is towards receiving end
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side. In this figure, P,» and Q,; represent net real power consumption and net reactive
power consumption, respectively, for buses n; onward toward receiving end side. The
Voltage Stability Index (VSI) for this system may be given as [98].

bus-n, bus-n,
Vs | \Y

n,

| R,, HX,, T

P, +Q,,

Fig. 2.1 Diagram for the line connecting | and n;, buses.

VSI(”Z) = |Vr_11 |4 - 4-0Pn2ann2 - anRZmz - 4'0Pn2Rnln2 - Qn2ann2‘V;Ll ‘2 (28)

where,

VSI(ny) =Voltage Stability Index (VSI) for receiving end bus n;. It is used for static
voltage stability analysis of the distribution system. VSI value ranges between 0 and 1 with
0 representing its critical value. Thus, if certain bus of a distribution network is having
VSI=0, it means that bus has reached its maximum loadability limit (viz. voltage stability
limit). Further loading on this bus may cause progressive decrease of its voltage leading
to its voltage collapse. The buses having lower VSI values are prone to threat of voltage
instability. Typical value of VSI(n;) without DG integration ranges between 0.65 pu to
0.70 pu for constant power load in 33-bus IEEE network [99]. VSI value must be greater
than zero for all the buses from bus-2 onward in order to have voltage stability in the
system [98].

The most critical bus is the one that has the lowest value of VSI. The higher VSI value
for all the buses ensures a higher voltage stability margin. Therefore, the third objective
function (OF3) that considers maximization of voltage stability margin has been considered

as,

1
VSI(ny)

OF3 = minimization( )y (m=2,3...,n) (2.9)

24



Minimization of the reciprocal of VSI(n;) ensures maximization of voltage stability

margin.

2.2.4 Proposed Multi-Objective Function

The proposed multi-objective function considers the weighted sum of OF;, OF, and OF;
given by (2.5), (2.7), and (2.9) as presented below:

OFfbm = minimization(kl OF| + A,0F, + A3 0F3) (2.10)

where, OFy,, = Proposed multi-objective function
A1 = Multiplier representing weightage for OF;
A2 = Multiplier representing weightage for OF;
A3 = Multiplier representing weightage for OF3.

Weightage multipliers A, A5, A3 have been optimized using Genetic Algorithm (GA).
Initially, the random values are generated between 0.1 and 1. To avoid the ineffectiveness
of any weightage multiplier the lower limit of all lambdas is selected as 0.1 instead of 0.
The set of As producing minimum value of OFy,, resulted in A; =0.17, 2, = 0.7, and A3
= 0.17, which were considered as optimal A values. OFy,, formulated with optimal A
values was optimized further using the PSO-GWO algorithm under a set of equality and

inequality constraints presented in Subsection 2.2.5 below.

2.2.5 System Constraints
Power Balance Equation

Each bus must satisfy real and reactive power balance equation as presented below:

n
Poa—Ppa =Y, VaVi[Gapcos(84— &) + Bapsin(8a — 8)];  a=1.2,.....n.  (2.11)
b=1
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Q6a—Qpa =Y, VaVs|Gupsin(8, — 8) + Bapcos(8a— &));  a=1,2,.....n. (2.12)
b=1

where, Pg; = Real power generation at bus-i
Qi = Reactive power generation at bus-i
Pp; = Real power demand at bus-i

Opi = Reactive power demand at bus-i

h

Y:j = G;; + jBij = Off diagonal elements in i’ row and j" column of the bus admittance

matrix.

Voltage Constraints

Voltages at all the buses must be within permissible limits as given below:
Vamin < Va < Vamax; a=1,2,...... , 1. (2.13)

DG Size constraint

For Type-1 DG, the active power injected by DG to the bus must be within permissible

limits as given below:

PT_IDG S (Pg7[0ad +PL()SS) (214)

PTleG

where, is the maximum permissible size of Type-1 DG and PDT. load 18 total active

power demand by the connected loads.

2.3 Proposed Approach of DG Placement

In this work, the optimal location and size of multiple DGs have been obtained using
a hybrid approach consisting of a combination of PSO and GWO. Present work has

considered placement of Type-1 DGs, only. However, the methodology may be extended
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to the placement of other types of DGs, too. The existing PSO and GWO techniques
alongwith the proposed hybrid PSO-GWO approach to DG placement are presented below.

2.3.1 Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) [100] algorithm is inspired by flocks. It gives
optimal solutions based on population. The population of particles searches for the better
solutions through their own experience and also by that of others.

Particle Swarm Optimization (PSO) is a nature-inspired evolutionary and stochastic
optimization technique to solve a computationally hard optimization problem. In the
algorithm, the swarm with n number of particles communicates with each other directly
or indirectly using search direction. Each particle has two characteristics: a position and
a velocity. Each particle updates its position according to its previous experience and
the experience from the neighbor. The Particle Swarm Optimization (PSO) algorithm is
described in the following steps:

Step 1. Initialization of random position and velocity of n particles
The initial population is generated in the specified range, randomly. Initial velocity
is assumed to be a zero vector. For convenience, we may consider the position and

i

velocity of j' particles for i iteration as x ]

and v;, respectively. The particles generated
initially with position are x;(0),x2(0),x3(0),....x,(0). Evaluate the objective function
value corresponding to the particles as f[x1(0)], f[x2(0)], f[x3(0)] ....f[x,(0)].

Step 2. ppesr and gp,s; calculation
In the " iteration, the two important parameters (i.e. ppes; and gp,,;) used by jh particle
are calculated as:

1) ppest: The historical best value of xi. (position of i particle in the current iteration i),
with the highest value of objective function f [xi.], encountered by particle j in all previous
iterations.

2) gpest: The historical best value of x; (positions of all particles up to that iteration),

with the highest value of objective function f [x;], encountered in all the previous iterations

by any of the n particles.
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Step 3. Velocity and position updating
With the help of pp.s and gp.y, update the velocity and position of each particle for the

respective iteration as:

v§i+1) — (uv? +cirandi (Ppest, —x"}-) + corandy (gpest, —xﬂ-) (2.15)

A = Y (2.16)

where, The weight function is given as:

Onax — Omin i (2 17)

= O - —
max Itrmax

c1 and ¢, are the cognitive (individual) and social (group) learning rates, respectively, and
rand| and rand, are uniformly distributed random numbers in the range 0 and 1. @4y
and @,,;, are the initial and final values of the inertia weight, respectively and It7,,4y is
maximum iterations. The values of @4, = 0.9 and ®,,;,, = 0.4 [100].

Step 4. Check the convergence criterion.

Step 5. Increase iteration count (Itr) by one.

Step 6. Check the stopping criterion.
If it is satisfied, stop otherwise move to step 2.

The flowchart for optimal siting and sizing of DGs using PSO is shown in Fig. 2.2. In
this flowchart x;,. and x;;,, correspond location and size of DG, with [X,,ar] representing

the set consisting of the location and size of all the DGs to be placed in the system.

2.3.2 Grey Wolf Optimization (GWO)

Grey wolf [101] (Canis lupus) belongs to the canidae family. Grey wolves are considered
as apex predators, meaning that they are at the top of the food chain. Grey wolves mostly
prefer to live in a pack. The group size is 5-12 on average. They have a very disciplined

social dominance hierarchy as shown in Fig. 2.3.

28



START

Initialize P50 parameters

L]

Generate random population
of the form [Xeer]=[%ic, % 5ize]

Itr=1

Evaluate fitness corresponding
to each particle using
Backward Forward sweep
method

v

Update p._, & 2.
¥

[ Update velodty matrix [

'

[ Update position matrix [

WO

L

| Display results I

| STOP )

Fig. 2.2 Flowchart for optimal siting and sizing of DGs using PSO

The leaders are called alpha. The alpha is mostly responsible for making decisions

about hunting. The alpha’s decisions are dictated to the pack.

The second level in the hierarchy of grey wolves is beta. The betas are subordinate

wolves that help the alpha in decision-making or other pack activities. It plays the role
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of an advisor to the alpha and discipliner for the pack. The beta reinforces the alpha’s
commands throughout the pack and gives feedback to the alpha.

The lowest-ranking grey wolf is omega. The omega plays the role of a scapegoat.
Omega wolves always have to submit to all the other dominant wolves.

If a wolf is not an alpha, beta, or omega, he/she is called subordinate (or delta in some
references). Delta wolves have to submit to alphas and betas, but they dominate the omega.

Scouts, sentinels, elders, hunters, and caretakers belong to this category.

ﬁ I } 2™ Best Solution
5 } 3™ Best Solution
(2] } F.est Solutions

Fig. 2.3 Social order of grey wolf.

In addition to the social hierarchy of wolves, group hunting is another interesting social

behavior of grey wolves. The various phases of grey wolf hunting are shown in Fig 2.4.

Phsae-I Tracking, Pha.:,e—l'[ Pursuing=l
chasing, apprching the || encircling, and harassing Phase-III Attack
i i the prey until it stops " towards the prey
i moving.

Fig. 2.4 Phases of grey wolves hunting.

Mathematical Model

In this subsection, the mathematical models of the social hierarchy, tracking, encircling,
and attacking prey are provided.

In order to mathematically model the social hierarchy of wolves when designing GWO,
we consider the fittest solution as the alpha (o). Consequently, the second and third best
solutions are named beta () and delta (§), respectively. The rest of the candidate solutions

are assumed to be omega (@). In the GWO algorithm, the hunting (optimization) is guided
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by a, B, and 8. The ® wolves follow these three wolves.
A mathematical representation of the encircling behavior of grey wolves to pray is given

below.

D =|E - POS prey(t) — POS(1))| (2.18)

POS(t+ 1) = POS ey (t) —B-D (2.19)

where, t indicates the current iteration, B and E are coefficient vectors, POS prey 18 the

position vector of the prey, and POS indicates the position vector of a grey wolf.

The vectors B and E are calculated as follows:

B=2br —b (2.20)

E=2r (2.21)

where components of b are linearly decreased from 2 to 0 over the course of iterations and

r1, r» are random vectors in [0,1].

Grey wolves have the ability to recognize the location of prey and encircle them. The
hunt is usually guided by the alpha. The beta and delta might also participate in hunting
occasionally. However, in an abstract search space, we have no idea about the location
of the optimum (prey). In order to mathematically simulate the hunting behavior of grey
wolves, we suppose that the alpha (best candidate solution), beta, and delta have better
knowledge about the potential location of prey. Therefore, we save the first three best
solutions obtained so far and oblige the other search agents (including the omegas) to

update their positions according to the position of the best search agents. The mathematical
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equation for finding the position of prey by «, B and & wolves is given here.

Dy = |Ey-POS; — POS| (2.22)

Ds = |E3- POS5 — POS|

POS, = POSg — B, - (D) (2.23)

POS; = POS5 — B3 - (D)

POS;| + POS, +POS;3

2.24
3 (2.24)

POS =

According to (2.23) and (2.24) (i.e. the best three positions) remaining wolves update their

position.

2.3.3 Proposed Hybrid PSO-GWO-based Approach

All real-world problems are optimally solved by the PSO algorithm, easily. But there is
always a possibility in the PSO algorithm that the solution may be trapped in local minima.
The hybrid PSO-GWO algorithm is formed in order to utilize the better exploitation
capability of PSO and the good exploration capability of GWO [102]. Random positions
are given by PSO with a small possibility of some particles to avoid local minima. The
exploration capability of GWO is used to prevent the risk of movement of particles away
from global minima by directing some particles’ positions instead of random positioning.
Therefore, the present work has considered a hybrid metaheuristic approach that combines
PSO and GWO to determine the optimal position and size of multiple DGs. The objective
function defined by (2.10) has been minimized through the PSO-GWO algorithm taking DG

location and size as decision variables. The weightage of three components of the proposed

32



multi-objective function has been assigned using Genetic Algorithm (GA) as discussed in
the section 2.2. To have the values of P, Q, V & & at various stages, backward/forward
load flow has been applied. The results of the backward/forward load flow have been used
to calculate Pr,5, AVD and VSI(n;) to determine the proposed multi-objective function
at each iteration of the PSO-GWO algorithm. The flow chart to determine the optimal

position and size of multiple DGs using the proposed PSO-GWO algorithm is shown in

| Fead line & load data from network & Itrme |
¥
| Initial set of random siting and sizing of DG |
L]
Perform backwardforward load flow to

calculate Proe, AVD & V 8I{n3) using {2.1),
{2.6) and {2.8), respectively

Fig. 2.5.

[tr=0

Calculate proposed multiobjective objective
functon OFgqas per (2.10) for each solution [

| Update each soluionusing PSO-GWO |
Y
Perform backwardforward load flow to caloulate
Proe AVD & V 8I(n2) using {2.1), (2.6) and (2.8),
respectively for updated solution

Again calculate proposed multiobjective
objective function OF;,, for each solution as
per {2.10)

| Ttr=Ttr+1 |

No

Fig. 2.5 Flow chart for hybrid PSO-GWO for obtaining optimal location and size of DGs
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2.4 Results and Discussion

The effectiveness and validation of the PSO-GWO technique is tested on IEEE 33-bus
radial distribution system to determine the optimal siting and sizing of Type-1 DGs in
order to minimize active power loss and voltage deviation and maximize Voltage Stability
Index (VSI(n2)). The details of the IEEE 33-bus radial distribution system are given in
Appendix A. The population size and iterations are taken as 50 and 100, respectively, to
find the best results. Maximum and minimum voltage limits have been taken 1.05 p.u. and
1 p.u., respectively, for all buses considering +5% permissible voltage variations.

The simulation results obtained by the proposed hybrid PSO-GWO approach along
with a few existing metaheuristic approaches are shown in Table 2.1. Table 2.1 also
present results obtained by Mixed Integer Non-Linear Programming (MINLP) approach
which is a conventional method. MINLP results are obtained by GAMS software using
DICOPT solver. It is observed from Table 2.1 that active power loss and voltage deviation
are minimum, whereas, the voltage stability index is maximum compared to existing
metaheuristic approaches and MINLP approach if DG location and size are obtained
by the proposed PSO-GWO algorithm. It is also observed from Table 2.1 that all the
metaheuristic approaches produce higher VSI value compared to MINLP method out of
which highest VSI value is obtained if DG size and location are obtained by proposed PSO-
GWO algorithm. Hence, placement of multiple DGs through the proposed PSO-GWO
algorithm is more effective in loss minimization, and voltage profile, as well as voltage
stability margin enhancement compared to the existing metaheuristic, approaches. The
exact value of the maximum capacity of Type-1 DG is calculated as 3.931 MW for IEEE
33-bus system. Considering practical considerations, the maximum capacity of Type-1 DG
is taken as 4 MW for IEEE 33-bus system. The minimum permissible DG size is taken
as 0.1 MW in this work. Though the DG size shown in Table 2.1 are not representing
practical values, these have been used to compare the results of PSO-GWO with existing
approaches.

The voltage profile of the system in absence of DG and after DG placement by the

proposed approach are shown in Fig.2.6. It can be clearly observed from Fig.2.6 that the
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Table 2.1 Simulation results of different optimization techniques for IEEE 33-bus RDS

GA[103] PSO[103] GA-PSO[103] MINLP PSO-GWO
ODGL* | ODGS* | ODGL* | ODGS* | ODGL* | ODGS* | ODGL* | ODGS* | ODGL* ODGS*
11 1.5 8 1.1768 11 0.925 9 0.98 31 0.9343
29 0.4228 13 0.9816 16 0.863 16 0.425 26 0.8663
30 1.0714 32 0.8297 32 1.2 25 0.946 12 1.2252
GA[103] PSO[103] GA-PSO[103] MINLP PSO-GWO
PLoss
(kW) 106.3 105.30 103.40 97.7883 92.7686
VD
0.0407 0.0335 0.0124 0.0289 0.0034
(pu)
VSI
(pu) 0.9490 0.9256 0.9508 0.7869 0.9560

*ODGL-Optimal DG Location, *ODGS-Optimal DG Size

voltage of each bus has improved significantly if DGs are placed by the proposed approach.
The voltage magnitudes at each bus without DG and with DG, placed at the optimal
location using the proposed PSO-GWO algorithm are shown in Table 2.2. It is observed
from Table 2.2 that the minimum value of voltages with and without DG are 0.9811 pu and
0.9131 pu at buses 26 and 18, respectively. This shows considerable enhancement in the

voltage profile of the network if DGs are placed using the proposed PSO-GWO algorithm.

Voltage improvement at each busin 33 bus RDS
T T T T T

—— Without DG
—8—With Type-1 DG
099 =
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=]
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o
T

voltage(p.u.)
(=1
w
o
T

0.94 -

093 -

0.91 | | | | ] I

Bus No.

Fig. 2.6 Voltage profile improvement corresponding to optimal solution by PSO-GWO
algorithm (IEEE 33-bus RDS)
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Table 2.2 Voltages magnitude at each bus without DG and with DG placed using PSO-
GWO algorithm (IEEE 33-bus RDS)

Bus No. | Without DG | With DG | Bus No. | Without DG | With DG
1 1.000 1.000 18 0.9131 0.9856
2 0.9970 0.9989 19 0.9965 0.9983
3 0.9829 0.9946 20 0.9929 0.9948
4 0.9755 0.9943 21 0.9941 0.9922
5 0.9681 0.9945 22 0.9922 0.9941
6 0.9497 0.9926 23 0.9916 0.9936
7 0.9462 0.9907 24 0.9794 0.9910
8 0.9413 0.9916 25 0.9727 0.9844
9 0.9351 0.9936 26 0.9694 0.9811
10 0.9292 0.9962 27 0.9477 0.9930
11 0.9284 0.9969 28 0.9452 0.9923
12 0.9269 0.9984 29 0.9337 0.9878
13 0.9208 0.9927 30 0.9255 0.9848
14 0.9187 0.9906 31 0.9220 0.9845
15 0.9171 0.9893 32 0.9178 0.9867
16 0.9157 0.9881 33 0.9169 0.9855
17 0.9137 0.9862

2.5 Summary

In this chapter, a hybrid PSO-GWO algorithm was proposed for determining the optimal
location and size of multiple DGs for loss minimization, voltage profile improvement, and
voltage stability enhancement. A multi-objective function comprising the weighted sum
of power loss, voltage deviation of buses from desired value, and voltage stability index
was proposed. The optimal weighting factors were obtained using Genetic Algorithm
(GA), whereas, the proposed multi-objective function was optimized using the PSO-GWO
algorithm with DG size and location taken as decision variables. Simulations were carried
out in MATLAB environment on IEEE 33-bus radial distribution system. Simulation
results show that the proposed approach of multiple DG placement is more effective in loss
minimization and voltage profile together with voltage stability enhancement compared

to a few other existing metaheuristic approaches. Present work has considered placement
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of Type-1 DGs only, though the work can be extended to the placement of other types of
DGs, too.
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